
Uncover
Functional Coverage Made Easy 

Akash S
Rahul Jain

Gaurav Agarwal

© Accellera Systems Initiative 1



© Accellera Systems Initiative 2

You too?



What makes coverage coding tedious?
• Monotony

– Bland work, not challenging enough!

• Repetition
– Widespread across covergroups, projects.

• Inconsistency
– Differences in structure, model, style

© Accellera Systems Initiative 3

“Thou shalt keep verif engineers happy”



The Big Picture

Plan Code Implement Analyse

© Accellera Systems Initiative 4

Shorthand SV Code Review XLS Hook up Regress



“Thou shalt automate the mundane”

© Accellera Systems Initiative 5

Cov collector-1

Cov collector-2

RTL cov
collector

TB

Comp-1

Comp-2

RTL RTL 
Monitor

Interface

Auto generated

Coverage package

TLM

TLM

PER 
TRANSACTION

WHITEBOX 
COVERAGE



“Thou shalt be TRANSACTION-WISE”

© Accellera Systems Initiative 6

DUTSTIMULUS
GENERATOR MONITOR

COVERAGE
COLLECTOR

CHECKER
JUST ANOTHER 
CONNECTION

TLM
TLM



“Thou shalt separate concerns”

© Accellera Systems Initiative 7



“Thou shalt be flexible”
• Flow adaptable to whitebox coverage.
• Use the same infra with additional command line arguments

© Accellera Systems Initiative 8

Cov
collector

Monitor/ 
Sandwiching 
component

Blackbox coverage Whitebox coverage

Sample as you get txns

Transaction



“Thou shalt be concise”
Reviewability

• Structured XLS for review of implementation.
• Only coverage model, cut the rest.

© Accellera Systems Initiative 9






“Thou shalt be concise”
Coding: The Shorthand Notation

• One-line CG/CP/cross definitions
• Auto-generate whatever possible
• No repetitions
• Leverage on patterns
• Customizable sequence coverage

© Accellera Systems Initiative 10



© Accellera Systems Initiative 11

“The mundane”

Generated File Shorthand



Shorthand: A Glance

© Accellera Systems Initiative 12

(Inside write function of cov collector)

Shorthand snippetSV snippet



© Accellera Systems Initiative 13

SV snippet Shorthand snippet



“Thou shalt not repeat thyself”
• Problem: 

– CPs can’t be used across CGs
– Define CP in every CG where needed.
– 100s of repetitions!

• Solution:
– One-point definition of all CPs
– Command to copy CP/cross to a CG.
– No repetitions!

• Scenarios?
– speed x gears x sampling rate
– speed x success; speed x error
– speed x timeout 

© Accellera Systems Initiative 14

(In CG)

Replace above statements with actual shorthand 
definition before converting to SV



“Harness patterns”
• Many-many relationships

• Irregular address ranges
• One-hot/one_cp_each
• Hop

© Accellera Systems Initiative 15

Cp_1

Cp_a

Cp_b

Cp_c
Cp_2



Macros: Gist
Macro Format Example cfg syntax O/P SV code

list ^list(<vals>) ^list{[2]{1}, *{2}, -{3}, 
{4});

bins bin_list0[2] = {1};
ignore_bins ignore_list0 = {2};
illegal_bins illegal_list0 = {3};
bins bin_list1 = {4};

hop ^hop(min, max, step) ^hop(1,5,2); bins bins_hop_1 = { 1};
bins bins_hop_3 = {3};
bins bins_hop_5 = {5};

interval ^interval(h/d, min, 
max, break_1, 
break_2)

^interval(d, 1, 10, 5,7);
(Similarly for hex)

bins bins_interval_1 = {[5:1]};
bins bins_interval_2 = {[7:6]};
bins bins_interval_3 = {[8:10]}; 

range_interval ^range_interval(min, 
max, step_size)

^range_interval(1,a,4); bins bins_range_interval_1 
= {[‘h5:’h1]};
bins bins_range_interval_4 = 
{[‘ha:’h6]};

expand ^expand(<expr>) ^expand({1=>2,3}, 
{4=>5});

bins transition_1_2 = (1=>2);
bins_transition_1_3 = (1=>3);
bins transition_4_5 = (4=>5);

list_transition ^list_transition(<expr>
)

^list_transition([2]{1=>
2,3}, *{4=>5=>6}, -
{7=>8}

bins bin_list0[2] = {1=>2,3};
illegal_bins illegal_list0 = 
{4=>5=>6};
ignore_bins ignore_list0 = 
{7=>8}

© Accellera Systems Initiative 16

Macro Format Example cfg syntax Expanded cfg syntax
one_cp_each ^one_cp_each(<s

ignal>)
^one_cp_each(test)
test is:

case-1: 2 bit vector
case-2: enum with 

pass/fail

Case-1: 
- cp test_bit_0
- cp_test_bit_1
Case-2:
- cp test_enum_pass
- cp test_enum_fail

one_hot ^one_hot(<signal
>)

^one_hot(test)
test is a 2 bit vector 

cp test_one_hot: {test} 
bin_0(test[0]), bin_1(test[1]) ;

cross_expand ^cross_expand(“c
p_1,cp_2”, “cp_3, 
cp_4”)

^cross_expand(“cp_1,cp_2
”, “cp_3”)

cross cp_1Xcp_ 3: {cp_1,cp_3};
cross cp_2Xcp_3: {cp_2, cp_3}; 



The Guiding Commandments
• Thou shalt keep verif engineers happy.
• Thou shalt automate the mundane.
• Thou shalt be TRANSACTION-WISE.
• Thou shalt separate concerns.
• Thou shalt not repeat thyself.
• Thou shalt be concise.
• Thou shalt be flexible.

© Accellera Systems Initiative 17



Results
• Robust and reusable structure

– Transaction based TLM coverage collectors

• Versatile flow
• Consistent implementation

– Lesser ambiguity/disruptions

• Easy reviewability of implementation.
• Reduced coding efforts

– Code to be written reduced by 75-80%

• Happy Engineers! 

© Accellera Systems Initiative 18



Future
• Improvisations: patterns, parameterisations
• Leverage Verific

– For transaction details

© Accellera Systems Initiative 19



Questions?

© Accellera Systems Initiative 20


	Uncover�Functional Coverage Made Easy 
	Slide Number 2
	What makes coverage coding tedious?
	The Big Picture
	“Thou shalt automate the mundane”
	“Thou shalt be TRANSACTION-WISE”
	“Thou shalt separate concerns”
	“Thou shalt be flexible”
	“Thou shalt be concise”�Reviewability
	“Thou shalt be concise”�Coding: The Shorthand Notation
	Slide Number 11
	Shorthand: A Glance
	Slide Number 13
	“Thou shalt not repeat thyself”
	“Harness patterns”
	Macros: Gist
	The Guiding Commandments
	Results
	Future
	Questions?

