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Abstract—Day by day there is an increasing need of integrating/reusing the infrastructure across all the stages of 

product development right from pre-silicon design verification to post-silicon test validation, evaluation and 

applications board validation. We propose a framework, built on UVM centric digital verification environment that 

not only enables analog designers/test writers to write tests without having to know the complexities of the underlying 

UVM but also opens up a common communication medium over which the design, test, evaluation and application can 

talk and exchange tests/high level functions. This framework is generic and can be used by any project as most of the 

infrastructure needed is being dumped from IP-XACT by custom generators.  
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I.  INTRODUCTION  

All the digital verification environments today are predominantly in UVM because of the verification features 

it offers. While digital verification community is well versed with this methodology on the other hand designers 

(both digital and analog) see this complexity of infrastructure as a difficult task to begin with and this makes test 

writing a challenge for them. Having said that, once we have silicon in lab other challenge is how we can facilitate 

faster bring-up of silicon (on evaluation board) and minimize the design- evaluation round trip debug delays 

involved. Further part of this paper explains how the proposed framework solves the above-mentioned challenges. 

II. MAIN IDEA 

In complex System on Chip (SoC) projects, in top-level system verification is likely where all the design sub-

blocks come together and interact. Complex configurations and use cases will be simulated in the context of top-

level system verification, and a valid concern which can arise if how to address this challenge and close top-level 

verification with good coverage while being efficient and re-usable across both pre-silicon and post silicon. In 

system-level verification, the Device Under Test (DUT) is likely to be controlled in a similar manner in simulation 

(pre-silicon) as in test/evaluation/applications (post-silicon). Typically, there will be a relatively reduced number 

of well-defined interfaces between the chip and the external world. These interfaces may include communication 

interfaces (SPI, I2C, JTAG, etc.), General Purpose Input Output (GPIO), or specific purpose input-outputs and 

protocols. Likewise, there is also a delimited number of high-level actions which can be performed on these 

interfaces: read/write frame, wait on output event, drive input, wait for a predefined amount of time. 

The interaction with the DUT is very similar at system-level between simulation verification and 

evaluation/test. The main difference is that in simulation verification it will be the Universal Verification 

Components (UVC) components which interact with the device, whereas in post-silicon it will be actual hardware 

which is connected to the DUT. But the interfaces and the actions on them remain the same. This presents an 

opportunity to implement a high-level test writing framework which is common across pre-silicon and post-

silicon. Only at a lower level, when driving/monitoring the interfaces it is necessary to distinguish to a specific 

action on the interface is handled. An implementation such as the one proposed in Fig.1 present several advantages 

to the deployment of a chip such as: 

1. Accelerate post-silicon testing by leveraging the already developed test library during simulation 

verification.  

2. Having a common high-level framework and test format enables seamless exchange between post-silicon 

and pre-silicon. This is helpful when simulating tests/configurations which have resulted in buggy or 

unexpected results on the bench.  

Therefore, the proposed framework may provide a significant reduction in the evaluating times and allows for 

a tightly coupled loop between simulation and evaluation.  
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Fig. 1: Pre- and Post-Silicon Test Framework 

In addition to the above, If the device will also require firmware (FW) to be developed, there is a potential 

opportunity for the functions developed in simulation verification to be used a guideline or example for the FW 

developers, if the FW development starts after top-level simulation verification starts. In this situation, there is a 

chance to also leverage the function writing effort and accelerate FW development to some extent. 

In order to solve the first part of the problem, a bit-field centric C based infrastructure was developed. This 

infrastructure consists of: 

1. A front-end software implemented in C on which tests are written. It provides the following features: 

a. C model of the chip register map which is auto-generated from the IP-XACT files which consist 

the registers information. 

b. Basic low-level instructions that define how to interact with the chip. 

i. MMR read/write 

ii. Memory read/write 

iii. Analog node voltage probing 

iv. Force/Release digital/analog nodes 

v. Waiting for specific value on analog/digital node 

vi. Delay 

vii. Random number generation 

c. Simplified access to the register map, allowing reading and writing bit-field or registers as if 

they were C data types while keeping track of the state of the register map and abstracting low-

level details such as register addresses and bit-field offsets. 

d. Ability to use higher-level language constructs offered by C while letting the C compiler take 

care of the parsing. 

e. Write a library of functions to configure the chip developed by the design and verification 

engineers to speed up system-level test writing. 

 

2. COSIM (analog-digital co-simulation) to run the simulation which provides the following features: 

a. Re-use of UVM setup and agents from Digital Design Verification, saving, avoiding duplicated 

effort and harnessing the power of a UVM. 

b. Analog simulations to execute analog models which are not SystemVerilog Real Number 

models. 

c. Make use of all the functionality lent by analog simulator for waveform post-simulation 

processing. 
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   Fig. 3:  C Based Framework     Fig. 4:  Python Based Framework 

With the above proposed methodology, we were able to extend all the complex features of digital verification 

like randomization, force/release/wait on internal digital design nodes etc. to the cosim infrastructure and also 

been able to get more analog designers on board to enable more cosim test writing. This first step enabled re-use 

of functions, tests and infrastructure across cosim, digital and firmware verification. This solves first part of the 

problem.  

Since this framework enabled lot of re-use in pre-silicon verification efforts, we wanted to extend it for post-

silicon verification as well. While C is well suited in communicating with the simulators, it is not that well suited 

to communicate with lab equipment as all the device drivers needed to talk to lab equipment have to be developed 

from scratch. Python being very popular language and lot of open source communities working on it seemed a 

possible solution to bridge this gap. Two hurdles on this path were bi-directional communication between Python 

and the simulator (SV) and all the existing tests suite which was already developed in C needs a huge migration 

effort. As Python can’t communicate directly with SV, we had to build an intermediate bridge to solve this 

challenge. This intermediate bridge (as shown in Fig.5), which is transparent to the user, consists of DPIs 

imported/exported from SV to C and Py/C API. It is this bridge which enabled us to run the already existing test-

suite without any change. However, we plan to fully migrate all the C tests to Python in long term to avoid/minimize 

infrastructure maintenance for both C and Py. This infrastructure is shown in the Fig. 5. 

 

                                   

 Fig. 5:  Python-SV Simulation Flow 

 

Direct Programming Interface (DPI) is basically interface between the SV and foreign programming language, 

in particular the C language. It allows to call the C functions from SV and to export the SV functions, so that they 

are called from C.  Example code for SV-C communication through DPI shown in Fig. 6. 
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module block; 
    import “DPI-C” context function void c_display(); 
    export “DPI-C” function sv_display; //No type or args 
     
    initial c_display(); 
     
    function void sv_display(); 
        $display(“SV : block”); 
    endfunction 
 
endmodule : block  
 

 
#include "svdpi.h" 
// Imported from SystemVerilog 
extern void sv_display(); 
 
void c_display() 
{   
  io_printf("C: c_display \n"); 
  sv_display(); 
} 
 
 
 

 

     
      Fig. 6:  SV-C Communication through DPI  

Python/C Application Programmer’s Interface (API) provides embedding and extending the Python. 

Embedding Python to insert the calls to Python interpreter into your C application and extending Python to load 

the set of C functions as part of import statement. Example code for the Py-C communication through API shown 

in Fig 7, Fig. 8. In this example, C function command_main() call the Python function main_py() (in test case file 

command.py) using the embedding the Python concept as shown in Fig. 7 and to call the C functions from Python 

require to build the module in C (Cmodule in this example) as shown in Fig. 8.  

Anyone with basic knowledge on Python can easily get on board with this framework to write the test cases. 

A sample test case is shown in Fig.9 for reference. 

 
#include <Python.h> 
#include <stdlib.h> 
extern void PyInit_CModule(); 
int command_main() { 
  setenv("PYTHONPATH",".",1); 
 
  /* Add a built-in module, before Py_Initialize */ 
  PyImport_AppendInittab("CModule", PyInit_CModule); 
 
  /* Initialize the Python Interpreter */ 
  Py_Initialize(); 
 
  /*Get a reference to the command.main_py function*/ 
  PyObject *pFunc, *u_name, *module; 
  PyObject *args; 
  PyObject *kwargs; 
  PyObject *result = 0; 
  int retval; 
  
  /*Get a reference to the command.main_py function*/  
  u_name = PyUnicode_FromString("command"); 
  module = PyImport_Import(u_name); 
  Py_DECREF(u_name); 
  pFunc = PyObject_GetAttrString(module, "main_py"); 
 
  /* Make sure we own the GIL(global interpreter 
lock) */ 
  PyGILState_STATE state = PyGILState_Ensure(); 
     
  /* Verify that func is a proper callable */ 
  if (!PyCallable_Check(pFunc)) { 
          fprintf(stderr,"call_func:expected a 
callable\n"); 
          goto fail; 
  } 
  /* Build arguments */ 
  args = Py_BuildValue("()"); 
  kwargs = NULL;       
 

   
 /* Call the function */ 
  result = PyObject_Call(pFunc, args, kwargs); 
  Py_DECREF(args); 
  Py_XDECREF(kwargs); 
   
  /* Check for Python exceptions (if any) */ 
  if (PyErr_Occurred()) { 
          PyErr_Print(); 
          goto fail; 
  } 
 
  /* Verify the result is a int object */ 
  if (!PyLong_Check(result)) { 
          fprintf(stderr,"call_func: callable 
didn't return a Long\n"); 
          goto fail; 
  }     
 
  /* Create the return value */ 
  retval = PyLong_AsLong(result); 
  Py_DECREF(result); 
     
  /* Restore previous GIL state and return */ 
  PyGILState_Release(state); 
 
  /* Done */ 
  Py_DECREF(pFunc); 
  Py_Finalize(); 
 
  return 0; 
 
fail: 
  Py_XDECREF(result); 
  abort();   // Change to something more 
appropriate 
} 
 
 
 

  

Fig. 7:  Embedding the Python 
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//initCModule.c 
 
#include <Python.h> 
#include "basic_op.h" 
 
/* This is a wrapper function for C function "mem_write". */ 
static PyObject* py_mem_write(PyObject* self, PyObject* 
args) 
{ 
    uint32_t addr;  
    uint32_t data;  
    PyArg_ParseTuple(args, "II", &addr, &data); 
    // part of basic_op.h which call the SV  
    mem_write(addr, data);   
    return Py_BuildValue(""); 
} 
 
/* This is a wrapper function for C function "mem_read". */ 
static PyObject* py_mem_read(PyObject* self, PyObject* args) 
{ 
    uint32_t return_val; 
    uint32_t addr;  
    PyArg_ParseTuple(args, "I", &addr); 
    // part of basic_op.h which call the SV     
    return_val = mem_read(addr);  
    return Py_BuildValue("I", return_val); 
} 
 
/* Bind Python function names to our C functions */ 
static PyMethodDef CModule_methods[] = { 
    {"mem_write", py_mem_write, METH_VARARGS}, 
    {"mem_read", py_mem_read, METH_VARARGS}, 
        {NULL, NULL} 
}; 

 
#if PY_MAJOR_VERSION >= 3 
static struct PyModuleDef moduledef = { 
    PyModuleDef_HEAD_INIT, /* m_base */ 
    "CModule",            /* m_name */ 
    NULL,                 /* m_doc */ 
    -1,                   /* m_size */ 
    CModule_methods     /* m_methods */ 
}; 
#endif 
 
/* Python calls this to let us 
initialize our module */ 
PyMODINIT_FUNC 
PyInit_CModule(void) 
{         
    return PyModule_Create(&moduledef); 
} 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

Fig. 8:  Extending the Python 

III. EXPERIMETAL RESULTS 

The proposed infrastructure has been implemented in the product which is a 77GHz radar sensor chip in 28nm 

RF-CMOS technology. Some of the fruits of this effort are 

During pre-silicon phase (C/Py-based infrastructure):  

a. Automated test dumping for checking the connectivity from SPI to digital register bits in digital sims 

and the same approach extended to check for the right voltage levels at deep-down analog nodes in 

cosims. This was possible due to strict net-naming conventions followed in RTL and schematics.   

b. Functions and test re-use: This enabled function re-use across digital and cosims. 

c. Enables the verification infrastructure of complex data-paths present in the system by using power of 

Python packages like numpy to compute FFTs etc. 

d. Enabled system boot-up infrastructure with minimal effort. 

e. Enabled designers to get involved in test development. 

 

During post-silicon phase (Py-based infrastructure): 

a. Design shared the chip configuration library with Evaluation and Apps, accelerating debug, evaluation 

and demo creation. 

b. Configurations from Evaluation and Applications which had issues could easily be read into the Design 

Verification simulation environment to debug the issue. 

c. Ultra-Flex tester has a Visual Basic Front End and all the chip configurations that design has developed 

in Py/C were translated as VB code with minimal effort.  

 

This idea was well received and well appreciated by design, evaluation and application teams. 
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import sys 
from CModule import * 
from chips import Util 
import Bench 
import time 
 
def main_py(): 
   print ("You passed this Python program from C! Congratulations!") 
   dut = Bench.chips.ADAR690x() 
   # Initialize the PLL 
   dut.ADC_ADPLL.adcpll_fast_init_gen(80e6, 0, 1, 500e3) 
   # delay 
   delay_ns(1000) 
 
   # Register write 
   dut.MISC.MISC_FILTER_CTRL.FILTER_DECIM_RATIO = 0x20 
   dut.MISC.MISC_FILTER_CTRL.FILTER_OUTPUT_BITWIDTH = 0x1 
   dut.dev_reg_update() 
 
   ## Read the register and compare with excepted data  
   dut.comms.read_expect(Util.Address(dut.MISC.MISC_SCRATCHPAD_0), 0x30, 0x04) 
    
   ## Memory Write 
   dut.comms.write(0x80000500, 0x12345678, 0x04) 
    
   ## Memory Read 
   read_data = dut.comms.read(0x80000500, 0x04) 
   if(read_data != 0x87654321): 
      read_data = dut.comms.read(0x80000500, 0x04) 
   print (read_data) 
 
   #force the signal 
   force_digital("`DIGITAL_TOP.muxout_in",0x01) 
   #wait for expected value on specificed signal 
   wait_state("GPIO[1]",1,10) 
   #release the signal 
   release("`DIGITAL_TOP.muxout_in") 
    
   #generate a random value 
   random_data = gen_random_data(1,10) 
   dut.MISC.MISC_SCRATCHPAD_1.SCRATCHPAD_1 = random_data 
   dut.dev_reg_update() 
    
   #Same function can be used for all instand of AFE,RX 
   for RX_name, AFE_name in [['RX0','AFE0'],['RX1','AFE1'],['RX2','AFE2'],['RX3','AFE3']]: 
      RX = Util.get_subsystems_by_instance_name(dut,RX_name) 
      AFE = Util.get_subsystems_by_instance_name(dut,AFE_name) 
      RX.channel_init() 
      AFE.afe_channel_init() 
    
   return 0 

 

Fig. 9:  command.py 

IV. CONCLUSION 

Early planning and consensus amongst the different sub-teams allowed us to specify and implement a 

framework which accelerated directed test development effort in pre- and post-silicon. Silicon evaluation timeline 

was shortened because the pre-silicon verification tests could be leveraged and used on the bench. In addition to 

this, problematic configurations on the bench were quickly and transparently sent back to simulation verification 

to debug the issue with increased observability. 

This allowed for the total verification time of the project to be shortened and the time-to-market of the project 

was pulled-in, while most likely also improving silicon quality. This framework, and the underlying idea, helped 

meet the product-line deadlines and increases the chances of commercial success of the device. DUT debug was 

streamlines in all stages of top-level verification. 
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