Unconstrained UVM SystemVerilog Performance

Wes Queen, Verification Manager
IBM
RTP, NC

Abstract— It's been a decade — we all know how to write
SystemVerilog constraints. Just choose the variadd to
randomize, write the constraint expressions, and tehe simulator
do its magic. If it runs slow, just call the simuator vendor and
ask them to fix it. What more is there? By folloving the
guidelines presented here we can get unconstrainperformance
from the simulators running our UVM SystemVerilog
constraints

Keywords— SystemVerilog, Randomization, Constraint&/M,
Performance

l. INTRODUCTION

Randomization is a fundamental part of UVM
SystemVerilog verification environments. Inside edd
environments, randomization is often used in comégon
code as well as during sequence and item generafisrthese
environments grow in scope and complexity, it isdneing
common to see tens of thousands to hundreds o$dhds of
randomize calls in the course of a single simutatidf not
more. As a result, the performance of those ramoralls is
becoming an important focus area for verificationienment
developers.

A. Set some reasonable goals for randomization times

A fundamental step in keeping randomization peréroe
reasonable is to establish some goals for perfocman each
randomize call. An important step to establishimgse goals
is to understand the roles each UVM class typestaiein
your verification environment.

Configuration classes capture the high level knthizt
describe how your design and the UVCs in your emvirent
operate. These classes are typically randomizgdamte or
twice per simulation. As a result, it is reasdaab allow the
randomization time for these classes to be measutedes of
seconds or more. A randomization time of a fewosds or
perhaps even ten or fifteen seconds is minor wberpared to
the overall simulation run time. With this londiene available
for randomization, creating complex constraintshwiarge
numbers of variables can be very effective here.

Item classes, such as
uvm_transaction or uvm_sequence_item, are usegptesent
the types of objects we send into or through adaevisuch as
a packet. Similarly these classes can be useeptesent the
basic bus transactions needed to stimulate a deviteh as a
PCI Express bus read or bus write. Typically, ildasses are
generated and randomized very frequently. Foretickssses it
is important to keep the randomization time as kmal

Justin Sprague, Principal Applications Engineer

Cadence Design Systems
San Jose, CA

possible. A single simulation may create anywhiom
hundreds to millions of items. As a result, a @naation
time of a single second can result in a very lootalt
simulation time. To keep these times low, we wémnt
minimize the work the constraint solver does to ithiaimal
number of constraints and variables needed.

B. Understand the basic randomization process

When creating classes with random variables and
constraints, it's important to understand how #redomization
process works in SystemVerilog. For a complete
understanding, you'll want to spend a few hourslirea the
chapter in the SystemVerilog Language Reference uislan
(LRM) on Constrained Random Value Generation.

For the purpose of this paper, we can shortenld¢aating
time by highlighting a few basic rules:

* All random variables are solved at the same.time
* All constraints are bi-directional.

e If a solution is possible, the randomize call sddird
it.

¢ Variables are solved in a way that provides foeaen
distribution over the entire constraint space.

Keeping these rules in mind when coding can heidegu
you to simpler classes with easier to solve coimstra

II. CODING TECHNIQUES FOR SIMULATION SPEED

Once reasonable expectations have been establshtbe:
different types of objects in the UVM environmemte can
begin to look at some guidelines to speed up tfffereit
randomize calls.

Before we begin discussing each, it's importantdte two
things. First, the performance impact of each agr will
vary based on the specific structure of your ckssed the
constraints within them. Second, this paper detnaies
approaches that have been useful with classes imogta
complex constraints or those randomized many tintes. the

those classes derived froRirPoses of illustration, the examples containe@ kise small

classes with a few constraints. These techniquesnst
applicable when applied to classes with many camgg and
variables or to those classes randomized many.times

A. Use solve...before to simplify complex relationships

Recall that constraint expressions are bi-direafion
Consider the following code:

class meal extends uvm_sequence_item;
rand day_t weekday;
rand meal_t lunch;
constraint example_c {
(weekday == TUESDAY) ->
lunch = PIZZA);
If (weekday== WEDNESDAY)
(lunch == SOUP);
}
endclass

Reading the above code, it would be intuitive tpest that
the value of weekday is chosen prior to the validuioch.
However, that's not the case. In SystemVerilog, thlues of
all variables are chosen simultaneously. This mehat the
randomization engine is selecting a value for luaicthe same
time as it is selecting a value for the day ofwesk. Solving
for all values simultaneously allows the engineettsure a
uniform distribution across all the variables usethe class.

When we write our constraints, we often anticipate
ordering, such as picking the day of the week ptiorthe
picking the selection for lunch. In these casedyirsy both
variables simultaneously and ensuring a uniforntridigion
across them is not necessary and can result inedede
complexity.

Fortunately, we can tell the randomization engima tve
want some variables chosen before others. Thi®rng with
the solve...before syntax. For example, we can & t
constraint:

solve weekday before lunch;

In the simple example from the above code, thisldvoot
make a significant performance difference. Howegensider
more complex cases such as:

constraint mode_c {
mode inside {SINGLE, DUAL, /*and more*/};
if (mode == SINGLE) {
data_width inside {2,4,6},
/I lots of other constraints
}
if(mode == DUAL) {
data_width inside {2,3,4,5,6};
Il lots of other constraints

}

if(data_width ==3) {
min_value = 5;
max_value = 11;
}
}

In the above code, we have a case where solvinge mod
before data_width and solving data_width before wvétue or
max_value can indeed reduce the complexity. Adding
solve...before constraints can guide such an orderifigose
constraints would look like:

constraint ordering_c {
solve mode before data_width;
solve data_width before

min_value, max_value;

}

Adding these two solve...before constraints introduae
explicit ordering when solving the variables. §Fbrdering is
what allows for the speedup.

Before applying solve...before, it is important to deare
that this explicit ordering though does not alwagtp. There
are two general cases to watch for. First, thig orelering will
change the distribution of values seen in the tesWou may
find that adding some dist constraints will helgalge this.
Second, solve...before constraints can sometimedt resu
slower randomization times due to the impact of dhdering
change on other variables solved for during theloarization
step.

A general approach for adding solve...before corrggas:
First, look for ordering patterns in your consttaiwhere this
approach may help. Second, add a solve..befotep#titern.
At this point run the simulation and measure thaalis. If a
performance gain is observed, examine the distoibsiton the
variables to ensure they fit the general requiremerif the
distribution is not ideal, then apply one or morestd
constraints.

B. Understand the impact of arrays with foreach caaisiis

Foreach constraints are a useful way to apply itemet
constraint expressions to each item in an arrajneMusing
foreach, it is important to remember that its useffectively
results in a new constraint for each item in th@ar Should
the array have ten entries, this is like adding tesw
constraints for each line in the foreach. If they has 100
entries, it is like adding 100 new constraints.isTéan quickly
result in adding more random variables and morstcaints to
the problem the randomization engine needs to solve
Consider the following code:

class packet extends uvm_sequence_item; C. Use pre_randomize() and post_randomize() to assign
rand bit [31:0] data[l; values procedurally

The pre_randomize() and post randomize() functions

i | . - .
constraint data_values { provide the ability to execute code proceduralthesi before

data.size() == 100; or after the randomization engine runs. Thesetifoms can be
foreach(data[i]) { a simpler alternative to complex constraint co@@ansider the
o code:
if(i 1= 0) { . .
_ i class item extends uvm_sequence_item;
data[i] > data[i-1]; .
) rand int data(];
) int var_a, var_b, var_c;
) constraint value_c {
value.size() == 50;
endclass

)) foreach(valueli]) {
Here we see that there is a data array, and thmatsit100

entries. Each entry in the array must be grehter the value valuefi] 1= (var_a*var_b)var_c;
of the prior item in the array. Not only does thisde }

introduce more variables and more constraints,itbfutrther

complicates the problem by creating a relationdtepwveen }

every variable in the array. This pattern results00 random endclass

variables that must all solved for simultaneoudBy creating

this relationship, it further slows randomization. In the above code we can use the pre_randomizeg)id

to eliminate the extra calculations of (var_a*vafvér_c from
A similar use model for foreach that can lead tothe constraint expression. The code can be widisen
performance problems is seen with nested foreanbtrents

. . class item extends uvm_sequence_item;
used to determine uniqueness:

. . rand int data(];
class config extends uvm_sequence_item;

. rand intvar_a, var_b, var_c;
rand int table[];

) rand int invalid_value;
constraint table_values {

) function void pre_randomize();
table.size() == 50;

invalid_value =(var_a*var_b)/var_c;

foreach(tablefi]) { endfunction
foreach(table[j]) { traint value_c {
constraint val
if(il=j]) y

- value.size() == 1024;
} foreach(value[i]) {

}
}

endclass

valuel[i] = invalid_value;
}
}

This code uses nested foreach constraints to feveey endda_ss) -
entry in the table to be different from every oteetry — in We will further discuss the use of complex expr@ssiin
other words, to create a table of unique entriekis ensures constraints in the next section.
that the randomization engine needs to be solvealiothat

- : Similarly, the post_randomize() function can alsoused
values in the array simultaneously.

to eliminate array processing. A common patteran s

The best way to speed foreach constraints is teersake ~ generating item classes is the generation of pedyidata.
that there is no linkage between the arrays eningise the Often the values used in the data are the resslitrgfle values
foreach calls. If that linkage exists, and is widable, with few constraints. In our previous section, seav a case
consider remodeling the code so that it can beedolv Where a user wanted an array of values, all lafger the prior
procedurally inside a post_randomize function. sThill be ~ one. Using post_randomize(), that code could hlaeen
discussed in the next section. written as:

class packet extends uvm_sequence_item;
bit [31:0] data[];

function void post_randomize();
data = new[100];
foreach(data[i]) begin
if(i ==0) begin
data[i] = $urandom();
end else begin
do
data[i] = data[i-1] + $urandom();
while(data]i] < data[i-1])
end
end
endfunction
endclass
Here, instead of solving
randomization. a simple procedural foreach loopaits
through each entry and generates a simple randra. vahis
can be less work for a randomization engine andfaster.
When moving randomization of specific variableg ltkis to a

post_randomize() function, make sure to also rentlogerand
keyword for the variable itself — it is no longereded.

Note, in the code above, some additional logic meeded
to account for overflow when adding the result affadi-1] and
$urandom. Generally, post_randomize() procedurde owill
be similar to the original constraint code, thougimay be
necessary to add additional code such as was aoee h

D. Reduce complex math in constraint expressions
The process of finding a valid result in the caamistr solver
can be an iterative process where constraint esipres are
evaluated multiple times. In classes that are ownimked
frequently, this can result in complex expressidmsng
calculated many, many times. Consider the follgnwéonde:
class item extends uvm_sequence_item;
rand int x_pos[512], y_pos[512];
inty_offset, var_a, var_b. var_c;
constraint position_c {
foreach(x_pos][i]) {
X_poslil==((12*(y_posJi] + y_offset)*
(var_a *var_c)) /var_b) -
((var_a* var_b) var_c);
}
}

endclass

In the above code, as we both iterate through dheath
constraint block and also iterate through eachesgion one or
more times, we are causing the randomization engine

calculate expressions with a number of complex esgions
such as multiplies or divides. By rewriting th@ression as
well as adding some temporary variables, we cancesthe
complexity of the expressions. The reduced comipsxin the
constraint expressions can result in less workhferconstraint
solver during each randomize call. A simple resviiould
look like:
class item extends uvm_sequence_item;
rand int x_pos[512], y_pos[512];
inty_offset, var_a, var_b. var_c;
int tmp1, tmp2;
function void pre_randomize();
tmpl =12 * (var_a * var_c)/var_b;
tmp2 = ((var_a * var_b) /var_c);
endfunction

constraint position_c {
X_posli]==((tmpl*(y_pos[i]+y_offset))
- tmp2;

the data array during }

In the rewritten code, we were able to introduce tw
temporary variables that simplified the math in doastraint
expression. Now, much of the complex math is cdetpu
prior to randomization through the use of a predoamize()
call. Note, that in this case we were not ablestoove all the
complex math, but only reduce it.

Ill. CODING TECHNIQUES FOR MEMORY USAGE

Runtime performance is not the only measurement of
compute resourcesMemory usage is another important aspect
to consider. Simultaneously randomizing large nerslof
variables, especially where there are complex ioalstips
between those variables can result in more memeiggb
consumed as the randomization engine accountslifadhea
variables. Consider the following code:

class address_table extends uvm_object;
rand int unsigned address][];
int unsigned address_max;
constraint table_values {
address.size() == 250;
foreach(addressi]) {
if(i!=0){
addressJi] > addressJi-1];
}
address|i] < address_max;
/I Other address][i] constraints
}
}

endclass

In the above code, there are a large number ofitsimaous
variables to solve for. This was discussed eairli¢he paper
in greater depth. As the size of the randomimapicoblem
grows, the memory required to solve it grows. Thest
approach to reducing memory is to simplify the peoband
reducing the number of variables linked togethdowever, if
that is not possible, consider solving it in poashdomize or
perhaps solving it in smaller increments.

IV. CODING TECHNIQUES FOR PRODUCTIVITY

Writing constraints that are easy to maintain aebdug is
as important as writing constraints that run fagts many
UVM environments have grown, so too have the ceairgs
that are in them. Many users have found thateis ¢bnstraint
code has grown larger, managing that code and deimg
problems has become more difficult. There are regve
technigues we can use to help manage this complexit

A. Constraint organization for re-use & ease of maiatece

One of the first steps in managing constraint cexip} to
follow a structured approach for organizing coristraode.
Item classes generally have a limited number ofdoan
variables and constraints. Configuration classes aiten
larger, have more variables, and a larger numbeordtraints.
The larger the classes and the randomization prolitee more
organization can help.

1) Develop a consistent approach for organization of
ranfom variables and constraint code.

The code developed for verification environmentsl wi
likely by read, and often debugged, by enginedrerdhan the
original author. With that in mind, it is importato develop
easy to read and maintain constraint code. Anwagyo start
that process is to follow a consistent format fdre t
organization of random variables and constraints.

The authors have found it useful to organize ydass
structure so that random variables are groupediegand are
separate from the constraints. Another commonaggpris to
place random variables together, just prior torthee in
constraint blocks. The most important thing hertoiadopt a
style and be consistent.

As classes grow larger, external constraint blazks also
help to preserve the readability of the class dafm by
separating the constraint names from the constaat.

If the constraint code is subject to churn fromjgrbto
project, but the variables remain the same, congideing the
constraint code into a separate file that is “idet This helps

especially when the maintenance is done by a tedm o
engineers. For example, this could look like:

class device_config extends uvm_object;
rand mode_type mode;
rand int max_size;
rand int num_channels;

rand bit retry_allowed,;

rand channel_config channels[;

constraint half_mode_defaults {
if(mode == HALF) {
max_size == 1024;
num_channels = 2;
retry_allowed = 1;
}
}

constraint full_mode_defaults {
if(mode == FULL) {
max_size == 512;
num_channels = 4;
retry_allowed = 0;
}
}

constraint channel_defaults {
channels.size() == num_channels;

foreach(channels[i]) {
channels[i].max_size ==

local::max_size;
channels[i].retry_allowed ==
local::retry_allowed,;
}
}

endclass

Splitting your constraints into well defined, andnmed,

preserve the consistency of the random variabled angnsiraint biocks also makes it easier to use imee to

supporting functionality but allows for easy migoat of
constraints as you switch projects.

2) Organize your constraints into multiple constraint
blocks

Instead of writing one large constraint block forclass,
create multiple smaller constraint blocks with digive
names. In each constraint block place only thasestcaints
needed to enforce a specific condition, mode, lar rlrhis will
allow for easier, long term maintenance of the <las

redefine constraint blocks or to create new coimgti@ocks to
augment the existing ones.

3) Break constraints into multiple classes
Create configuration objects for the different Boin the
design. Each of those configuration objects shaddtain
only the random variables and constraints neededthiat
block. Create a single device level configurataject that
creates each block level configuration. At thigeleyou can
choose to randomize the block level objections coeatly.

If you randomize them concurrently, you could addstraints
that span across the different blocks. An exangflehis
approach was seen in the prior section.

You could also randomize the block level
sequentially. Randomizing them sequentially wowmldolve
randomizing some device level parameters as ranaoiables
and then randomizing the each block’s configuratidmect
individually in post_randomize(). This could lolike:

class device_config extends uvm_object;
rand mode_type mode;
rand int max_size;
rand int num_channels;

rand bit retry_allowed,;

channel_config channels[];

constraint half_mode_defaults {/*...*/}
constraint full_mode_defaults {/*...*/}

function void post_randomize();
channels = new[nhum_channels];
foreach(channels[i]) begin
channelli] =
channel_config::type_id::create(/*name*/,
this);
if('channelsli].randomize() with {
channels[i]l.max_size ==
local::max_size;
channels[i].retry_allowed ==
local::retry_allowed,;
}) else
“uvm_error(“device_config”,
"randomize failed”)
end
endfunction
endclass

Regardless of which approach is chosen it will hielp
managing the constraint code. Either approachpoavide for
an easy transition between block, device, and rsydevel
testing.

B. Use macros to replace repetitive code

The UVM library uses macros to replace repetitigdiing
and make it easier for code writers (and code readeln
situations where you have repetitive constraintecagbnsider
doing the same thing. Macros could range in corityléom
one or two constraints to an entire constraintkloc

objects

Using user defined macros native to a configurdilercan
also reduce constraint complexity. For instandeerwa range
of random variables may be either positive or riegabut the
results of multiples of those values can't be gre#han the
sum of the absolute value of those numbers, a nmaayobe of
use to simplify the constraint equation, cuttingwdothe
number of evaluations in that constraint block ifigtance:

constraint macro_example {
x inside {[-50:50]};
y inside {[-50:50]};

max_value inside {[0:100]};

if(x <0 &&Yy < 0) —x-y <= max_value;
if(x>0&&Yy <0) x-y<=max_value;
if(x<0&&y>0) y-x <= max_value;
if(x>0&&y>0) x+y <= max_value;

}

Could become much simplified if a absolute valu8%\
macro is created.

“define ABS(value) (((value) <0) ?\
(-(value)) : (value))

The macro_example above now becomes:
constraint_macro_example {

x inside {[-50:50]};

y inside {[-50:50]};

max_value inside {[0:100]},

"ABS(x) + "ABS(y) <= max_value;
}

C. Avoid modifying random fields manually after
randomization

When developing randomized classes, it's important
think about the engineers that will need to use aagde. A
common temptation is to randomize a class and éxégrnal
to the class manually tweak one or two variableohtain
some specific result. This can make it difficat tonsumers
of our code to understand just what we're attengptindo. A
good rule is to limit any updates to random vagahio the
class itself. Instead of manually changing theusalise a
“randomize() with {} call or even understand tlzendition
and create constraints in the class itself to allogcondition
to naturally happen. The key here is to let thestraint solver
do the work for you and break the constraints jpdcts that
make sense such that there isn't the need or téompta set
the random variable manually.

D. Create standalone environments to prototype artd tes
constraints
Our complex constraint classes are just one paatlafge
UVM environment. The scale of the environment caake it
difficult to quickly prototype new ideas or to rum large

number of randomize calls on our class. For lagge more
complex classes, it is a good idea to create al,sstehd alone
environment for just this class. Creating thessndilone
environments early in the process often only takegew
minutes. For this modest investment, you can sayficant
time as you introduce new ideas.

Creating a stand-alone environment also allowstgauwn

a large number of randomize calls in successioly. déng

this, you can get a good sense for the performafiche
randomization in just that class — ignoring othienutation

impacts. In an hour of simulation in the full emviment,
perhaps the a test would create 100,000 packets stand-
alone environment a test could still create 100,p80kets.
However, in this instance, you would be able toeolxs only
the time required for the randomization to compléféth that
information you can then experiment with your caohel try
various optimizations. While a simulation prafdi tool could
provide similar information, the simplified envinoent
coupled with the shorter run times can allow mdfiient

experimentation.

E. Record coverage on the random variables on yowgscla

It can be enlightening to record coverage on tmelom
variables in your classes. As these classes gaowd, the
constraints become more and more complex, therefter
unintended consequences to constraint space. ditimonthat
you may expect to happen very frequently may almeser
happen, or perhaps never even happen at all. Bingd
covergroups to your randomized classes, you're béee the
distribution of how the different random variabbee selected.
Simply trigger the covergroup’s sample method from
post_randomize() to get a count from each randouaite

If you collect coverage on classes for which yoweha
standalone environments, you can quickly creatglaumbers
of items and get a very good understanding of howr glass
will react in your larger environment

V. SUMMARY

Developing UVM environments with randomization code
that both runs fast and is easy to maintain is venyortant.
As times the problem may seem daunting and perbags
mysterious. By following some straightforward gjleve can
open the door to much high performance constrdiras are
indeed easy to maintain.

To improve simulation performance, the key concapts

Selectively apply solve hefore

Carefully use foreach

Use pre/post_randomize to reduce complexity

Reduce the complexity of expressions used
constraints.

To improve productivity, the key concepts are:

Use consistent practices for organizing randornonati
code

Use macros to simplify and replace repetitive code
Avoid modifying random variables manually

Develop standalone environments for testing complex
constraint code

Record coverage on random values

As you write your own constraints, we invite you ttg
these approaches. More importantly though, wewage you
to experiment with your own code and grow in your
confidence with randomization and writing constigin

VI. 6 ACKNOWLEDGEMENTS

The authors would like to thank the IBM Cores tefam
input to and use of the suggestions in this papet the
Cadence randomization team for guidance as we \Wwaxiead
through optimizing constraint code.

