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DV Environment Overview 
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 Top Level view of verification environment 
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 Why is this framework needed?
• P1: Test writing in UVM for non digital folks is a challenge. 

How do we get them on board (especially for mixed signal 
simulation)?

• P2: How can we reuse all/most of the pre silicon 
infrastructure developed to enable faster post silicon debug?

Problem Statement
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 Problem1: How do we get more people on board ?

• Pros
o Simple txt interface, easy to write.
o Saves Compilation time

• Cons
o Easy to write but difficult to maintain
o Vulnerable to regMap changes
o Difficult to port across products

test.txt

The Journey                



The Journey                Cont…
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 Problem1: How do we get more people on board ?

• C wrapper on text based interface
• Bit field Centric
• Pros

o Easy to write/understand
o Portable
o Allows to develop layers of functions

• Cons
o Unidirectional, no conditional 

loops/branches
test.c
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 Key Feature Set
• MMR read/write
• Memory read/write
• Analog node voltage probing
• Force/Release/Wait on digital nodes
• Waiting for specific voltage on analog node
• Delay

The Journey                Cont…
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 Recap : 
• Unidirectional communication

How to mimic the host processor ? 

test.t
xt

The Journey                Cont…
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 Direct Programming Interface (DPI) 
• Import of the C functions and export the SV functions

The Journey                Cont…
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The Journey                Cont…
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 Problem2:  How can we reuse the pre-silicon infrastructure for post-
silicon ?

DV Engineers:
Develop the test cases in C/SV/UVM

Eval. Engineers:
Develop the test cases in Python

 C is well suited in communicating 
with the simulators, it is not that 
well suited to communicate with 
lab equipment 

 Python being very popular 
language and lot of open source 
communities working on it, makes 
it well suited to communicate with 
lab equipment 

The Journey                Cont…
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 Python <=> SV
 SV can’t communicate directly with Python

Challenges



DPIPy/C API

 API-DPI Cascade Bridge
• Direct Programming Interface (DPI) for SystemVerilog–C
• Python-C API for Python–C

 API provides access to the Python interpreter from C code.

• Embedding Python: Inserting calls to Python interpreter into 
your C application and Calling Python code at specific time

• Extending Python: Python interpreter loads the set of C 
functions as part of import statement
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Solution
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command_main()main_py()

Solution Cont…

mem_write() sv_mem_write()

mem_write_seq

uvm_test
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Embedding Python: Call python method main_py of test.py from C
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Extending Python: Create a module which contain set of C functions
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 Pre-Silicon Test suite developed is still valid …!!! 

Byproduct
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 Most of the framework auto dumped 
form YODA through custom script

 Test cases / functions are reused across 
all the stage of product development

Framework Overview
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Extending Python

Function declared In C

Register Write

test.py

Sample test Case
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 Automated Checks for the connectivity from digital register bits
to the relevant analog nodes in mixed signal simulation.

Digital Analog
~5K wires

Extended Solution
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Extended Solution Cont…
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 Functions and test re-use across digital and mixed signal simulation.
 Enables the verification infrastructure of complex data-paths

present in the system
• Using power of Python packages like numpy to compute FFTs

etc.
 Enabled system boot-up infrastructure with minimal effort.
 Enabled designers to get involved in test development.
 Accelerating debug, evaluation and demo creation.

Other benefits
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 Eval and Apps support
 Easy debug of configurations issues from Evaluation and

Applications
 Tester support
 UltrFlex tester was used which has a Visual Basic (VB) Front

End and all the chip configurations that were developed in
Py/C were translated as VB code with minimal effort.

DV Eval

Test

Results
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