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Abstract- More than likely, you first dipped your foot into the pool of coverage with code coverage.  Code coverage is a 

very valuable metric which helps you see whether or not the code you have written is being effectively exercised, and can 

be a good gauge of verification progress and completeness.  One major advantage of code coverage is that you do not need 

to write any extra code to collect it, you simply enable it in your simulator and it is collected automatically.  Code 

coverage however, doesn’t ensure the design works correctly, it merely shows that the code you’ve written was executed.  

To further improve the quality and robustness of coverage, we need functional coverage.  With functional coverage, the 

goal is to verify that the design meets its requirements, and functions as intended.  Unlike code coverage however, which 

can be derived from the design, functional coverage is not automatic, and requires that a user explicitly create the 

functional coverage model themselves.  For users both experienced to the usage of functional coverage, and those 

implementing it for this first time, this can be a complicated task.  By knowing some of the potential pitfalls ahead of time, 

you can save yourself anguish down the road. 

I.   INTRODUCTION 

SystemVerilog was not the first language to include the concept of functional coverage, nor was it the first to be 

difficult to fully understand.  There are many intricacies to the language which can greatly affect the results you 

observe from simulation.  Defining simple covergroups is fairly straightforward, however, the complexity greatly 

increases once you introduce the concept of trying to merge multiple instances of the same covergroup, which can 

often lead to vastly different outcomes depending on the implementation approach.  Understanding them becomes 

more complicated when you have embedded covergroups and then trying to merge them across various instances in 

the design. You could potentially end up with covergroups which simply cannot be merged, which makes it 

impossible to see where you truly are with regards to your coverage goals.  You can potentially introduce 

unnecessary performance overhead, or restrict your debug visibility into the covergroups themselves if they are not 

created correctly.  These types of decisions are often made early on in a project, and in some cases, there is no other 

recourse to solving the problem then to make extensive changes to the testbench environment.  Proper understanding 

of the way covergroups are created and function is needed to avoid this scenario before it can become a problem. 

In this paper we will outline a set of guidelines for writing an unambiguous coverage model.  What to do, what not 

to do, and how. 

II.   UNDERSTANDING COVERGROUP OPTIONS 

The SV syntax provides a slew of options for customizing covergroups and covergroup instances.  Some are 

obvious, some perhaps not as clear.  Furthermore, there are certain interactions between these option sets which can 

affect how coverage is collected, merged and reported.  Here we will distill down how these options work, and how 

to best use them to get the results you want. 

The main options we are going to analyze, as well as an example covergroup which employs them follows: 

module top; 

  covergroup cg (ref int v); 

    option.per_instance = 0; 

    type_option.merge_instances = 0; 

    option.get_inst_coverage = 0; 



    coverpoint v { bins val[] = { [0:1] }; } 

  endgroup 

  int a, b; 

  cg cva = new(a); 

  cg cvb = new(b); 

  initial begin 

    #1; a = 0; cva.sample(); 

    #1; b = 1; cvb.sample(); 

    #1; $display("cva=%.2f cvb=%.2f cva+cvb=%.2f", 

                 cva.get_inst_coverage(), cvb.get_inst_coverage(), 

                 cg::get_coverage()); 

  end 

endmodule 

Example 1. Covergroup with Default Options 

Note in this case all three options are set to their default values of zero, but are defined here explicitly for clarity.  If 

you were to simulate this code as it is written, and then look at the makeup of the covergroups created, you would 

see what is pictured in Figure 1. 

There are two key points to notice in this image.  

The first is that while two instances of the 

covergroup were created, there are no instances 

displayed in the covergroup listed.  This is a result 

of the option.per_instance value set above.  

This option is used to determine whether or not 

instance specific information will be reported for 

covergroups.   

If we were to run the same example, but set option.per_instance=1, we would instead get a slightly different 

image, as seen in figure 2. 

With this change, we can now see that all instances are 

shown.  It is important to note that this option ONLY effect 

reporting, it has no effect on how coverage is collected or 

calculated.  You might think of it as more of a debugging 

option, it provides you with additional instance level 

information on your covergroup.  The resultant coverage at 

the covergroup type level however, will not be effected.  

Furthermore, it should also be noted that while specifying 

option.per_instance=1 does require the tool to save 

instance information into the database, 

option.per_instance=0 does not preclude the tool from 

still saving instance information, however it is not required 

to do so in that case. 

The second key takeaway here is more easily seen via the last screenshot (did we mention using 

option.per_instance=1 is a good debug aid?), and that is the way in which the coverage was calculated.  The 

means by which the type, or cumulative coverage is calculated is controlled by the 

type_option.merge_instances.  The calculation for each instance is simply, 1/2 bins hit for each instance, 

results in a coverage percentage of 50%.  You will notice the cumulative coverage is also 50% in this case.  That is 

because when type_option.merge_instances=0, the LRM dictates that cumulative coverage will be the 

weighted average of all instances, which in this case will also be 50%.   

Another way you can tell that type_option.merge_instances=0 is being used, is by virtue of the lack of bins 

under the cg::v coverpoint at the type level (notice that it is greyed out).  This is because in a weighted average 

merge, there is not a concept of bins under the coverpoint, this is something that is well illustrated in our example.  

Figure 1. Covergroup with Default Options 

Figure 2. Covergroup with option.per_instance=1 



If you look closely, you will notice that both instances of the covergroup hit 1 bin in its constituent coverpoint.  

Furthermore, you can see that they hit different bins; cva hits val[0] while cvb hits val[1].  If you were to try 

and display the merged result under the cumulative coverpoint, what would you list?  Obviously, there is no way to 

represent the weighted average coverage via two bins, which is why bins are not listed under the type coverage 

when type_option.merge_instances=0.   

Now, let’s take a look at the difference if we change type_option.merge_instances=1.  Note that in this 

example option.per_instance=1 for clarity. 

You should notice one big difference here, and that is that the 

cumulative coverage of the covergroup is now 100%.  In 

addition, you will also see that there are bins under the 

cumulative coverpoint.  With the change of 

type_option.merge_instances=1, the tool now 

calculates the cumulative coverage as a union of coverage of 

all instances.  Even though both coverpoints only had 50% 

coverage, combined, they hit both bins, resulting in 100% 

cumulative coverage.  Determining what the correct value for 

type_option.merge_instances is will vary from case to 

case, however, the crucial takeaway here is that it can have a 

drastic effect on how cumulative coverage is calculated for 

your covergroups. 

The final option we will take a look at here is option.get_inst_coverage.  You probably noticed it in the 

original example, but the reason we’ve waited till now to bring it up is because it is directly linked with 

type_option.merge_instances, in that get_inst_coverage only applies when merge_instances is set.  

Let’s take a look at how this options works. 

SystemVerilog provides two methods for printing out coverage, get_coverage() and get_inst_coverage().  

In the following scenario, we are going to look at the differences between the two when calling them on a 

covergroup (though they can be used with coverpoints and crosses as well).  When 

option.get_inst_coverage=0 (default), then both of these 

functions will return the same value, as can be seen here in 

Figure 4. 

Since we are using the same options as the last example, you would probably expect that the instance coverage 

returned would be 50%, however, you can see here that unless get_inst_coverage is set (and 

merge_instances is set), you will not enable instance data through this built-in method.   

If we change the code such that 

option.get_inst_coverage=1, you can see that we get the 

instance values, as seen in Figure 5. 

Here you can see the instance coverage reported as the expected 50%.  A complete listing of how these options and 

methods interact with one another can be found in the following table. 

Table 1. Summary of Covergroup Options 

type_option.merge_instances option.get_inst_coverage get_inst_coverage() get_coverage() 

0 0 | 1 Average of all instances Average of all instances 

1 0 Merge of all instances Merge of all instances 

Figure 3. Covergroup with type_option.merge_instances=1 

Figure 4. option.get_inst_coverage=0 

Figure 5. option.get_inst_coverage=1 



1 1 Individual instance Merge of all instances 

 

Use this table to ensure you are using the proper settings to achieve your desired outcome from these methods.   

When it comes to what is the best set of options to use, it can be difficult to make a blanket statement for all 

scenarios.  However, speaking generally, the following will typically be the most resourceful settings: 

 option.per_instance=0 

 type_option.merge_instances=1 

The reason for this is that it limits the amount of data you need to carry forward through merging, reporting and 

analysis.  As mentioned, previously, there are times when you really will need per-instance coverage, whether it be 

for debugging purposes, or to answer a particular question about your coverage, and in those situations you will 

need to change the settings accordingly.   

One other point to keep in mind here, is that some simulations offer the ability to globally set the value of 

option.per_instance and type_option.merge_instances, for any covergroup which did not have it 

explicitly set in the code.  This can be very helpful for times when you want to quickly enable per-instance coverage 

(remember it is off by default) for a debugging task, but don’t want to modify your source in multiple areas. 

Another aspect to touch upon here is performance, both runtime and memory consumption, while using these 

options. For embedded covergroups (covergroups defined inside a class object), using option.per_instance=1 

or type_option.merge_instances=0 may cause simulation to retain all covergroup objects being created 

during the life of simulation to produce the expected behavior of these options, even though its parent class object 

may have been used and then deleted. In such cases, class objects will be garbage collected and recreated when user 

asks to create one again, but embedded covergroup objects are always retained and continue to add up as and when 

the user creates new class objects. This behavior may be obvious to the user, but it can cause not only substantial 

memory and performance overhead during simulation, but also performance and disk overhead in maintaining and 

processing large amounts of data post-simulation. Hence, in order to keep your flow efficient, we recommend using 

these options only when you really need them. 

III.   NAMING YOUR COVERGROUPS 

One bit that often gets users tripped up when it comes to embedded covergroups, is that of instance names.  When 

you are not using embedded covergroups, the name of the instance is supplied when you construct (or new) the 

covergroup.  This has been the case in previous examples.  However, when that covergroup is embedded in a class, 

you now have to do a little extra work to name that covergroup instance.   

Why do you care?  Well, honestly in some cases it may not be a big deal, particularly if you will only ever have one 

instance of a class instantiated.  However, if you intend to have more than one instance of that class (and by 

association that covergroup), then you start to run into some issues.  Regardless of that, it is just a good practice to 

get in the habit of.  You see, covergroup instances are required to have a unique identifier to differentiate them, 

which is the covergroup name.  Furthermore, if you do not specify one, the LRM dictates that a unique name will be 

automatically generated for you by the tool [3]. 

Take the following covergroup as an example: 

package p; 

  class c; 

    int i; 

    covergroup cg; 

      coverpoint i { bins ival[] = { [0:1] }; } 

    endgroup 

    function new(); 

      cg = new; 



    endfunction 

    function void sample(int val); 

      i = val; 

      cg.sample(); 

    endfunction 

  endclass 

endpackage 

module top; 

  p::c cv = new; 

  p::c cv2 = new; 

  initial begin 

    ... 

  end 

endmodule 

Example 2. Multiple Covergroup Instances 

In this example you can see we have two instantiations of the class c.  When the first instance of the class in created, 

cv, a covergroup cg is created via the new function.  When the second instance of the class is created, cv2, the same 

will happen, only this time the covergroup cannot also be named cg, so the tool will add a unique string to ensure a 

unique covergroup instance.  The following Figure shows this in the Questa GUI: 

 

Figure 6. Automatically Generated Covergroup Instance Names 

Notice a #<val> is inserted for subsequent instances of the covergroup.  While this accomplishes the need of unique 

names, if you need to do any analysis at the instance level, it can make it difficult to differentiate the two instances.  

The solution is to ensure that the covergroup instances each get unique names, which can easily be done by passing 

in a name when creating the class instance.  Here is a modified example of the above code to do just that: 

package p; 

  class c; 

    int i; 

    covergroup cg(string o_name); 

      option.name = o_name; 

      coverpoint i { bins ival[] = { [0:1] }; } 

    endgroup 

    function new(string cvg_name); 

      cg = new(cvg_name); 

    endfunction 

    function void sample(int val); 

      i = val; 

      cg.sample(); 

    endfunction 

  endclass 

endpackage 

module top; 

  p::c cv = new(“foo”); 

  p::c cv2 = new(“bar”); 

  initial begin 

    cv.sample(0); 

    $display($get_coverage()); 

  end 

endmodule 
Example 3. Explicitly Named Covergroup Instances 



Here you can see that we name the two instances foo and bar respectively in our code.  Furthermore, you can see 

how those names get applied and displayed in the GUI below: 

 

Figure 7. User Named Covergroup Instances 

While it isn’t a requirement to name each instance, it is something that is very easy to do, and can offer a lot of 

clarity that auto generate tool names do not provide. In general, it is a good habit to get into, you will surely thank 

yourself later. 

IV.   CROSS BIN EXPANSION 

Another bit which is important to understand when it comes to covergroups, is that of default cross-bin expansion.  

Without care, the size of these crosses can quickly get out of control. When a user creates a cross, but doesn’t 

specify explicitly what bins need to be created, tools usually have the capability to auto-expand all possible 

combinations of cross-bins. This is desirable in many cases as the user can avoid creating explicit list of all 

combinations.  

However, it can be problematic in some cases where auto-expansion results in thousands or even millions of cross-

bins. The user most likely did not really require such a large expansion, but it is created anyways due to tool’s auto-

expand feature. This makes post-processing of coverage results difficult, as a user must deal with such a huge 

number of cross-bins.  Additionally, this can create a large impact in terms of performance and memory overhead. 

Behavior that is typically not desired by the user. In these cases, users should be aware of the potential for a large 

expansion of bins and provide explicit list of cross-bins they would like to measure, which is usually a smaller and 

more manageable list of cross-bins. 

So, we have seen both cases, where auto-expansion is desirable and where auto-expansion is not desirable. Tools 

also provide control settings to say whether the user wants auto-expansion or not. This provides the ability to turn 

off/on auto-expansion completely on all crosses, again something user may not desire. 

A balanced approach could be used here. User can ask tool to auto-expand in all cases, except when they are 

explicitly providing a list of user-defined cross-bins. This lets user control both scenarios in the context of the same 

simulation, where they would like to have auto-expansion and where they would not want auto-expansion. An 

example of this approach can be seen in Example 4. 

covergroup cvg; 

  a_cov: coverpoint A iff (start) { 

    bins a_1 = {1}; 

    bins a_2 = {2}; 

    bins a_3 = {3}; 

  } 

  b_cov: coverpoint B iff (start) { 

    bins b_1 = {1}; 

    bins b_2 = {2}; 

    bins b_3 = {3}; 

  } 

  c_cov: coverpoint C iff (start) { 

    bins c_1 = {1}; 

    bins c_2 = {2}; 

    bins c_3 = {3}; 

  } 



 

  a_b_cross :cross a_cov, b_cov{ 

    bins a_1_b_1 = binsof(a_cov.a_1) && binsof(b_cov.b_1); 

    // don’t auto-expand cross-bins here 

  } 

  a_c_cross :cross a_cov, b_cov; 

    // auto-expand cross-bins here 

endgroup 

Example 4. Cross-bin Expansion 

Industry standard simulators usually provide different controls for the behavior here. Please check with your tool 

provider for any specifics. 

V.   SUMMARY OF GUIDELINES 

As we have eluded to several times in this paper, it is difficult to give across the board recommendations on what the 

best approach is, as users verification goals may differ slightly, however, the following list of guidelines should 

generally apply to anyone employing the use of SV covergroups. 

1. For covergroup options, the most efficient settings will be: 

a. option.per_instance=0 

b. type_option.merge_instances=1 

2. Get in the habit of always naming your covergroup instances. 

3. Explicitly define a list of cross bins whenever possible, rather than relying on a tools auto-expansion 

features. 

VI.   SUMMARY 

Covergroups are an incredibly powerful component of verification, however, they can be a bit difficult to set up 

properly.  By following these recommendations, and armed with a better understanding of the effect covergroup 

options have on the results of verification, you can be sure to get the most out of your verification. 
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