
RESEARCH POSTER PRESENTATION DESIGN © 2012

www.PosterPresentations.com

INTRODUCTION

Figure-2: Two-top testbench for HW-assisted acceleration

A virtual interface is a SystemVerilog variable that can hold a reference to 
a concrete SystemVerilog interface instance. A variable of a virtual 
interface type can be given a value (i.e., it can be made to reference an 
existing interface instance) by assigning to it the hierarchical path name of 
the given interface instance [6]. The Mentor Graphics Veloce® emulation 
platform supports a synthesizable transactor interface that provides 
communication between emulator and testbench. Transactor interfaces 
encapsulate synthesizable SystemVerilog tasks and functions. A driver 
calls a function or task using a reference to a synthesized SystemVerilog 
interface to access DUT pins and signals. Similarly, a monitor waits on a 
function call from a transactor interface. All accesses to DUT pins and 
signals are thus strictly confined to the HDL partition. All such functions 
and tasks are restricted to synthesizable data types. 

A ore-proxy is a C/C++ core model based on communication semantics 
between HDL and C, as defined by SCE-MI 2 [2]. A SystemVerilog API 
wrapper class connects a C-based proxy to the rest of the testbench. The 
proxy class maintains handles to components in the synthesizable 
transactors and uses DPI function calls or SCEMI pipes to communicate 
with these transactors [1][2]. In this approach, C-based proxy class 
functions provide APIs that can be used by a SystemVerilog or SystemC 
driver to communicate with the DUT.

Extending the verification testbench for SW validation
A conventional software validation platform usually involves an FPGA 
prototyping platform with a JTAG connection to a software debugger. 
Typically, a dedicated team is responsible for partitioning the system on chip 
(SoC) RTL for a specific hardware platform to meet capacity and peripheral 
constraints. As more and more SoCs have embedded processors, there is a 
growing requisite for hardware/software co-validation. Earlier access to 
complete RTL, maintaining system bus connectivity across sub-modules and 
protocol peripherals, is an essential step of the verification process.

A preferred approach for hardware/software co-validation is to leverage 
the verification testbench to access the same RTL as used by design 
verification engineers. Based on the transactor modeling method described 
in the next section, a user can access the SoC system bus both with a UVM 
testbench or with a C API embedded software model to access the 
complete RTL. Figure-3 demonstrates a virtual machine communicating 
with the Veloce emulator to validate software driver development using a 
proxy-based transactor. Such integration provides the complete SoC RTL 
in the hardware accelerator with full visibility.

Figure-3: SW driver development with HW-assisted acceleration

OTHER CONSIDERATIONS
To effectively implement the unified testbench for simulation and 
acceleration, we adhered to the following coding guidelines.
• # delays are not allowed in the testbench code. To achieve best 

performance, all code on the HVL testbench side should be untimed, 
and all timed code should be synthesized. 

• There should not be any direct signal access from the HVL side. All 
communication must be transaction-based. To access individual signals 
indirectly, GPIO transactors were used. 

• Memory models can remain as behavioral Verilog code. The Veloce 
compiler can infer structural memories from behavioral Verilog memories.

ACKNOWLEDGMENTS
H. van der Schoot, A. Saha, A. Garg, S. Krishnamurthy, “Off to the races 
with your accelerated SystemVerilog testbench,” DVCon 2011

Accellera – Interfaces Technical Committee, “Standard Co-Emulation 
Modeling Interface (SCE-MI) Reference Manual”, version 2.1, October 2010.

Accellera – (UVM) 1.1 User’s Guide, May 18, 2011

M. Glasser, “Open Verification Methodology Cookbook”, springer, 2009

Accellera – Unified Coverage Interoperability Standard (UCIS), Version 
1.0, June 2, 2012

Rich D., Bromley, J. “Abstract BFMs Outshine Virtual Interfaces for 
SystemVerilog Testbenches”, DVCon 2008

This paper describes a unified flow for both hardware-assisted RTL 
verification and pre-silicon validation of hardware/software integration and 
how we set up the associated testbench environment by leveraging 
verification industry standards for reuse (UVM) and co-modeling (SCE-MI 
2). Deployment of this flow was accomplished in a customer setting by first 
combining a mainstream, transaction-level verification methodology — the 
Universal Verification Methodology (UVM) — with a hardware-assisted 
simulation acceleration (also known as co-emulation) platform. The 
necessary testbench modifications incorporated to enable this combination 
are generally nonintrusive and required no third-party class libraries; 
pertinent verification components from the customer environment were 
hence readily reusable in the pure simulation environments, across different 
designs using the same block, and for different verification groups.

Next to offering substantial speed-up for verification in terms of simulation 
cycles per second, the common-source SystemVerilog and UVM 
acceleration platform outlined above has subsequently been leveraged also 
for software validation. The hardware-assisted simulation acceleration 
factor of two to three (or more) orders of magnitude have made it practical 
for the software engineers to begin co-validating the software with the 
hardware far in advance of silicon. Clearly, the benefit of pre-silicon 
validation in terms of early detection of hardware/software integration 
issues boosts the efficiency of post-silicon validation as well. 

The unified verification and validation flow has enabled a near seamless 
transition between RTL design verification and software/firmware 
validation. It significantly reduces the turn-around time for time 
consuming yet essential tasks, including debugging and regressions. It 
takes advantage of very fast emulator performance to handle longer and 
more tests to cover more design requirements and uncover more design 
bugs. In essence this unified flow has eliminated the productivity and 
quality penalties associated with creating and maintaining different 
verification and validation platforms.

We bridged these partitioned domains using a SCE-MI compliant, high-
performance, transaction-level communication link between the hardware 
and software provided by the Mentor Graphics Veloce/TBX® solution. This 
allowed us to accelerate the timed portions of the testbench and the DUT in 
the Veloce emulator without affecting the untimed UVM domain.

executable code in virtual machines that communicate with the RTL via a 
proxy based system bus transactor. As a result, the same RTL image is 
available for verification and validation with full visibility to debug.  

We bridged these partitioned domains using a SCE-MI compliant, high-
performance, transaction-level communication link between the hardware 
and software provided by the Mentor Graphics Veloce/TBX solution. This 
allowed us to accelerate the timed portions of the testbench and the DUT in 
the Veloce emulator without affecting the untimed UVM domain.

We further ensured that the entire environment — including especially the 
untimed UVM components and the timed transactors — was single source 
for both conventional simulation and for the co-emulation flow. Thus, any 
model written for the emulator can also be run in simulation alone using a 
SystemVerilog compliant simulator. This eliminates the need to maintain 
separate models and environments.

Transaction-level models that drive bus functional models maintain a 
transparent separation between the stimulus and the DUT pins. UVM 
layering concepts and transaction-level communication techniques provide 
the ability to swap out UVM-based directed and pseudo-random stimulus 
scenarios and apply, instead, real application software developed for the 
DUT, without sacrificing debug capabilities.

Clock and reset transactors were designed to take advantage of the variable 
clock delay feature of the Veloce/TBX emulation platform. This enabled 
the verification and validation teams to run their tests at various clock 
frequencies without recreating the RTL image for emulation. The custom 
drivers and monitors were modeled using abstract classes and 
SystemVerilog interfaces. 

Last but not least, in order to monitor system bus activity and inter-block 
communication for improved debug visibility, we inserted inline 
SystemVerilog assertions into the DUT. Assertions and assertion coverage 
are supported by Veloce/TBX for synthesis into the emulator with highly 
efficient transfer of potentially large amounts of coverage data out of the 
emulator into the testbench domain. The well-known benefits of assertion-
based verification coupled with the high-performance of emulation 
considerably reduced the total turn-around time to detect and resolve bugs.

– Modeling transactors using SystemVerilog (virtual) interfaces
– Modeling C++ proxy-based transactors
– Reusing the testbench for software validation
A typical SoC has a single processor managing multiple subsystems or 
multiple processors designated to perform specific tasks — all 
communicating via a system bus. A proxy-based transactor was developed 
to provide a master and slave interface to the system bus. Such an 
implementation provided a single RTL image that can be used with a 
SystemC testbench or a UVM testbench.

Software teams usually have a system model available for early code 
development. SystemC has emerged as the language of choice for these 
models. Hence, we focused on language interoperability of the transactor; 
i.e., for portability between SystemC models on the one hand and 
SystemVerilog testbenches on the other hand. Figure-3 shows the 
environment setup for software validation. There are various hypervisor 
and virtual machines available to emulate the processor architecture. 
One such virtualization software package is QEMU, which can run in 
conjunction with the Mentor Veloce emulator. Software users can run their 

The adopted co-emulation flow and resulting unified verification and 
validation platform has made it possible for SoC design verification and 
software validation teams to use the same RTL image for their respective 
test scenarios. Moreover, the software validation team can now have much 
earlier access to the RTL code than in previous projects of similar scope. 
For the case study at hand, a platform for validation was available to the 
software team about four months sooner.

The single-source verification environment for both simulation and 
emulation provided test speed ups of at least an order of magnitude. This 
translates to tests that took nearly a week to run in simulation now 
completing in just over an hour on the co-emulation platform. Key 
architecture and implementation decisions needed to be made in order to 
accomplish this unified environment and to maximize the reuse of tests in 
simulation, acceleration, and co-validation.

Further work is focused on integrating assertions data from the emulator in 
a common database to support coverage-driven verification using an 
emulator. With the standardization of the Unified Coverage Interoperability 
Standard DataBase (UCISDB) [5], engineers can collect coverage data in 
one common database from simulation and acceleration platforms. Thus, 
providing the ability to use software generated vectors to attain RTL 
coverage metrics.

With the speed of an emulator and a combination of directed tests as well 
as real-world scenarios, verification engineers will be able to validate the 
SoC more holistically.

As simulation acceleration techniques get adopted more broadly in the 
industry, advanced standards-based verification methodologies such as 
UVM should increasingly accommodate requirements from hardware-
assisted verification testbenches.

RTL design verification
A conventional verification environment has both synthesizable and non-
synthesizable components instantiated in a single testbench top, as shown 
in Figure-1. This hinders running the testbench in a co-emulation setup, 
where two different physical devices are involved: a hardware emulator 
and a simulator.

Figure-1: Traditional simulation testbench

A recommended approach is to create an acceleratable testbench that is 
partitioned into two tops: HDL_TOP and HVL_TOP. HDL_TOP has all the 
synthesizable components instantiated in it. HVL_TOP contains all untimed 
behavioral components as shown in Figure-2. Synthesized HDL_TOP runs 
on the hardware accelerator and HVL_TOP runs on the simulator.

The HDL and HVL partitions of the model communicate at the transaction 
level. This communication is enabled by using a SystemVerilog virtual 
interface based method and/or a core-proxy based method.

IMPLEMENTATION FLOW

Mentor Graphics Corporation 

Hemant Sharma, Hans van der Schoot, Achutam Murarka

Unifying Hardware-Assisted Verification and Validation Using UVM and Emulation

TESTBENCH ARCHITECTURE

CONCLUSIONS


