
Unified Test Writing Framework for 
Pre and Post Silicon Verification

Rahulkumar Patel
Pablo Cholbi

Sivasubrahmanya Evani
Raman K 

1



Agenda
 DV Environment overview
 The Journey
 Challenges Faced
 Solutions
 Results

2



DV Environment Overview 

3

 Top Level view of verification environment 



4

 Why is this framework needed?
• P1: Test writing in UVM for non digital folks is a challenge. 

How do we get them on board (especially for mixed signal 
simulation)?

• P2: How can we reuse all/most of the pre silicon 
infrastructure developed to enable faster post silicon debug?

Problem Statement



5

 Problem1: How do we get more people on board ?

• Pros
o Simple txt interface, easy to write.
o Saves Compilation time

• Cons
o Easy to write but difficult to maintain
o Vulnerable to regMap changes
o Difficult to port across products

test.txt

The Journey                



The Journey                Cont…

6

 Problem1: How do we get more people on board ?

• C wrapper on text based interface
• Bit field Centric
• Pros

o Easy to write/understand
o Portable
o Allows to develop layers of functions

• Cons
o Unidirectional, no conditional 

loops/branches
test.c



7

 Key Feature Set
• MMR read/write
• Memory read/write
• Analog node voltage probing
• Force/Release/Wait on digital nodes
• Waiting for specific voltage on analog node
• Delay

The Journey                Cont…



8

 Recap : 
• Unidirectional communication

How to mimic the host processor ? 

test.t
xt

The Journey                Cont…



9

 Direct Programming Interface (DPI) 
• Import of the C functions and export the SV functions

The Journey                Cont…



10

The Journey                Cont…



11

 Problem2:  How can we reuse the pre-silicon infrastructure for post-
silicon ?

DV Engineers:
Develop the test cases in C/SV/UVM

Eval. Engineers:
Develop the test cases in Python

 C is well suited in communicating 
with the simulators, it is not that 
well suited to communicate with 
lab equipment 

 Python being very popular 
language and lot of open source 
communities working on it, makes 
it well suited to communicate with 
lab equipment 

The Journey                Cont…



12

 Python <=> SV
 SV can’t communicate directly with Python

Challenges



DPIPy/C API

 API-DPI Cascade Bridge
• Direct Programming Interface (DPI) for SystemVerilog–C
• Python-C API for Python–C

 API provides access to the Python interpreter from C code.

• Embedding Python: Inserting calls to Python interpreter into 
your C application and Calling Python code at specific time

• Extending Python: Python interpreter loads the set of C 
functions as part of import statement

13

Solution



14

command_main()main_py()

Solution Cont…

mem_write() sv_mem_write()

mem_write_seq

uvm_test



15

Embedding Python: Call python method main_py of test.py from C



16

Extending Python: Create a module which contain set of C functions



17

 Pre-Silicon Test suite developed is still valid …!!! 

Byproduct



18

 Most of the framework auto dumped 
form YODA through custom script

 Test cases / functions are reused across 
all the stage of product development

Framework Overview



19

Extending Python

Function declared In C

Register Write

test.py

Sample test Case



20

 Automated Checks for the connectivity from digital register bits
to the relevant analog nodes in mixed signal simulation.

Digital Analog
~5K wires

Extended Solution



21

Extended Solution Cont…



22

 Functions and test re-use across digital and mixed signal simulation.
 Enables the verification infrastructure of complex data-paths

present in the system
• Using power of Python packages like numpy to compute FFTs

etc.
 Enabled system boot-up infrastructure with minimal effort.
 Enabled designers to get involved in test development.
 Accelerating debug, evaluation and demo creation.

Other benefits



23

 Eval and Apps support
 Easy debug of configurations issues from Evaluation and

Applications
 Tester support
 UltrFlex tester was used which has a Visual Basic (VB) Front

End and all the chip configurations that were developed in
Py/C were translated as VB code with minimal effort.

DV Eval

Test

Results



24


	Unified Test Writing Framework for Pre and Post Silicon Verification
		Agenda
		DV Environment Overview 		
	Slide Number 4
	Slide Number 5
		The Journey                			Cont…
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24

