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Abstract— Today’s verification engineers seeking a way to measure quality and completeness of a verification 

stimulus have access to a limited number of methods, usually involving a small handful of code and functional 

coverage tools. And while reviews of test plans and bug rates can also help in understanding verification quality, only 

the coverage tools provide a numerical measurement of stimulus quality that is direct, though often highly limited. 

Through in-depth domain-specific analysis of a system-level stimulus suite, this paper will examine the effectiveness 

of a few these traditional coverage tools. Our goals: understanding the strengths and limits of existing coverage 

metrics and providing insight into potential improvements.   

   First we will explore under coverage – cases where there is functionality in the design that the stimulus suite 

didn’t hit and so should have been reported as a coverage hole despite the tool declaring achievement of full coverage 

closure. We will examine the types of functional operations that were missed, why traditional methods were not 

sufficient, and possible approaches to provide improved coverage capabilities. 

   We also will consider over coverage – cases where the same stimulus was hit many times, indicating potential 

inefficiency of the verification suite. In such cases, we will describe areas where the regression efficiency is reduced 

due to excessive repetition of sequences, then explain how to identify these areas and modify the constraints 

accordingly. Ultimately, our aim is a paper that summarizes ways to improve both functional coverage and 

effectiveness by increasing the coverage of the system and reducing areas of over coverage. 

 

I.  INTRODUCTION  

Understanding how a large SOC environment is reacting to stimulus is a challenging undertaking. As IP 

blocks within modern SOC’s have more complex interactions with each other, understanding how stimulus 

interacts with each IP and how each IP interacts within the system becomes too complex for traditional analysis 

techniques. 

In today’s modern verification environments based on random stimulus generation, coverage methods are 

required to measure completeness of stimulus. These coverage metrics, mostly code and functional coverage, 

provide specific quantitative measurements about how the system reacted to stimulus. While they are both 

valuable, and have a long proven track record in helping understand the block level stimulus coverage, we 

examine areas where additional coverage information is needed for effective stimulus at the system level. 

The traditional concern is of under coverage: cases where hardware designs have not been fully tested by the 

stimulus suite, yet traditional coverage methods indicate complete coverage. More effective coverage analysis 

would have reported a coverage hole. We examine a number of these within a complex SOC, along with the 

reasons for the under coverage report, and requirements for getting accurate coverage reporting. 

A less common, but also significant concern, is of over coverage. While hitting a particular area many times is 

not likely to be of particular concern, if a stimulus suite is repeating the same pattern over and over despite 

randomization, then the effectiveness of the suite should be called into question. Neither code coverage nor 

functional coverage is likely to be effective in answering this type of question since larger patterns need to be 

examined in order to determine if the stimulus being repetitive at system-level. 

To answer these questions, we use a combination of large data sets and domain-knowledgeable analysis to 

give us visibility into how the full SOC is reacting to stimulus suite. By examining and correlating data across the 

SOC, in conjunction with knowledge of protocols, we are able to gain a statistical coverage awareness of the 

system. We use that to measure the effectiveness of the stimulus suite, and contrast it with current coverage 

methods. 
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Using real-world SoC development projects implementing state-of-the-art constrained random stimulus, we 

compared conventional coverage methods with new statistical coverage methods.  We looked at example reports 

from the statistical coverage tool, the types of system-level information that it can report, and what the statistical 

coverage told us about the existing constrained-random test suite.  

The new measurement capability gave us information on where the stimulus constraints needed improvement, 

in addition to uncovering some surprisingly trivial bugs.  With new coverage information, it was possible to 

modify the stimulus constraints and rerun the test suite.   We’ll show the results from running the improved 

stimulus, including examples of new functional errors that were uncovered, and  statistical coverage reports 

showing the coverage improvements and a corresponding higher density of system-level interactions within the 

system. 

II. APPROACH 

We gather statistical metrics by capturing critical transaction information at key interfaces of a design. A 

detailed discussion on the selection and reasoning behind the selection and capture of data can be found in a 

DVCon 2014 paper [2]. 

As our analysis is connecting in to a complex existing system-level verification environment, it was critical to 

us that we didn’t modify any part of the design or test-bench.  Aside from being the only practical approach to 

connecting into an existing project, it also gives us confidence that our measurements are accurately portraying a 

real, working environment. 

Figure 1 shows a simplified view of critical points in a system where transactional data must be captured.   

We are capturing large numbers of very small pieces of information throughout the system. By knowing where 

and when the data was captured, and with knowledge of the transaction itself, we can determine how each IP 

interacted with any specific transaction, and look for patterns across the system. 

 

Figure 1:  Distributed Data Capture 

One example is on the main coherent fabric, we capture each processor transaction for analysis.  We then 

correlate independent transactions that were captured at different sites, so that we can follow the progression of 

any one transaction across many points.  Next, we look for individual transactions that together make up a larger 

bundled transaction within the system. In complex protocols such as those found within arm SOC’s, it frequently 

requires five or more transactions to make up a single bundle necessary to accomplish the original request. 

Examples of this include coherent memory operations, operations were data may already be stored within another 

IP block, and operations that need to be delayed or queued in order to maintain system-level performance 

requirements. 

The need to look at bundled transactions in order to understand system-level intent is one case of where 

traditional coverage metrics begin to fall short. Determining which pieces are bundled with which other pieces is 

dynamic and distributed. Dynamic meaning that it is data such as tag ID that determines which transaction is 

correlated with which other transaction. Distributed in the sense that a correlated transaction may occur in a 

different part of the SOC than the original transaction, yet both components are part of the larger goal. Traditional 

coverage metrics are not well-suited for tracking dynamic or distributed operations to determine system-level 

stimulus coverage. 

Next, we search for interactions between transactions.  Interactions occur where there is a time overlap or 

other shared attribute between transactions.  This could be when multiple interactions need to share a resource, 
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such as a bus.   That allows us to examine arbitration, prioritization, or fairness, such as when interactions share 

an address.  That allows us to look at ordering, coherence, and possible live-lock issues.  Finally, we can look for 

statistical patterns across a large set of overlapping transactions to draw conclusions about the operation of the 

device, the quality of the stimulus, or highlight areas of concern. 

III. PROJECT OVERVIEW 

Our metrics experiments are based on a modern multi-cluster high-performance coherent ARM V8 SoC 

project. The project uses a SystemVerilog based verification flow.  Stimulus is generated through a carefully 

designed and maintained set of constraints, which use code and functional coverage metrics to determine 

completion criteria.  This approach has been used successfully in a variety of projects, and at many integration 

levels from unit to system. 

We instantiated statistical coverage in this existing environment, that had already closed code and functional 

coverage project goals, as a way to gain new insight into the verification environment by measuring system-level 

statistical coverage.  As an example, functional coverage is excellent at checking that state machines have hit 

interesting points, or that FIFOs have filled and emptied.  These are important for checking coverage of unit-level 

tests.  At the system level, we are interested in checking that interactions between large IP blocks are taking place.  

This includes looking at all caches interacting with fabric to maintain coherence at the system level, tracking 

memory or packet transfers as multiple blocks compete for access, or ensuring that other system interactions such 

as interrupts don’t affect the outcome of specific transfers.  Our goal with statistical coverage is to gain new 

insight into the inter-IP operations at subsystem or system level, and compare and contrast this insight with 

traditional coverage methods. 

Even though our goal was to look at system-level interactions, when we plugged statistical metrics into our 

environment, we were quite surprised at the range of unit and system-level information we received. 

IV. COVERAGE METHODS 

Coverage is the classic concern in verification: is there hardware that hasn’t been tested? At the block level, 

this is likely to entail checks such as having both filled and emptied FIFO’s, or having covered all states in a state 

machine for example. These are also types of coverage that a combination of code and functional coverage are 

well suited to measure. 

It should be noted that in earlier generations of SOC’s, individual IP blocks might share a common bus, but 

there would be very little interaction between the IP blocks. Communication consisted mostly of data transfers 

between two blocks, with all other components quiescent. The advantage of that type of environment was that 

there was very little additional functional verification needed at the SOC level since most of the inter-IP 

operations were relatively straightforward. 

In many current SOC environments, such as our ARM multi-cluster SOC, performance and power 

optimizations require much more complex inter-IP interactions. One classic example is the set of transfers 

required for a coherent memory access. In this case, the requesting IP must issue a snoop operation to check 

which other caches contain the data of interest. The fabric, a different complex IP, must pass the snoop to relevant 

caches. The fabric may first use a snoop filter to determine exactly which caches need to be snooped, and which 

may be ignored. All other caches must react to the snoop and send the appropriate response back to the fabric, 

which in turn correlates the response to the original requester allowing the original operation to proceed. 

The interesting points in this drawn out example are to show the complexity of distributed state machines that 

run across and between IP blocks, and the dynamic nature of determining what transactions belong to which state. 

Coupling this with the parallelism inherent in a modern SOC is where we expect to find differences between 

traditional and statistical coverage methods. 

V. FIRST RESULTS 

One early result was to simply show transaction activity over the life of each test in a regression suite.  Figure 

2 shows an early example.  This figure shows an immediate issue – the number of transactions falls off sharply 
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over time.  The stimulus environment had been running this way for quite some time; tests essentially stopped, 

but the simulation kept running for a long time after the test was done. 

As soon as this graph was available, a single trivial error in the constraints was identified that did not stop the 

test at the right time.  This resulted in an immediate 40% improvement in regression CPU efficiency.  The critical 

issue was not that there was a bug in the constraints – that was just a simple error.  Without having the statistical 

coverage measurement, it was difficult to know that the bug existed:  all tests ran and passed as expected, and any 

time that a bug was uncovered, engineers would examine simulations at the specific times when bugs occurred.  

Without higher abstraction-level metrics, there was no reason for anybody to look at the later part of a test.  Even 

simulation profiling had not uncovered the issue. 

 

Figure 2 – Transaction density over time 

This is an overall theme in our exploration of statistical coverage:  If you can’t measure it, you aren’t aware of 

it.  If you aren’t aware of it, you can’t fix it.  In some cases, the issue is simply being able to see data that is quite 

simple to understand.  In other cases, it is a challenge to understand what you are seeing.  In all cases, 

understanding what is happening is important to getting good verification results. 

VI. STATISTICAL COVERAGE 

As with functional coverage, there is a near-infinite set of possible measurements that could be made.  

Choosing statistical coverage areas must be both practical and actionable.  Specifically, if a measurement does not 

provide information on how to improve the verification, then it is unlikely to be of much value. 

Because any statistical coverage point can come from the correlation of any number of data capture points, the 

coverage plots can range from fairly straightforward runtime data, to highly abstracted system-level coverage.   

We will show examples across the range of abstraction. 

One of the more surprising results for us was how much we could learn from straightforward count plots.  

When developing reasonably complex constrained-random stimulus, we have a conceptual understanding of what 

the distributions will look like. Our data showed us that what was actually happen was quite different than what 

we expected. 

 

Figure 3 Cache operation distribution 

Figure 3 shows a plot of the L2 cache operations across many tests within a specific suite.  We had expected 

to see a fairly even distribution of operations on the L2.  Since the stimulus is generated is at the processor, and 

not directly connected to the L2, there are a number of design-specific factors that come into play.  Nonetheless, 

the L2 operation distribution was not an acceptable distribution.  With the new statistical coverage, we could 

modify constraints to provide a better distribution.  After some early constraint modifications, a rerun of the test 

suite resulted in the distribution shown in Figure 4.   
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Figure 4 Cache operations distribution updated 

We can see that we obtained significant improvements in the L2 operation distribution, although it is still not 

ideal. 

VII. UNDER COVERAGE 

While simple distributions can provide a comparison between expected and actual stimulus interactions, they 

do not provide a direct measure of system-level coverage. A distribution does not show a specific sequence of 

events that were or were not covered rather it can only hint at the effectiveness, by providing a comparison 

between what was intended and what actually happened. 

To specifically quantify under coverage requires measurements of inter-IP operations. There are many 

examples of these such as QoS and QVN reordering, snoop filtering, or barrier operations, where a number of 

individual transactions interact causing the higher level goal to be attained. Note that many of these are 

architecture-dependent, similar to how functional coverage is frequently function dependent (some cases, such as 

FIFO operation could be argued to be automatic). We examine one case in detail: shared cache states. In this case 

a coherent cache line may be stored in one or more caches, following the domain specific rules. The transitions 

between cache lines is both dynamic and distributed: an n-way cache may put the line in any of the n locations 

and any caches in the system may be involved or not depending on the state of the cash tags. The coverage 

analysis must determine which caches are involved in the transaction, and how data is transferred. 

When we analyze the regression for transactions we see a coverage pattern that is quite different from 

traditional methods. The diagram in figure 5 shows our first view of inter-cache transitions, including legal, 

covered, uncovered, and illegal transitions. Note that each data point within this plot requires the analysis of 

many, frequently 10 or more transactions, to determine that a single data point was hit. It also requires domain 

knowledge to determine legal versus illegal transitions. 

 

Figure 5: Cache operations distribution 

Our first plot of this graph shows a number of places where the stimulus did not reach system-level coverage 

even though the relevant functional and code coverage indicated 100% completeness. 
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This system-level view illustrates a distributed state machine that has not been covered by the system-level 

regression. As with block-level coverage, some states are likely to be unreachable; even though legal, other 

components within the system are not able to generate the necessary stimulus to reach those states. This points to 

an interesting possibility for system-level dynamic reachability analysis. Other states are reachable and if 

uncovered, point to the need for additional stimulus. This example, showing coherent memory coverage is 

notorious for insufficient stimulus and difficult to find design issues. 

Another aspect of system coverage is that architecturally illegal conditions may be reached. There are a 

number of potential reasons for this from hardware bugs to the more common illegal programming set up issues 

within the stimulus. One could view that as additional functional coverage, but where it is already difficult to hit 

legal, there is likely not much advantage in exploring illegal programming states. Just as an example, one  

common way to program states is through incorrect page tables setups, causing coherence failures among caches. 

In one case highlighted in figure 5, we ran into a setup issue in our stimulus that caused us to run stimulus in an 

illegal configuration. 

VIII. OVER COVERAGE 

There are two issues to be addressed with over coverage. First, there is the loss of simulation efficiency. 

Testing the same thing many times is generally a waste of resources if there are no relevant changes in the 

system. Second, and more importantly, there is the likelihood that the stimulus was meant to be doing something 

else, but is instead doing the same thing over and over, which  implies that some other intended coverage is being 

missed. 

While one could argue that there cannot be too much testing, over coverage may well be the result of issues 

within constrained random stimulus. With a solid test plan, one would expect that stimulus generate coverage for 

each section or function in a design with the same reasonably even distribution-at least in the ideal case. If that 

isn’t what is observed, then there is still the tricky issue of determining the difference between the intent and the 

observed activity. 

One classic example of over stimulus due to constraints is in driving too much traffic into one interface, 

causing flooding. Once a component such as a FIFO or a bus saturates, traffic rates are controlled by saturated 

component rather than by the stimulus. At this point, the stimulus generator has lost control and traffic rates are 

being controlled by saturated component: any constraints specifying the rate of data are now ineffective, as the 

data rate is being controlled entirely by the saturated component. 

More often, constraints generated by the stimulus are not behaving as expected in the system. Figure 6 shows 

the distribution with simple over coverage. 

 

Figure 6: L2 read latency distribution 

This figure also illustrates why understanding the distributions from statistical coverage can be complex.  In 

larger environments, the constraints will interact with the busses, queues, caches, and other storage elements.  

Determining the required stimulus, expected and acceptable results, and potential improvements requires a good 

understanding of both system architecture and verification. 

At times, this requires that the verification stimulus be highly unrealistic.  One example is for cache coherence 

verification.  Under normal operation, coherent cache interactions do not happen particularly frequently.  That 

poses a challenge for coherence verification, where higher frequency results in a higher likelihood of uncovering 

a bug within a realistic number of cycles. 



 

7 

 

One commonly used approach to achieving higher frequency of cache coherence interactions is to lower the 

L2 read latency, while simultaneously generating unrealistic traffic.  That can be effective in generating higher 

densities of snoop traffic.  Figure 7 shows the updated graph of L2 read latency. 

Without the information provided by statistical coverage, the read latency distribution was less than ideal. 

Once the distribution was measured and displayed, the constraints could be modified to allow for a still artificial 

curve, but with a better distribution over more realistic numbers as well. 

This example illustrates the complexity of system-level interactions, and the difficulty of predicting how a 

particular set of constraints will actually behave in a real system.  The breadth of possible interactions is simply 

too large.  More often, it takes considerable analysis to determine why constraints are not behaving as expected. 

 

Figure 7: L2 read latency distribution 

Without the ability to measure the actual over or under coverage, there is no way to know how well the 

constraints exercised the system, and thus no way to know where improvements are needed. 

IX. ANALYSIS AND STATISTICAL COVERAGE 

There is another category of system behaviors that are difficult to check with normal coverage results.  This is 

in cases where any individual operation works correctly, but the overall operation is not as expected.  Examples 

of this include performance, Quality of Service (QoS), traffic shaping, and fairness.  Correct operation is no 

longer about individual transactions.  Rather, the ordering or modification of transactions based on other traffic 

becomes important. 

Many existing solutions use counters and averaging to capture performance operations.  That approach can 

provide clear, quantitative information about the system under test, but it may be difficult to use that information 

to explore corner cases, or determine the root cause of any particular result. 

Here statistical coverage can provide detailed analytical results.  As an example, Figure 8 shows a fairness 

plot for coherent bus transactions.  Trends, such as transaction fairness are seen by plotting correlated data against 

time, source, or destination for example.  This type of statistical analysis shows system behaviors that can only be 

seen over longer periods of time.  In this particular plot, the overall result is close to expected, but one can also 

see the makeup of the data, and some outliers that may point to design issues, or may simply be due to the 

particular settings, data patterns or other circumstances.  

 

Figure 8: Coherent transaction overlap timing 

Similarly, in Figure 9, the distribution of L1 queue fills show patterns of interactions and the limits of the 

constrained random stimulus. In this case, the range of cache queue fills are shown.  Here one can see not only the 
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upper and lower limits of fills reached via the stimulus, but also the distribution of fills, providing a few of cache 

use within this group of tests. 

It should be noted that this type of graph is likely to be useful when separated out for specific types of 

operations or tests, rather than collecting large sets of data, where any outlier behavior could be hidden by larger 

sets of more typical behavior.  

 

Figure 9: Distribution of L1 & L2 max fills 

The ability to visualize the distribution of operations is valuable to understanding the limits of the stimulus, 

and the behavior of the system under test.  Patterns are visible, outliers can be explored, and general correctness 

of system behavior can be examined. 

While plots can be useful for understanding the system,  being able to verify behavior in a regression 

environment is also important.  Statistical coverage helps in two ways:  first, plots can provide the understanding 

needed to determine what to check for – what should be checked, and what are reasonable limits; second, the 

statistical coverage captures the data necessary to implement some of the checks, where data from multiple places 

must be correlated in order to determine the circumstances around particular timing or behavior. 

X. CONCLUSION 

We show how statistical coverage methods allow us to improve our understanding of a complex ARM 

processor environment, and to see where the constrained-random stimulus needs to be improved. 

While existing code and functional coverage methods are critical to solving some issues, they are not 

sufficient.  With the addition of statistical coverage, we are able to measure system-level IP interactions, and gain 

new insight into the performance of the simulation environment.  That information lets us modify the stimulus, 

resulting in the uncovering of a number of functional bugs, and quantitatively improved verification performance 

and effectiveness. 

The effort to connect an analysis tool is quite low.  The time is mostly spent interpreting results, and 

determining the root cause of issues.  However, once this is done, we are able to modify stimulus to hit whole 

new areas of the design that we code and functional coverage were not able to tell us about. 

We saw a clear pattern where over-coverage indicated where constraints did not cause the expected reaction 

in the system.   The cases we saw also had corresponding under-coverage, so the analysis was straightforward.  It 

is conceivable that one could see only over-coverage if it causes under-coverage in another area that hasn’t been 

analyzed. 

Under-coverage comparisons are more straightforward, since the statistical coverage at system-level has 

similarities to functional coverage the block level.  Once we saw how interactions between state machines 

actually occurred, we were able to add or correct stimulus for better coverage, which also resulted in the 

uncovering of RTL bugs. 
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