Unified Functional Safety Verification Platform for ISO 26262-Compliant Automotive

Joerg Richter Group Director, R&D, Verification Group

Impact of Functional Safety

2009–11 Toyota vehicle recalls

From Wikipedia, the free encyclopedia

The **2009-11 Toyota vehicle recalls** involved three separate but related recalls of automobiles by Toyota Motor Corporation occurred at the end of 2009 and start of 2010. Toyota initiated the recalls, the first two with the assistance of the U.S. National Highway Traffic Safety Administration (NHTSA), after reports that several vehicles experienced unintended acceleration. The first recall, on November 2, 2009, was to correct a possible incursion of an incorrect or out-of-place front driver's side floor mat into the foot pedal well, which can cause pedal entrapment. The second recall, on January 21, 2010, was begun after some crashes were shown not to have been caused by floor mat incursion. This latter defect was identified as a possible mechanical sticking of the accelerator pedal causing unintended acceleration, referred to as *Sticking Accelerator Pedal* by Toyota.

"...that Toyota did not follow best practices for real time life critical software, and that a **single bit flip** which can be caused by cosmic rays could cause unintended acceleration."

electrical." This included sticking accelerator pedals, and pedals caught under floor mats.[29]

However, on October 24, 2013, a jury ruled against Toyota and found that unintended acceleration could have been caused due to deficiencies in the drive-by-wire throttle system or Electronic Throttle Control System (ETCS). Michael Barr of the Barr Group testified that NASA had not been able to complete its examination of Toyota's ETCS and that Toyota did not follow best practices for real time life critical software, and that a single bit flip which can be caused by cosmic rays could cause unintended acceleration. As well, the run-time stack of the real-time operating system was not large enough and that it was possible for the stack to grow large enough to overwrite data that could cause unintended acceleration.^{[30][31]} As a result, Toyota has entered into settlement talks with its plaintiffs.^[32]

© Accellera Systems Initiative

Unified Functional Safety Verification Platform

FUNCTIONAL SAFETY OVERVIEW

What is Functional Safety?

- Functional Safety is the "Absence of unreasonable risk due to *hazards* caused by malfunctioning behavior of Electrical/Electronic systems" [ISO 26262]
- Functional safety means that potentially dangerous conditions are detected, activating preventative or corrective mechanisms to stop or mitigate the hazardous event
- Functional safety is critical to many markets: ^a Automotive, Aerospace, Medical, etc.

What is Functional Safety?

• Functional Safety is the "Absence of unreasonable risk due to *hazards* caused by malfunctioning behavior of Electrical/Electronic systems" [ISO 26262]

SAFETY RELATED FAILURE MODES

Date creatert 2016-03-15

Source: Volvo

"Obvious"

- Sudden Acceleration
- · Unintended activation of airbag
- Unintended brake

• ...

Maybe not so obvious...

Sudden unintended Power Seat movement

System Safety Competence Center

ISO 26262 in numbers

1st edition released in 2011

- 10 parts
- 43 chapters
- 100 work products
- 180 Development methods
- 500 Pages
- 600 Requirements
- 2nd edition released end of 2018
- 12 parts

• ...

What is Functional Safety in ISO 26262?

"Absence of unacceptable risk due to hazards caused by malfunctioning behavior of electrical and/or electronic systems."

© Accellera Systems Initiative

SYSTEMS INITIATIVE

 \mathbf{R}

Functional Verification Prevent / Eliminate Bugs

Functional Safety Verification Detect / Control Failures

Find and Fix <u>Systematic Faults</u> Design Bugs that Cause Incorrect Operation Always Permanent Ensure Proper Handling of <u>Random Faults</u> Hardware Defects from Aging or Environmental Factors May be Permanent or Transient

© Accellera Systems Initiative

ISO 26262 Requirements – Hardware Development

Show that design functionality is correct, works properly in the context of the system, and is safe

Preven	nt / Eliminate Bugs	Reduced DPPM	Detect / Control Failures	
Validation of the	ate <i>Functional Correctness</i> e design	DFTFunctional	 Effectiveness of Safety Mandle faulty behavior 	<i>lechanisms</i> to
 Use the second se	pest-in-class <i>Functional Verification</i> odology and tools	patterns	 Assessed by Functional S Verification methodology 	Safety and tools
Sy	stematic Faults – Design Bugs	Random Faults	Random Faults – HW	/ Failures
			e- ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ←	Oxide Gate Neutron Source N+ N+ Depletion Region P Substrate
	Always permanent	Permanent	Permanent	Transient
	Development	Manufacturing	In Operation	
	Lifecycle of Compo	nent / System / Auto	mobile	
cellera	© Accellera Systems Initiative	8		DESIGN AND VERIFIC DVCD CONFERENCE AND EXHI

SYSTEMS INITIATIVE

ISO 26262 Requirements – Hardware Development

Show that design functionality is correct, works properly in the context of the system, and is safe

Prevent / Eliminate Bugs	Reduced DPPM	Detect / Control Failures
 Validate <i>Functional Correctness</i> of the design Use best-in-class <i>Functional Verification</i> methodology and tools 	 DFT Functional patterns 	 Effectiveness of Safety Mechanisms to handle faulty behavior Assessed by Functional Safety Verification methodology and tools
Systematic Faults – Design Bugs	Random Faults	Random Faults – HW Failures
Always permanent	Permanent	Permanent Transient
Development	Manufacturing	In Operation
Lifecycle of Compo	nent / System / Auto	omobile
ellera		DESIGN AND VERIEIC

Functional Verification is Essential Starting Point

Synopsys Functional Verification Technology Platform

- Many technologies must be used to ensure the highest functional verification quality
- Verification quality analysis provides objective measure of functional verification effectiveness

Demonstrate Verification Flows are Robust

Evidence-based verification quality analysis for ISO 26262 Part 8-9 assessments

ISO 26262 Requirements – Hardware Development

Show that design functionality is correct, works properly in the context of the system, and is safe

Hazard Analysis and Risk Assessment

Automotive Safety Integrity Level (ASIL)

F	Probability of Exposure	+	Co	ontrollability by Driver	+	Severity of Failure				A			ASIL		
										Severity	Probability	C1	C2	C3	
										S1	EO	QM	QM	QM	
EO	Combination of Very		С0	Controllable in general		SO	No injuri	es			E1	QM	QM	QM	
	low Probabilities		C1	Simply controllable		C1	Light and	Imodorato			E2	QM	QM	QM	
E1	Very Low Probability			(99% or more of all		21	injuries	mouerate			E3	QM	QM	Α	
	year for the great			drivers are usually able to			c	1.1.6			E4	QM	A	В	
	majority of drivers)					S2	Severe a	nd life-		S2	EO	QM	QM	QM	
E2	Low Probability		C2	Normally controllable			threaten	ing injuries			E1	QM	QM	QM	
	(a few times a year for			drivers are usually able to			(Survival	possible)			E2	QIVI	QIVI	A	
	drivers)			avoid a harm)		S3	Life threa	atening			E3		A	D C	
F3	Medium Probability		С3	Difficult to control or			injuries (survival		53	E4 F0		OM	OM	
23	(once a month or more			Uncontrollable			uncertair	n), fatal		55	Eŭ E1	OM	OM	A	
	often for an average			drivers are usually able or			injuries				E2	QM	A	В	
	driver)			barely able to avoid a							E3	A	В	С	
E4	High Probability			harm)		ASIL	FIT				E4	в	С	D	
	(annost every arive on average)					D C	< 10 < 100	Required Required		QM – Quality	Management only			(20)	
		4.09 1			В	< 100	Advised		Not subject to	Asie requirements	DESI	SN AND			

I FII – I Fallure in 10° nours

© Accellera Systems Initiative

13

< 1000

Α

informative

ASIL – Ratings Examples

- ASIL B: Brake lights failure on both sides
- ASIL B: No valid data from rear view camera
- ASIL C: Involuntary braking in cruise control

• ASIL D: Involuntary full power braking

CONFERENCE AND EXHIBIT

- ASIL D: Involuntary airbag release
- ASIL D: Involuntary acceleration

Unified Functional Safety Verification Platform

FMEDA OVERVIEW

FME(D)A - Failure Mode Effect (Diagnostic) Analysis

Systematic method of failure analysis, for each element

- Identify the manner in which a failure can occur
- Identify the consequences of the failure
- Identify the probability/severity of the failure

→ Define a Safety Mechanism to handle the Failure Mode, e.g.

 Dual Core Lockstep with Comparator, ECC, STL (Software Testing Library), Triple Redundancy with Majority Voter

→ Is the Failure observed? Is the Failure detected?

FMEA/FMEDA Process – Metric for Random Faults

Implement and Confirm Quality of Safety Mechanisms (SM)

- Identify Failure Mode and Effects Analysis (FMEA) for each IP
- Define Safety Mechanisms to protect against random failures
- Compute estimated Safety Metrics with Failure Mode and Effect Diagnostic Analysis (FMEDA)
- Run fault injection to measure ISO 26262 metrics on implemented design
- Generate FMEDA report, Safety manual

FMEA Failure Mode Analysis Example

- Failure Mode 1:
- Failure: incorrect flags indication
 - Effect: Data will be overwritten/ lost
 - Safety Mechanism: Redundant Flag logic
- Failure Mode 2:
 - Failure: Data in SRAM is corrupted
 - Effect: Invalid data
 - Safety Mechanism: ECC

Block Diagram of FIFO with Static Memory

Address both transient failures and permanent ones

© Accellera Systems Initiative

FMEA Creation in VC Functional Safety Manager

SP level Analysis – Main FMEA

Identify Sub-Part Failure Mode

Failure Mode 1:

Anto CAAFA

Failure: Failure: incorrect flags indication Effect: Data will be overwritten/lost Safety Mechanism: Redundant read/write control

Define FM in 'Main FMEA' tab

Define Safety Mechanism in 'Primary Safety Mechanisms' tab

Add SMs to FMs in 'Main FMEA'

Top Design

Element

FLAGS

FLAGS

Project IP Report Utilities

Main FMEA

🔏 💥 F001 FIFO

🖌 💥 F002 FIFO

Mai	II FP	IEA					
<fi< th=""><th>iter></th><th>Pleas</th><th>e input text he</th><th>re</th><th>T X d</th><th></th><th></th></fi<>	iter>	Pleas	e input text he	re	T X d		
		ID	Top Design Element	Element 1	Potential Faults	Potential Errors	otential Effect(s of Failure
4	×	F001	FIFO	FLAGS	Flag logic is faulty	Incorrect Flags Indication	loss of data
4	×	F002	FIFO	FLAGS	Flag logic is faulty	Incorrect Flags Indication	loss of data

Potential Faults

19

ISO 26262 Metric: Classification of Faults

Part of FMEDA analysis

Base Failure Rate Calculation

Active Instance: (Base)

🏹 1

4 2

🔏 З

4

Simple

Hierarchy Name

Read Pointer IF

Read Pointer SM

Write Pointer IF

FIFO

Tech data + IP design data

• The designers associate the design sub-part relevant for the FM

Main	FMED.	A		
<filte< th=""><th>r> Ple</th><th>ase</th><th>input text</th><th>here</th></filte<>	r> Ple	ase	input text	here
		#	FMEA ID	Function Hierarchy
1	4	9	F001	Associate
2	4	10	F002	Associate
3	4	11	F003	Associate
4	4	12	F004	Associate
5	4	13	F005	Associate
6	4	14	F006	Associate
7	4	15	F007	Associate
8	4	16	F008	Associate
9	4	17	F009	Associate
10	4	18	F010	Associate

● List ○ Tr	ee									
ilter:							Regular Expres	sion	Inverse M	atch
Associate All	Unass	ociat	e All Unselect	<< Apply	Overwrite by C	ору	 From Src 	Failure	Mode: F00	2 -
			HierSo	ope			Main FMEDAs	SF %	Total SF %	Src
FIFO								0.00	0	
Read Point	er IF					F	003	0.00	100	
Read Point	er SM							0.00	100	
Write Point	ter IF					F	005	0.00	100	
Write Point	ter SM							0.00	100	
✔ Flags IF						F	001	100	100	V
Flags SM								0.00	100	
SRAM						F	007	0.00	100	
 Recursively Common S 	r (Un)Se cale Fac	lect	100	%	Curre Total Scale F	nt FM 👻	O Assigned	0 U	nassigned 🤇	All T
🔵 Individual S	cale Fa	ctor	▼ Recursively a	ipply						
ustification:										
					Enter justificat	ion for ch	osen scale fac	tor Le	eave blank if 1	00%
Tech	Data				Liner jubanea		oben beare rat			
<filte< td=""><td>r> Pleas</td><td>e inpu</td><td>ut text here</td><td>Ŧ</td><td>× (A) 🖻 —— 🗆</td><td>)</td><td></td><td></td><td></td><td></td></filte<>	r> Pleas	e inpu	ut text here	Ŧ	× (A) 🖻 —— 🗆)				
		#	Type	Permanent	Failure Rate (FIT)	Transier	t Failure Rate (F	IT)	Unit	
1	🙀 🗙	2	Latches	3.4e-6		3.4e-6		FIT	per Latch	
2	🙀 🗙	3	RAM_Bits	1e-7		1e-7		FIT	per RAM_Bit	
3	🔌 🗙	4	ROM_Bits	1.7e-7		1.7e-7		FIT	per ROM_Bit	
	シ 🖌	5	Digital Area	346-6		346-6		FIT	per Square M	icron

0.01

0

0

Digital

Area

1776.26

1812.05

1776.26

1812.05

4098.44

4341.09

827.78

0

Analog

0

0

0

0

0

0

0

0

Area

FIT per Square Micron AnalogArea

FIT per RAM Equiv Xtor RamTransistor

FIT per ROM Equiv Xtor RomTransistor

0.01

RAM Fauiv Xtors

0

0

0

0

0

0

0

0

Flops

3

3

3

0

ROM Equiv Xtors 2.36e-5

2.84e-9

0

0

0

0

0

0

0

32

Latches RAM Bits ROM Bits

0

0

0

0

0

0

🙀 🗙 🛛

🍇 🗶 8

Real

Hierarchy Name

test.DUT

test.DUT.RP IF

test.DUT.RP_SM

test.DUT.WP IF

test.DUT.FL IF

test.DUT.FL SM

test.DUT.sdpram i1 16

test.DUT.WP SM

 The combination of design data Design Data and technology data is used for computing base Failure rate λ

Estimated FMEDA Calculation & Report

Fsafe, Fpvsg, Primary SM Specification

• Changing these parameters changes the calc. in the Failure Rates tab below accordingly

FSdle	<filter> Ple</filter>	ease input text	t here		ТХН	de FMEA											
Fovsg		# FMEA ID	Function Hierarchy	FI Efforts	Estimated F _{safe}	Primary	Primary SM Type		Latent SM Type	Estimated IF Latent DC (K _{MI}	_{oF}) F _{PVSG}	Сог		#	ID	Top Design Element	Element 1
	1 🙀	9 F001	Associate		0%	Dup logic ar	nd compar	95%	Dup logic and compar	99%	100%	1	<u> </u>	9	F001	FIFO	FLAGS
Гюси	2 🙀	10 F002	Associate		50%	Dup logic ar	nd compar	90%	No SM assigned	0%	100%	2	<u> </u>	10	F002	FIFO	FLAGS
Fper	3 🙀	11 F003	Associate		0%	Dup logic ar	nd compar	95%	No SM assigned	0%	100%	3	<u> </u>	11	F003	FIFO	RD_PTR
-	4 🙀 12 F004 Associate 50% Dup logic and com						nd compar	90%	No SM assigned	0%	100%	4	<u> </u>	12	F004	FIFO	RD_PTR
Krf 5 🙀 13 F005 Associate 0% Dup							nd compar	95%	No SM assigned	0%	100%	5	<u> </u>	13	F005	FIFO	WR_PTR
	6 🙀 14 F006 Associate 50% Dup logic and compar					nd compar	90%	No SM assigned	0%	100%	6	<u> </u>	14	F006	FIFO	WR_PTR	
	7 🙀	15 F007	Associate		0%	ECC		99%	No SM assigned	0%	100%	7	<u> </u>	15	F007	FIFO	SRAM
Kmpf 8 🙀 16 F008 Associate 50% ECC							99%	No SM assigned	0%	100%	8	<u> </u>	16	F008	FIFO	SRAM	
9 🙀 17 F009 Associate 0% No SM assigned							ned	0%	No SM assigned	0%	100%	9	🔹 👔	17	F009	FIFO	Control
Associating an EMEDA with 18 F010 Associate 50% No SM assigned									No SM assigned	0%	100%	10	🔹 👔	18	F010	FIFO	Control
ssociating an FiviEDA with												• •					
a hierarchical sub-	a hierarchical sub-								EA Main FMEDA F	rimary Safety Mechani	sms Safe	ty Mechan	ism FME	A	Safet	/ Mechanism F	MEDA Lat
component provides the tes									·								
relevant design data t	for 🗖	A #9, F001, Pe	ermanent, Saf	ety Related:	true, Safe Fa	ailure:false											
calculations below		Flops Late	hes RAM Bit	s ROM Bits	Digital Ar	ea Analog	Area RAM	Equiv Transi	stors ROM Equiv Tr	ansistors FIT	FMD						
		0 0	0	0	4098.44	0	0		0	0.013935	24.476816%						
Total 32 0 32 0 16711.23 0 0									0	0.05693	100%						
	Unmapped 0 0 0 0 0 0								0	0	0%						
Base failure rate	ase failure rate $\lambda_{\text{intrinsic}}$ λ_{nSR} λ_{SR} F_{safe} λ_{s} λ_{nS} $K_{\text{FMC,RF}}$ F_{PVSG} λ_{PV}							λ_{SPF} λ_{RF}									
	Estimated	0.013935	0 0.013	935 0% (0.013935	95%	100% 0.01393	5 0 0.00	10697								
	Measured		<u> </u>								h :						
	Estimate d	A M PF, PVSG	AMPF, FMC, RF	K _{FMC,M}	PF AMPF,de	t AMPF, pl	Fper AMPF	1 SOC k	is Dup CM	agnostic ID SoC bu	it in Coverag	je					
	Monsured	U	0.013236		99% 0.01310	0.00013	2 0% 0.000	JISZ Flag Log	IC DUP SMU	101	5	90.76					
	measured																

View the IP level ISO 26262 Metric

Metrics Dashboard Tab

Mair	FME	DA															
<filt< td=""><td>er> l</td><td>lea</td><td>se input te</td><td>xt here</td><td></td><td></td><td>T X</td><td>Hide FMEA</td><td></td><td>= -</td><td>-0</td><td></td><td></td><td></td><td></td><td></td><td></td></filt<>	er> l	lea	se input te	xt here			T X	Hide FMEA		= -	-0						
			# FMEA ID	Fund Hiera	tion FIE	Efforts	s Estimat F _{safe}	ed Prim	ary S	6М Туре		Estimate IF DC(K _{RF}	d :)	Latent SM Type	•	Estimated IF Latent DC (K _{MPF})	Fp
1	1	49	F001	Asso	ciate		0%	Dup logi	c and	d compar	9	95%	Du	p logic and comp	ar	99%	100
2	1	4 1	0 F002	Asso	ciate		50%	Dup logi	c and	d compar	9	90%	No	SM assigned		0%	100
3	1	4 1	1 F003	Asso	ciate		0%	Dup logi	c and	d compar	9	95%	No	SM assigned		0%	100
4	1	4 1	2 F004	Asso	ciate		50%	Dup logi	c and	d compar	9	90%	No	SM assigned		0%	100
5	1	4 1	3 F005	Asso	ciate		0%	Dup logi	c and	d compar	9	95%	No	SM assigned		0%	100
6	1	4 1	4 F006	Asso	ciate		50%	Dup logi	c and	d compar	9	90%	No	SM assigned		0%	100
7	1	4 1	5 F007	Asso	ciate		0%	ECC			9	99%	No	SM assigned		0%	100
8	1	4 1	6 F008	Asso	ciate		50%	ECC			9	99%	No	SM assigned		0%	100
9		4 1	7 F009	Asso	ciate		0%	No SM a	ssign	ned	()%	No	SM assigned		0%	100
•				i and a second													
Pro	ject I	Man	agement	Synthe	etic Hierarc	hy	Safety Me	chanism Type	es	Design I	Data	Main I	MEA	Main FMEDA	Pri	mary Safety Mechanism	าร
M+	ice D	a c h	heard														
Met	ICS D	asn	poard							_	CDE		_				
					Permane	ent T	ransient	Total		ACIL D	SPF		2/				
Estir	nated	SP	M		96.071764	% 9	6.892655%	96.482209%		ASIL B	>-91	7% >-80	70 2/				
Mea	sur	ed s	SPFM		N/A	N	I/A	N/A			>-9	9% >=90	~° %				
										ASIL D		570 2-50	/0				
					Permane 71 5599769	enτ											
EST	mat	ea			71.5500701	70											
Mea	surec		VI A /for SM r	(art)	05%	_											
Mon	nated		vi (i or SM p Vi (for SM r	part)	N/A												
Mea	surec		1 (101 514)	Jart)	1975												
					Permane	ent	Transient	Total									
Estir	nated	PM	HF		0.0022363	5 0	.00176902	0.00400413									
Mea	sured	I PM	HF		N/A	N	I/A	N/A									
Tcl	Cons	ole	Failure	Rates 🤇	Metrics D	ashb	oard										
	0	A	cceller	a Svs	tems Ir	nitia	tive			23							
	-	-					-										

View the hierarchical ISO 26262 Metric

Synthetic H	ynthetic Hierarchy 🛛 🖉 🕅												
Expand All	Collapse All	Report 👻 🤇	Open 🝷 📃										
	Name	Permanent SPFM	Permanent LFM	Permanent Failure Rate	Permanent Portion of Failure	Transient Rate SPFM	Transient Failure Rate	Transient Portion of Failure Rate					
🝷 🙆 Sel	lfDrvChip	93%	97.5484%	381.642	100%	94.2856%	25.5015	100%					
e,	HOST	90%	99%	63.607	16.6667%	94.5187%	4.25025	16.6667%					
- P	CPU	93.6%	97.2692%	318.035	83.3333%	94.2389%	21.2513	83.3333%					
•	褢 CPU_Top	90%	90%	63.607	16.6667%	91.5669%	4.25025	16.6667%					
•	褢 ALU (2,R)	99%	99%	127.214	33.3333%	98.6802%	8.50051	33.3333%					
•	褢 DEC (2,M)	90%	99%	127.214	33.3333%	91.1337%	8.50051	33.3333%					
Hierarchy Na	ame: SelfDrvChip	.HOST											
Project Ma	anagement Sy	nthetic Hierarc	hy Element	t ID Main FME	A Main FMEDA	Safety Mechanism F	MEA						

ISO 26262 Metric: Formulas for SPFm, LFm

Part of FMEDA analysis

SYSTEMS INITIATIVE

FMEA/FMEDA Columns & ISO 26262

2019

CONFERENCE AND EXHIBITION

JROP

Unified Functional Safety Verification Platform

FAULT INJECTION OVERVIEW

Fault Universe – Fault CampaignsFMEA/FMEDA
(estimated)Fault Campaigns
DefinitionFault Campaign
ExecutionFMEDA
(measured)

Simulation

Coverage

Static

Debug

Emulation

Reporting

Formal

ISO 26262 Work

Product

- 2. Prune and collapse the fault lists, structural analysis and formal techniques
- 3. Dynamic testability analysis (of remaining faults to simulate/emulate) Which faults can be best classified by which test?
- 4. Fault simulation/emulation with dynamic adjusting scheduling

Optimized Fault

Universe

- 5. Formal to (counter)prove "not observed" faults
- 6. Visualize and debug faults as needed

FuSa Planning &

Analysis

7. Report fault statistics and Diagnostic Coverage, per Failure Mode

Principles of Fault Injection

- Hypothetical faults are inserted into a design
- Tests are run against the faulty design (also called the Faulty Machine or FM)
- Specific points (detection signals) are compared against the un-faulted network (also called the Good Machine or GM) at designated strobe times
- If the strobing signals show difference between the GM run and the FM run, the fault is said to be detected.

Fault Classification by Fault Injection

Principles of Fault Pruning and Collapsing

- Fault universe is huge, and in order to make it manageable, following techniques are offered:
 - Fault collapsing
 - Faults are classified as either prime or collapsed
 - A prime fault represents one or more faults
 - A collapsed fault produces the same observable behavior as its equivalent prime fault
 - Only prime faults are simulated
 - Structural fault Pruning
 - Some structural conditions which lead to safe faults are easy to detect, so they can be pruned even in the fault generation step

COI, Observability, Controllability Analysis (VC Formal)

• COI determination helps to identify the faults which belong to the failure mode

 Controllability and observability analyses help determine which faults are safe

FMEDA analysis, ISO 26262 Metric FAIL Solution for Fault Classification – Unified Platform

Standard Fault Format (SFF) file content

Originally a Z01X feature

• A comprehensive way of defining faults statuses, faults groups and how to resolve types between different tests or even between different tools

tatusDefinitions	# Set fault generation constraints	
<pre># Creation of new functional safety definitions NN "Not Observed Not Diagnosed"; NP "Not Observed Potential Diagnosed"; ND "Not Observed Diagnosed"; PN "Potential Observed Not Diagnosed"; OP "Observed Potentially Diagnosed"; ON "Observed Not Diagnosed"; OD "Observed Diagnosed";</pre>	<pre>FaultGenerate { # Create faults on all reg types in hierarchy NA [0,1] { VARI "test.DUT.FL_IF.**" } # Create faults on all ports in hierarchy NA [0,1] { PORT "test.DUT.FL_IF.**" } Exclude { } </pre>	
<pre># Any fault created and not set by a system task will have this status. DefaultStatus (NN) # Any fault of this status will be chosen by the simulation for injection</pre>	<pre>NA [0,1] { VARI "test.DUT.sdpram i1.L DataOut" } NA [0,1] { VARI "test.DUT.sdp" # Define the merging of faults when multiple tests are PromotionTable { StatusLabels (NN,NP,ND,PN,OP,ON,OD)</pre>	run
Selected (NA, NN) StatusGroups { SA "Safe" (UT, UB, UR, UU); SU "Dangerous Unobserved" (NN, NC, NO, NT); DA "Dangerous Assumed" (HA, HM, HT, OA, OZ, IA, IP, IF, IX) DN "Dangerous Not Diagnosed" (PN, ON, OP);	# NN NP ND PN OP ON OD [- 0N ; # NN 0N ; # NP 0D ; # ND 0N ; # PN ON - OD ON OD ; # OP ; # ON ; # OD	
DD "Dangerous Diagnosed" (NP, ND, OD); } © Accellera Systems Initiative	<pre>{ "Diagnostic Coverage" = "DD/(SU+DA+DN+DD)"; } 34</pre>	

New Updates to Standard Fault Format (SFF)

Accommodating Fault Campaign data

- Add information on the related FM, SM, observation and detection points
- Information shall be provided by VC FuSa Manager

```
# Software test library safety mechanism
SafetyMechanism sm_stl {
    Detect { "top.dut.cpu.alarm" }
# CPU lock step safety mechanism
SafetyMechanism sm_lockstep {
    Detect { "top.dut.lockstep.mismatch" }
FailureMode fm_wrong_register_value {
    Observe { "top.dut.cpu.registers.reg*"
        Exclude { "top.dut.cpu.registers.reg*_shadow" }
    SafetyMechanisms(sm_stl, sm_lockstep)
FaultGenerate fm_wrong_register_value {
    NA [0,1] { [PRIM] "top.dut.cpu.**" }
```

FMEDA – Failure Mode & Safety Mechanism

- \rightarrow Is the Failure observed?
- \rightarrow Is the Failure detected?

Used by "Fault Injection Engines"

- Simulation
- Emulation
- Formal
- Static
- to qualify observed / detected

Unified Fault Campaign Definition in Fault DB

Unified Fault Campaign Execution

VC Formal FuSa - Fault Pruning

© Accellera Systems Initiative

Fault Injection Campaign – Z01X Functional Safety

Highest performance fault simulation solution for ISO 26262 compliance requirements

• Z01X Key Features

- Compatibility with ISO 26262 requirements and functional verification environments
- Flexible fault management and testability-based fault optimization
- Support for RTL and gate-level fault simulation
- State-of-the-art concurrent fault simulation algorithm
- TAT for very large designs and fault lists

Z01X is in use at major automotive semiconductor suppliers worldwide

Z01X is the fastest and most production-proven functional safety fault simulator in the industry

Synopsys Accelerates Development of Safety-Critical Products with Design Solutions for ARM Cortex-R52

High speed Z01X and Certitude fault simulation help assure functional safety for automotive safety standards Sep 19, 2016

Mobileye Adopts Key Synopsys Automotive Functional Safety Verification Solution to Enable ISO 26262 Compliance of its Next-Generation ADAS SoCs

Mobileye Adopts Z01X Functional Safety for EyeQ4

Nov 21, 2016

Concurrent Fault Simulation

ZOIX Concurrent Fault Simulator

- The design is "diverged" whenever the GM and FM values are different
 - FM copy of the design is created
- The diverged part of the design is simulated "concurrently" with the GM and other FM's
- The diverged part is "converged" when the GM and FM values are the same
- Significantly faster simulation of faults by using concurrency

acce

SYSTEMS INITIATIVE

ZOIX Testability Analysis COATS

<u>Controllability</u> <u>Observability</u> <u>and</u> <u>Testability</u> <u>System</u>

- Uses controllability (toggle) and observability (backtrace) algorithms
- Provides early identification of untested areas
- Dynamic test ordering according to the test quality of faults selected for that test
- Elimination of redundant tests
- Only simulates detectable faults
- Calculates "Tenacity" value

➔ Optimizes the fault campaign orchestration

Fault Injection in Emulation

ZeBu Fast Fault Emulation Technology

Verdi Integration

- Advanced fault debug/coverage features for the Unified Functional Safety Platform •
 - Annotate fault info in Verdi Schematic/Source views
 - Enable waveform mismatch debug between GM and FM
 - Support trace functions for mismatched waveforms
 - Display coverage information by hierarchy, fault type, etc.

<certitudeFaultSrc:4> /remote/vgrnd63/jnhuang/project/VSI/FTA/LocalSrc/RTL/fifo_sync.v

// 2'b11 --> 2'b10

fault_check 2'b1

fault check 2'b10

F DEPTH'd1)

fault_check 2'b00 F DEPTH'd0))

Pb11) |||

🕶 💽 🎾 Go To:

73 assign EF TMP = ((RPTR == WPTR-

77 always @(posedge clk or posedge

(RPTR

(RPTR ==

71 //Almost Empty

76 //Empty Flag

78 begin

74

Fault Campaign Back-annotated Results

Fault Injection Campaign Results to Calculate FMEDA Metrics

S							VC F	unctional Safety	Manager:H	IOST				_ 0	⊐ ×
P	oject	ĪΡ	<u>R</u> eport <u>U</u> tilitie	es									<u>ت</u>	C	<u>H</u> elp
М	ain FM	EDA													0×
<	ilter>	Plea	ase input text he	re	T X	Show FMEA	(A) 💷 🔄								
		#	FMEA ID	Function Hierarchy	FI Efforts	Estimated F _{safe}	Measured F _{safe}	Primary SM Type	Estimated IF DC(K _{RF})	Measured IF DC(K _{RF})	Latent SM Type	Estimated IF Latent DC(K _{MPF})	Measured IF Latent DC(K _{MPF})	Fpvsg	Fper
1	1	41	HOST_FM_1	Associate	FIE_1, FIE_3, FI	0%	60%	SM type not specif	90%	88%	No SM assigned	0%	98%	100%	0%
2	9	ζ2	HOST_FM_2	Associate	FIE_1, FIE_2	50%	80%	SM type not specif	90%	0%	No SM assigned	0%	0%	100%	0%
3	1	ζ 3	HOST_FM_3	Associate	FIE_1, FIE_3	0%	0%	SM type not specif	90%	70%	No SM assigned	0%	0%	100%	0%
4	9	4	HOST_FM_4	Associate	FIE_1, FIE_4	50%	0%	SM type not specif	90%	96%	No SM assigned	0%	0%	100%	0%
5	1	5	HOST_FM_5	Associate	FIE_1, FIE_5	0%	0%	SM type not specif	90%	0%	No SM assigned	0%	70%	100%	0%
6	9	6	HOST_FM_6	Associate	FIE_1, FIE_6	50%	0%	SM type not specif	90%	0%	No SM assigned	0%	96%	100%	0%
7	1	47	HOST_FM_7	Associate	FIE_1, FIE_2	0%		SM type not specif	90%		No SM assigned	0%		100%	0%
8	9	4 8	HOST_FM_8	Associate	FIE_1, FIE_3	50%		SM type not specif.	90%		No SM assigned	0%		100%	0%
						/									
4				Duine and C	-f-h-Mh	Cofeb 1	hi CM	TA Laborat Cafebook	h i						•
_ P	iain F	MEA	Main FMEDA	Primary S	afety Mechanisms	Safety M	ecnanism FM	EA Latent Safety M	echanisme						
Fa	ilure I	Rates	s												ð×
Ma	in FM	EDA	#1, HOST_FM_1	, Permanent,	Safety Related:tru	e, Safe Failur	e:false								
-			Flops Latches	RAM Bits	ROM Bits Digita	lArea Ana	log Area	RAM Equiv Transistors	ROM Eq	uiv Transisto	rs FIT D _F	Mi			
Fu	nction		611 41	25856	0 3218.4	1101 1100	36 25	856	0		8.300039 13.	100%			
	mann	рЧ	32 1	0	0 730.84	101 1100 13 0	004 19	0 74	0		0.000043 0.0	00068%			
	mapp	cu)))) - K					0.00013 0.0				
Fs	imate	d	Aintrinsic Ans 8 300039 0	5R //SR 8 300039	Fsafe As	Ans NF	90% 100	% 8.300039 0 0.8	F 30004						
Me	asure	ed	8.300039 0	8.300039	60% 4.980023	3.320016	88% 100	% 3.320016 0 0.3	98402						
			λирелька λ	MDE EMC DE	Кемс мле Ди	t dat λμη	End From	λ _{MDE 1} SoC built in	Diagnostic	Diagnostic	ID SoC built in	Coverage			
Es	imate	d	0 7.	470035	0% 0	7.47	0035 0%	7.470035 Host Safety 2	renagnosae	HOST PSM 2	2	90%			
Me	asure	d	0 2.	921614	98% 2.86	53181 0.05	8432 0%	0.058432							
Т	cl Co	nsole	e Metadata	Failure Rate	s										
											Somer	lemo Project SolfDrug		ICOr1	•
											Server: 0	ento Project: SelfDrVC	unip in: HUST User: L	iseri	•
									. –						

DESIGN AND VE

CONFERENCE AND EXHIBIT

Generating FMEDA Reports

Project IP Report Utilities Main FMEDA Cover Generate Functional Safety FMEA Report Hide FMEA # FMEA Generate Functional Safety FMEDA Report Primary SM Type Estimated IF DC(K _{RF}) Latent S 4 1 Generate Report Estimated IF DC(K _{RF}) Latent S 3 3 Associa S Generate Functional Safety FMEDA Browse 4 4 Associa FMEDA Template File: Output Report File: Browse 6 6 Associa Sefety Mechanism Types Main FMEA Safety Mechanism FMEDA Primary 7 7 Associa Estimated Measured Cance 7 7 Associa Estimated Main FMEDA Safety Mechanism FMEDA Primary Failure Rates Isocia Estimated, true, Safe Failure, false Filt FMD Flops Latches RAM Bits ROM Bits Digital Analog RAM Equiv Transistors FIIT FMD Function 0 0 0 0 0 <	S											V	C Functiona	al
Main FMEDA Cover Generate Functional Safety FMEA Report # FMEA Generate Functional Safety FMEDA Report Primary SM Type Estimated IF DC(K _{RF}) Latent S Generate Report Generate Report Generate Report Generate Report FMEDA Template File: Output Report File: Use Failure Rates: Safety Mechanism Types Main FMEDA #1, F001, Permanent, Safety Related:true, Safe Failure: failure Rates Flops Latches RAM Bits ROM Bits Digital Analog RAM Bits ROM Bits Digital Analog RAM Equiv Transistors FIT FMDA	Pro	oject	t <u>I</u> P	<u>R</u> epo	rt <u>U</u> tilitie	s								
<filter> Plead Generate Functional Safety FMEA Report # FMEA Generate Functional Safety FMEDA Report Primary SM Type Estimated # FMEA Generate Report 2 2 Associa 3 3 Associa 4 4 Associa 5 5 Associa 6 6 Associa 7 7 Associa 8 7 7 Associa 8 6 6 Associa 7 7 Associa 8 6 6 Associa 7 7 Associa 8 6 6 Associa 7 7 Associa 8 9 9 <t< td=""><td>Mai</td><td>n FN</td><td>IEDA</td><td>C</td><td>over</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<></filter>	Mai	n FN	IEDA	C	over									
# FMEA Generate Functional Safety FMEDA Report Primary SM Type Estimated IF DC(K _{RF}) Measured IF DC(K _{RF}) Latent S 1 1 1 Generate Report Latent S Latent S 2 2 Associat S Generate Functional Safety FMEDA 3 3 Associat S Generate Functional Safety FMEDA 4 4 Associat FMEDA Template File: Browse 5 5 Associat Cutput Report File: Browse 0 0 0 0 Main FMEA 5 5 Associat Safety Mechanism Types Main FMEA 6 6 Associat Cancet 7 7 Associat Cancet 7 7 Associat Cancet 8 Cancet Cancet 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0	<fil< td=""><td>ter></td><td>Pleas</td><td>G</td><td>enerate Fi</td><td>unctional Sa</td><td>fety FMEA F</td><td>Report</td><td></td><td>Hide</td><td>e FMEA</td><td></td><td></td><td></td></fil<>	ter>	Pleas	G	enerate Fi	unctional Sa	fety FMEA F	Report		Hide	e FMEA			
Generate Report Associa FMEDA Template File: Output Report File: Output Report File: Use Failure Rates: Safety Mechanism Types Main FMEDA #1, FO01, Permanent, Safety Related:true, Safe Failure:false Flops Latches RAM Bits ROM Bits Digital Analog Area Area Transistors FIT FMD Transistors FIT FMD Output Report Rile: Output Report File: Use Failure Rates Safety Mechanism Types Main FMEDA Safety Mechanism FMEDA Flops Latches RAM Bits ROM Bits Digital Area Transistors Transistors FIT FMD		#	FME	G	enerate Fi	unctional Sa	fety FMEDA	Report		Primary SM Typ	e Estimated	Measu	ed Laten	ts
2 2 Associa 3 3 4 4 4 4 4 4 5 5 5 Associa 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 Associa 4 4 4 4 5 5 5 Associa 4 4 4 4 4 4 5 5 5 Associa 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 Associa 0 0 0 <	2	1	1	G	enerate Re	eport					IF DC(KRF)		LBIST	
3 3 Associa 4 4 4 4 4 4 4 4 4 4 5 5 5 Associa 4 6 6 Associa 4 7 7 Associa 4 7 7 Associa 4 0 6 6 6 Associa 6 6 Associa 6 6 Associa Verter tile: Use Failure Rates: • 5 Safety Mechanism Types Main FMEA Safety Mechanism FMEA Main FMEDA #1, F001, Permanent, Safety Related:true, Safe Failure:false Flops Latches RAM Bits ROM Bits Area Area Area Transistors Fill FMD	2	2	2	4	Associat	•			Gen	erate Eunction	al Safety EME	DA		~
A 4 Associa A Associa Browse Browse Use Failure Rates: Brailure Rates Main FMEDA #1, F001, Permarent, Safety Related:true, Safe Failure:false Flops Latches RAM Bits ROM Bits Digital Analog Area RAM Equiv Transistors FIT FMD Function 0 0 0 0 0	2	3	3	A	Associal				Gen	erate Function	al Salety PME	DA		^
S 5 5 Associa Associa Associa 7 7 Associa Cance	4	4	4	4	Associal F	MEDA Templ	ate File:							Browse
Associa 7 7 7 Associa 7 7 Associa 6 6 Associa 7 7 Associa 6 6 Associa 6 7 7 Associa 6 6 Associa 6 6 Associa 6 8 8 8 <td>4</td> <td>5</td> <td>5</td> <td>4</td> <td>Associal (</td> <td>Output Report</td> <td>:File:</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Browse</td>	4	5	5	4	Associal (Output Report	:File:							Browse
✓ 7 Associal ✓ ✓ ✓ ✓ Generate ✓	4	6	6	4	Associal _L	Jse Failure Ra	ites: 🖲 E	stimated	🔿 Measu	red				
Image: Safety Mechanism Types Main FMEA Safety Mechanism FMEA Main FMEDA Safety Mechanism FMEDA Primary Failure Rates Main FMEDA #1, F001, Permanent, Safety Related:true, Safe Failure:false Failure:false Flops Latches RAM Bits ROM Bits Digital Area Area RAM Equiv Transistors FIT FMD Function 0 0 0 0 0 0 0 0 0	4	7	7	4	Associal								Genera	ate 🛛 🗶 Cancel
Safety Mechanism Types Main FMEA Safety Mechanism FMEA Main FMEDA Safety Mechanism FMEDA Primary Failure Rates Main FMEDA #1, F001, Permanent, Safety Related:true, Safe Failure:false Flops Latches RAM Bits ROM Bits Digital Area Analog Area RAM Equiv Transistors ROM Equiv Transistors FIT FMD Function 0 0 0 0 0 0.013935 24.476816%	4	^	<u>^</u>											
Failure Rates Main FMEDA #1, F001, Permanent, Safety Related:true, Safe Failure:false Flops Latches RAM Bits Digital Area Analog Area RAM Equiv Transistors FIT FMD Function 0 <	Sa	fety	Mech	anism	Types	Main FMEA	Safety	Mechanis	m FMEA	Main FMEDA	Safety Mech	nanism FM	EDA Prima	ry
Main FMEDA #1, F001, Permanent, Safety Related:true, Safe Failure:false Flops Latches RAM Bits ROM Bits Digital Area Analog Area RAM Equiv Transistors ROM Equiv Transistors FIT FMD Function 0 0 0 0 0 0 0 0.013935 24.476816%	Fail	ure	Rates											
FlopsLatchesRAM BitsROM BitsDigital AreaAnalog AreaRAM Equiv TransistorsROM Equiv TransistorsFITFMDFunction00000000000	Mai	n FM	IEDA 7	#1, FO	01, Perma	nent, Safety	Related:tr	ue, Safe F	ailure:fal	lse				
Function 0 0 4098.44 0 0 0.013935 24.476816%				Flops	Latches	RAM Bits	ROM Bits	Digital Area	Analog Area	RAM Equiv Transistors	ROM Equiv Transistors	FIT	FMD	
	Fun	ctior	1 I	0	0	0	0	4098.44	0	0	0	0.013935	24.476816%	
lotal 32 0 32 0 16711.23 0 0 0 0 0.05693 100%	Tota	al		32	0	32	0	16711.23	0	0	0	0.05693	100%	DESIG

CONFERENCE AND EXHIBIT

Early Soft Error Analysis for ISO 26262

Using Static Analysis (TestMAX FuSa)

- Propagation based on probabilities
 - Can be applied in RTL or gates
 - Fast runtime
- Does not require testbenches
 - Ability to identify and address hotspots early in the design cycle
 - Measure impact of implemented safety mechanisms
- Can be used in conjunction with fault injection later in the design cycle
 - Minimizes iterations

Digital and Analog Fault Simulations

Z01X and CustomFault

RTL Faults Transistor-level Defects \$fs default status("SF"); // Check observation points for dangerous faults always @(negedge clk) begin int compare = \$fs_compare(sig1, sig2, sig3); if (compare) \$fs set status("DF"); Ou end **Gate-level Faults** Safety Mechanism DUT Analog Fault Simulation 2019 **Digital Fault Simulation**

Unified Functional Safety Verification Platform

SUMMARY

Press Release – October 7th, 2019

Synopsys Announces Industry-First Unified Functional Safety Verification Solution to Accelerate Time-to-Certification for IPs and SoCs

VC Functional Safety Manager Reduces ISO 26262 FMEA/FMEDA and Fault Classification Effort by Up to 50 Percent

🕞 🖉 🖶 🖂

MOUNTAIN VIEW, Calif., Oct. 7, 2019 / PRNewswire/ --

Highlights:

- Automation is required to address the challenging certification requirements and increased efforts associated with new automotive IPs and SoCs
- Industry's first and most comprehensive functional safety verification solution includes unified FMEA/FMEDA and fault classification automation, powerful verification engines, ISO 26262-certified tools, and expert services
- Anticipated increase in effort from functional safety verification can be reduced by up to 50 percent using this new unified solution

Synopsys, Inc. (Nasdaq: SNPS) today announced the industry's first and most comprehensive unified functional safety verification solution to accelerate time to ISO 26262 certification for automotive IP and semiconductor companies targeting the highest Automotive Safety Integrity Levels (ASIL D). As part of the solution, Synopsys introduced VC Functional Safety Manager, a FMEA/FMEDA and fault classification automation technology enabling architects, IP designers, and verification engineers to accelerate their functional safety verification with productivity gains up to 50 percent compared to traditional manual and error-prone functional safety verification point tools.

"Arm strongly believes safety will be critical to the successful deployment of advanced ADAS and autonomous solutions," said Neil Stroud, senior director of technology strategy, Automotive and IoT Line of Business, Arm. "With ISO 26262 compliance and functional safety verification requirements increasing for

SYNOPSYS°

VC Functional Safety Manager

Accelerate functional safety certification of IP and SoC with comprehensive FMEA/FMEDA and fault campaign management tool

Overview

Synopsys[®] VC Functional Safety Manager provides a comprehensive tool for IP and semiconductor groups targeting functional safety certification for ISO 26262, IEC 61508 and other functional safety standards. It serves the needs of IP and SoC architects, IP designers and verification engineers by providing a scalable and automated solution for Failure Modes and Effect Analysis (FMEA), unified fault campaigns management, annotation and calculation of metrics for the Failure Modes, Effects and Diagnostic Analysis (FMEDA), and configuration of work products for delivery to assessors and customers.

Figure 1: VC Functional Safety Manager Automates Functional Safety Verification tasks

Scalable and Collaborative

VC Functional Safety Manager delivers a scalable and collaborative FMEA/FMEDA solution. Existing tool do not scale with data, design and team size, are subject to

DATASHEET

FMEDA analysis, ISO 26262 Metric FAIL Solution for Fault Classification – Unified Platform

Unified Fault Campaign Ensures Efficiency and Consistency

Comprehensive Functional Safety Verification Solution

Highest Productivity to Accelerate Time to Compliance

- Unified FMEA/FMEDA and fault campaign automation
- Fastest fault campaign engines with unified debug and reporting
- Tool chain certification
- Expert guidance based on proven hands-on experience

Questions

