
Unleashing the Full Power
of UPF Power States

Erich Marschner - Mentor Graphics
John Biggs - ARM Ltd.

Agenda

• Overview of UPF Power States
• Issues with UPF Power States
• What Power States Represent
• Power State Refinement
• Active and Current Power States
• Power State Definition Rules and Guidelines
• Power State Enhancements in UPF 3.0

3/3/2015 Erich Marschner - Mentor Graphics 2

What is UPF?
• An Evolving Standard

– Accellera UPF in 2007 (1.0)
– IEEE 1801-2009 UPF (2.0)
– IEEE 1801-2013 UPF (2.1)
– IEEE 1801a-2014 UPF (2.2)
– IEEE 1801-2015 UPF (3.0)

• (In development now)

• For Power Intent
– To define power management
– To optimize power consumption

• For Power Analysis (in 3.0)
– Component Power Modeling

• Based upon Tcl
– Tcl syntax and semantics
– Can be mixed with non-UPF Tcl

• And HDLs
– SystemVerilog, Verilog,
– VHDL, and (in 3.0) SystemC

• For Verification
– Simulation or Emulation
– Static/Formal Verification

• For Implementation
– Synthesis, DFT, P&R, etc.

3/3/2015 Erich Marschner - Mentor Graphics 3

Power Mgmt Concepts
• Power Domains

– Independently powered regions
– Enable application of different power

reduction techniques in each region
• State Retention

– To save essential data when power is
off

– To enable quick resumption after
power up

• Isolation
– To ensure correct electrical/logical

interactions between domains in
different power states

• Level Shifting
– To ensure correct communication

between different voltage levels

PMB
Processor

Core
RAM

Power Domain 1 Power Domain 2

Power Domain 3 Power Domain 4

Iso_en

1.0v 0.8v

011000 11000011
011000 11000011

3/3/2015 Erich Marschner - Mentor Graphics 4

Power States in UPF 2.0

• Apply to power domains and supply sets
• Represent

– Capacity of a supply set to provide power
– Operating mode of a component that consumes power

• Power states are actually independent predicates
– Object is in a state iff its defining expression = True
– An object can be in multiple states at once (not mutex)

• Enables modeling abstract states, state refinement
• Modeling power state relationships correctly is critical

3/3/2015 Erich Marschner - Mentor Graphics 5

add_power_state

• Defines power states of supply set or power domain
• Power states have

– a name
– a logic expression

• Supply set power states can also have
– a supply expression
– a simstate (indicates simulation behavior in this state)

• Power states may be legal or illegal
• Power states may be defined incrementally (-update)

3/3/2015 Erich Marschner - Mentor Graphics 6

Supply Set Power States
Power states for the primary supply set of power domain PDA
add_power_state PDA.primary –supply \

-state {ON –simstate NORMAL \
–logic_expr {SW_ON} \
-supply_expr { power == {FULL_ON 0.8} && \

ground == {FULL_ON 0.0} } } \
-state {OFF –simstate CORRUPT \

–logic_expr {!SW_ON} \
-supply_expr { power == OFF || \

ground == OFF } }

add_power_state PDA.primary –supply –update \
-state {SLOW –simstate CORRUPT_STATE_ON_CHANGE \

–logic_expr {SW_ON && interval(clk posedge negedge)>= 100ns} \
-supply_expr { power == {FULL_ON 0.8} && \

ground == {FULL_ON 0.0} } }

3/3/2015 Erich Marschner - Mentor Graphics 7

-update adds
another state

definition

Updating Power States
Power states for the primary supply set of power domain PDA
add_power_state PDA.primary –supply \

-state {SLOW –simstate CORRUPT_STATE_ON_CHANGE \
–logic_expr {SW_ON && interval(clk posedge negedge)>= 100ns} \
-supply_expr { power == {FULL_ON 0.8} && \

ground == {FULL_ON 0.0} } }

add_power_state PDA.primary –supply –update \
-state {SLOW –supply_expr { nwell == {FULL_ON 1.0} } }

add_power_state PDA.primary –supply \
-state {SLOW –simstate CORRUPT_STATE_ON_CHANGE \

–logic_expr {SW_ON && interval(clk posedge negedge)>= 100ns} \
-supply_expr { power == {FULL_ON 0.8} && \

ground == {FULL_ON 0.0} && \
nwell == {FULL_ON 1.0} } }

3/3/2015 Erich Marschner - Mentor Graphics 8

-update modifies
existing state

definition

Power Domain Power States
Power states for the power domain PDA
add_power_state PDA –domain \

-state {RUN –logic_expr { primary == ON && !sleep } } \
-state {SLEEP -logic_expr { primary == ON && sleep } } \
-state {SHUTDOWN –logic_expr { primary == OFF } }

Power states for the power domain PDTOP
add_power_state PDTOP –domain \

-state {S1 –logic_expr { PDA == RUN && PDB == RUN } } \
-state {S2 –logic_expr { PDA == SLEEP || PDB == SLEEP } } \
-state {S3 –logic_expr { PDA != RUN && PDB != SHUTDOWN } }

3/3/2015 Erich Marschner - Mentor Graphics 9

defined in terms
of PDA, PDB
power states

defined in terms
of PDA.primary

power states

Issues with UPF Power States
• Non-mutual exclusion

– Can be unintended and unwanted
• Power states are NOT “states” in the general case

• Unrestricted defining expressions
– Can be arbitrarily complex and difficult to understand

• Contributes to unintended state overlap
• Update can cause unexpected side effects

– Can change the meaning of a state
used in defining some other state

• Update semantics are not sufficient
– Needs to be branching (hierarchical),

not just linear
3/3/2015 Erich Marschner - Mentor Graphics 10

Need to clarify principles of
power state definition and

define rules to enforce them

Need a better method
than -update to support
power state refinement

What is a “Power State” ?

3/3/2015 Erich Marschner - Mentor Graphics 11

A named set of object states
 Each state has a

“defining expression”
 It refers to values of the

object’s “characteristic
elements”

 Some characteristic elements
may be don’t cares for a
given state

 Multiple object states
may satisfy the defining
expression

A B C

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

A==1’b0
&&

B==1’b0

(A xor B)
==1’b1

A==1’b1
&&

B==1’b1

don’t
cares

S1

S2

S3

Power States as Sets

3/3/2015 Erich Marschner - Mentor Graphics 12

 Largest set = all possible object states
 Some of these states are legal states
 Subsets represent “more specific”

(or more refined) power states
 Refinement creates subsets by adding

more conditions to satisfy
 The innermost subset containing a

given object state represents the most
specific power state of that object

 Supersets represent “more general”
(or more abstract) power states

 Non-overlapping subsets represent
mutually exclusive power states

 Subset containment implies non-mutex
power states (subset => superset)

Possible State Space

Applying These Concepts
 Same level states must be mutually exclusive
 Superstates contain (overlap) substates - non-mutex
 These principles allow state partitioning, hierarchical refinement

{All States}

Sleeping Soft Off

S1 S2 S3 S4
G0: Working

S0: Awaymode
G1: Sleeping

S1: Power on Suspend
S2: CPU off
S3: Standby
S4: Hibernation

G2: Soft Off
G3: Mech. Off

Working Mech Off

S0

Mutex

more abstract

more refined

name Fundamental Power States
name Refined Power States (Substates)

{All States} represents the set of all possible states;
the fundamental states are subsets of {All States}

Mutex

3/3/2015 Erich Marschner - Mentor Graphics 13

Refinement by Derivation

• Define new state(s) instead of updating existing state
– Avoids side effects
– Allows for branching refinement

• Define new state by adding another condition
– Amounts to subsetting object’s state space

• Group related states as derivatives of same parent
– Enables power state differentiation as design evolves

• Ensure all derivatives of same state are mutex
– Enables identification of a unique “current state”

3/3/2015 Erich Marschner - Mentor Graphics 14

Example
Power states for the CPU
add_power_state CPU –domain \

-state {UP \
–logic_expr {primary==ON }}

add_power_state CPU –domain -update \
-state {RUN \

–logic_expr {CPU==UP && busy==1 }}

add_power_state CPU –domain -update \
-state {IDLE \

–logic_expr {CPU==UP && busy==0 && clkg==1}}

add_power_state CPU –domain -update \
-state {CLKGATED \

–logic_expr {CPU==UP && clkg==0}}

…

3/3/2015 Erich Marschner - Mentor Graphics 15

UNDEFINED

UP DOWN

RUN IDLE CLKGATED RET

P1 P2P0

CPU

Classes of Power States
• Definite Power State

– represents a specific binding of values to object elements
– has a defining expression that

• contains only operators == and &&
• and refers only to other Definite states (of same or other objects)

• Indefinite Power State
– represents a set of possible bindings of values to object elements
– has a defining expression that

• contains operators !, !=, or ||
• or refers to an Indefinite state (of the same or another object)

• Deferred Power State
– a Definite State that is not yet fully defined
– has a name but no defining expression yet

3/3/2015 Erich Marschner - Mentor Graphics 16

Examples
• Definite Power State

• {power==FULL_ON && ground==FULL_ON}
• {primary==OFF && retention==ON}
• {CPU==Running && Memory==Operational}

• Indefinite Power State
• {CPU==Running && !(Memory==Sleep)}
• {primary!=ON && retention==ON}
• {power==OFF || ground==OFF}

3/3/2015 Erich Marschner - Mentor Graphics 17

Can be interpreted as
a set of assignments

Cannot be interpreted
as assignments
without making choices

Negation requires closed-world assumption

Similar to PST states

This additional power
(and complexity) is new
with add_power_state

PSTs and Definite States
• Power State Tables (PSTs) use Definite States

create_pst PST1 -supplies { VDD VDDsw VSS }
add_pst_state S0 -pst PST1 -state { on10 * on00 }
add_pst_state S1 -pst PST1 -state { on10 off on00 }
add_pst_state S2 -pst PST1 -state { on10 on08 on00 }
add_pst_state S3 -pst PST1 -state { on08 on08 on00 }

Implies defining expressions:
S0 = { VDD == 0n10 && VSS == on00 }
S1 = { VDD == 0n10 && VDDsw == off && VSS == on00 }
S2 = { VDD == 0n10 && VDDsw == on08 && VSS == on00 }
S3 = { VDD == 0n08 && VDDsw == on08 && VSS == on00 }

3/3/2015 Erich Marschner - Mentor Graphics 18

PSTs and Refinement
• Power State Tables (PSTs) can model Refinement

create_pst PST1 -supplies { VDD VDDsw VSS }
add_pst_state S0 -pst PST1 -state { on10 * on00 }
add_pst_state S1 -pst PST1 -state { on10 off on00 }
add_pst_state S2 -pst PST1 -state { on10 on08 on00 }
add_pst_state S3 -pst PST1 -state { on08 on08 on00 }

Implies defining expressions:
S0 = { VDD == 0n10 && VSS == on00 }
S1 = { PST1== S0 && VDDsw == off }
S2 = { PST1== S0 && VDDsw == on08 }
S3 = { VDD == 0n08 && VDDsw == on08 && VSS == on00 }

3/3/2015 Erich Marschner - Mentor Graphics 19

But PSTs are not hierarchical, cannot include control
expressions, and only refer to supply ports/nets

(Conceptual; not legal)

Active and Current States
Power states for the CPU
UP: {primary==ON}

RUN: {CPU==UP && busy}
P0: {CPU==RUN && perf==2’b00}
P1: {CPU==RUN && perf==2’b01}
P2: {CPU==RUN && perf==2’b10}

IDLE: {CPU==UP && !busy && clkg==1}
CLKGATED: {CPU==UP && clkg==0}

DOWN: {primary==OFF}
RET: {CPU==OFF && retention==ON}

3/3/2015 Erich Marschner - Mentor Graphics 20

UNDEFINED

UP DOWN

RUN IDLE CLKGATED RET

P1 P2P0

CPU

The most refined active
state is the current

power state

If a state is active, every
abstraction of that state

is also active

Undefined and Error States

• UNDEFINED
– Represents all other states not explicitly defined
– Useful for early stages in the flow
– Active (and current) only if no other state is active

• ERROR
– Catches unintended non-mutex states
– Necessary for dynamic verification
– Active (and current) when two different fundamental

states are active

3/3/2015 Erich Marschner - Mentor Graphics 21

Power State Definition Rules
You can:
 Define (legal) states
 Define explicitly illegal states
 Specify -complete to make

undefined states illegal
 Define Definite subset states

(existing state AND new condition)
 Define Indefinite superstates

([X]OR of existing states)
 Mark existing legal states illegal

You cannot:
 Create legal states in illegal state

space
 Define superstates that are the

AND of two or more existing states

Possible State Space

3/3/2015 Erich Marschner - Mentor Graphics 22

Adopting This Approach

• In UPF 2.x
– Define mutually exclusive fundamental states
– Use Definite or Deferred states wherever possible
– Use Refinement by Derivation to create refined states
– Ensure that all refinements are mutually exclusive
– Use more conservative simstates for more refined

states
– Define UNDEFINED, ERROR states for all objects

3/3/2015 Erich Marschner - Mentor Graphics 23

Changes Coming in UPF 3.0
• Predefined power states

– UNDEFINED, ERROR for all objects
– ON, OFF for supply sets

• Current State precedence rules
– Replacing existing simstate precedence rules

• New name syntax for power state refinement
– Dotted names for power states (e.g., UP.RUN.P0)

• Clarification of state transition semantics
– Based on active and current state definitions

• Error checks for new power state concepts
3/3/2015 Erich Marschner - Mentor Graphics 24

Summary

• UPF 2.0 add_power_state is a powerful command
– Perhaps too powerful if used without care

• Power states should be defined methodically
– Should be mutually exclusive at any given level
– Should use refinement by derivation to refine states

• Refinement by derivation works in UPF 2.x
– Can be used now to create a power state hierarchy

• UPF 3.0 will reinforce this methodology

3/3/2015 Erich Marschner - Mentor Graphics 25

	Unleashing the Full Power�of UPF Power States
	Agenda
	What is UPF?
	Power Mgmt Concepts
	Power States in UPF 2.0
	add_power_state
	Supply Set Power States
	Updating Power States
	Power Domain Power States
	Issues with UPF Power States
	What is a “Power State” ?
	Power States as Sets
	Applying These Concepts
	Refinement by Derivation
	Example
	Classes of Power States
	Examples
	PSTs and Definite States
	PSTs and Refinement
	Active and Current States
	Undefined and Error States
	Power State Definition Rules
	Adopting This Approach
	Changes Coming in UPF 3.0
	Summary

