
Understanding the effectiveness of
your system-level SoC stimulus suite

Statistical Coverage

Project OverviewIntroduction

Analysis of groups of correlated transactions

 Distributed in space - across domains, across clusters,

 across caches, across lines

 Distributed in time - buffered and cached transactions

Examine pattenerns and holes within correlated transactions

Statistical coverage points come from any number of

 indvidual transactions that are correlated through protocol

or architectural interactions.

One suprising result was how straightforward counts

showed new information

A plot of transaction

density over time

highlighted a simple

constraint error

specifying test

completion

A plot of cache

operations over

 many tests shows

an uneven

distribution that was

unexpected. New

constraints were

needed to improve

coverage

Distributed Data CaptureDistributed Data Capture

Based on a multi-cluster ARM V8 environment.

Capture critical staticical transaction information

at key interfaces of a design without modifying

or intruding on the operation of the SoC.

Gather information for analysis. Correlation of

independent transactions captured across the

SoC allow us to track and report on full SoC

operations.

As an example, single coherent operation may be

made up of five to ten individual transactions.

Statistical coverage installed in existing project

 Measure bus, cache operations

 Traffic and interactions between IP blocks

 Running existing stimulus suite

Results are based on an entire regression suite

Alan Hunter, ARM Ltd. Robert Fredieu, Andreas Meyer, Mentor Graphics

ConclusionsAnalysis and Statistical Coverage
We show how statistical coverage methods allow us to improve our understanding of the activity

within a complex ARM processor SoC, and better understand how constrained random stimulus

actually interacs with the SoC, and where improvements can be made.

While existing code and functional coverage methods provide critical metrics for understanding stimulus

effectiveness, they are not sufficient when dealing with complex interacting IPs that are frequently

found in today’s SoCs.

We defined under coverage to occur where the stimulus was intending to create interactions between

IP blocks that either didn’t occur, or incurred infrequently over a given number of regression runs. We

found numerous cases of under coverage in a system that had already achieved full code and functional

coverage results.

We defined over coverage to occur when we saw far more of one operation than of all others. We believe

this indicated a areas where system interactions resulted in constraints not causing the intended

distributions . In the examples we examined, the correlation between constraints and resulting distributions

were non-linear.

With the use of over and under coverage analysis, we were able to quantify the effectiveness of the

stimulus, which let us modify constraints to achieve measurably better results.

Understanding how a stimulus suite behaves in a large SoC can be challenging

 Interactions between stimulus and IP

 Interactions between IP components

 Results in changes betweeen expected and actual stimulus behavior

 Randomzation, interactions may not be what was expected or intended

We examine and compare traditional coverage metrics with an in-depth analysis

 Code and functional coverage are proven and well understood metrics

 Provide insight into individual stand-alone components such as state machines

Using new analysis, we examine how well existing coverage portrays actual stimulus effectiveness

 Under-coverage - real RTL interactions which are not reached, but are not detected

 Over-coverage - repeatedly executing the same sequence of events, indiciating randomzation issues

Measurements are based on an SoC with a constrained-random stimulus suite that has achieved full

code and functional coverage closure.

We measure how the stimulus interacts with the full SoC to undrestand the effectiveness and efficiency

of a full regression suite

Under Coverage Over Coverage

Transaction Density Over TimeTransaction Density Over Time

Cache Operation DensityCache Operation Density Cache Pair Interaction DistributionCache Pair Interaction Distribution

A direct measurement of system-level coverage requires an

examination of statistical coverage over the allowable range of

a particular protocol or domain. Specifically, undercoverage

occurs when a sequence of events, generally between IP blocks,

does not occur as intended

Examples of areas where system-level under coverage may be of

interest include QoS and QVN reordering, snoop filtering, and

barrier operations forcing the ordering of data/flag operation sets.

Note that these types of operations cannot be measured using

traditional coverage methods, since they require the use of

statistical coverage over disparate transactions.

The example shown below illustrates inter-cache transitions, or

how all cache lines interact between all caches in the SoC, including

legal, covered, uncovered, and illegal transitions. Note that each

datapoint within the plot requires the analysis of many individual

transactions,

frequently ten

or more.

This first plot

showed quite

a few places

where system-

level coverage

was not reached

despite full

traditional

coverage

metrics.

Modified Read Latency DistributionModified Read Latency Distribution

References
[1] A. Meyer, H. Foster, “Metrics in SoC Verification: Not just for coverage anymore” DVCon 2013

[2] A. Efody, “Wiretap your SOC: Why scattering verification IPs throughout your design is a smart thing to” DVCon 2014

[3] M. Peryer, “Caching in on Analysis” Verification Horizons, October 2013, Vol 9, Issue 3.

There are two concerns with over-coverage. First, there is the loss of

simulation efficiency. Testing the same pattern of events many times

is likely to be a waste of resources. Second, and more importantly,

there is the likelyhood that the stimulus was intended to be testing

something else, in which case the over-coverage is a measure of

the stimulus missing a different target.

A simple example of over-coverage is too much traffic causing one

component to saturate. Once that occurs, the timing of future events

is controlled by the speed at which that component can issue

operations, rather than by the stimulus sources, which no longer have

control.

We measured similar, although more complex, interactions in our

system. One common approach to achieving higher frequency of

cache coherence interactions is to lower the L2 read latency, while

simultaneously generations

unrealisticly high levels of

coherent traffic. This can

be effective in creating higher

densities of snoop traffic to

improve cache coverage.

However, as we measured,

the read latency distribution

was too narrow, resulting in

overcoverage.

Modifying constraints to have

a better match to desired

distributions allows for a

balance between various

system-level testing

objectives.

Initial Read Latency DistributionInitial Read Latency Distribution

In addition to coverage results, we also examine areas where correct operation is defined by the aggregate

of many operations. Examples of this include Quality of Service (QoS), traffic shaping, and fairness. In these

cases, correctness has more to do with ordering operations depending on traffic loads. Traditionally, counters

have been used to provide a rough estimate of performance.

Using statistical coverage, we are able to provide detailed analytical results, and compare between groups

of traffic to see relative performance differences. As an example the plot below shows two groups of

data traffic (red and blue), and the relative performance differences between them. In this case, the red

group shows significantly better performance

characteristics, both for cache hits, generally

indicated by the vertical trend, and cache

missess, generally indicated by the 45

degree trend.

By examining patterns in dynamic data

sets, we can ensure that the stimulus

is effective in creating required data

interactions, and the SoC is correctly

ordering transactions to hit performance

targets.
Coherent Transaction Overlap TimingCoherent Transaction Overlap Timing

