
Unconstrained UVM SystemVerilog Performance 
 

Wes Queen, Verification Manager 
IBM 

RTP, NC 

Justin Sprague, Principal Applications Engineer 
Cadence Design Systems 

San Jose, CA 
 
 

Abstract — It’s been a decade – we all know how to write 
SystemVerilog constraints.  Just choose the variables to 
randomize, write the constraint expressions, and let the simulator 
do its magic.  If it runs slow, just call the simulator vendor and 
ask them to fix it.  What more is there?  By following the 
guidelines presented here we can get unconstrained performance 
from the simulators running our UVM SystemVerilog 
constraints 

Keywords— SystemVerilog, Randomization, Constraints, UVM, 
Performance 

I. INTRODUCTION 

Randomization is a fundamental part of UVM 
SystemVerilog verification environments.  Inside these 
environments, randomization is often used in configuration 
code as well as during sequence and item generation.  As these 
environments grow in scope and complexity, it is becoming 
common to see tens of thousands to hundreds of thousands of 
randomize calls in the course of a single simulation - if not 
more.  As a result, the performance of those randomize calls is 
becoming an important focus area for verification environment 
developers. 

A. Set some reasonable goals for randomization times 

A fundamental step in keeping randomization performance 
reasonable is to establish some goals for performance of each 
randomize call.  An important step to establishing these goals 
is to understand the roles each UVM class type takes on in 
your verification environment.   

Configuration classes capture the high level knobs that 
describe how your design and the UVCs in your environment 
operate.  These classes are typically randomized only once or 
twice per simulation.   As a result, it is reasonable to allow the 
randomization time for these classes to be measured in times of 
seconds or more.  A randomization time of a few seconds or 
perhaps even ten or fifteen seconds is minor when compared to 
the overall simulation run time.  With this longer time available 
for randomization, creating complex constraints with large 
numbers of variables can be very effective here. 

Item classes, such as those classes derived from 
uvm_transaction or uvm_sequence_item, are used to represent 
the types of objects we send into or through a device - such as 
a packet.  Similarly these classes can be used to represent the 
basic bus transactions needed to stimulate a device – such as a 
PCI Express bus read or bus write.  Typically, item classes are 
generated and randomized very frequently.  For these classes it 
is important to keep the randomization time as small as 

possible.  A single simulation may create anywhere from 
hundreds to millions of items.  As a result, a randomization 
time of a single second can result in a very long total 
simulation time.  To keep these times low, we want to 
minimize the work the constraint solver does to the minimal 
number of constraints and variables needed. 

B. Understand the basic randomization process 

When creating classes with random variables and 
constraints, it’s important to understand how the randomization 
process works in SystemVerilog.  For a complete 
understanding, you’ll want to spend a few hours reading the 
chapter in the SystemVerilog Language Reference Manual 
(LRM) on Constrained Random Value Generation. 

For the purpose of this paper, we can shorten that learning 
time by highlighting a few basic rules: 

• All random variables are solved at the same time. 

• All constraints are bi-directional. 

• If a solution is possible, the randomize call should find 
it. 

• Variables are solved in a way that provides for an even 
distribution over the entire constraint space. 

Keeping these rules in mind when coding can help guide 
you to simpler classes with easier to solve constraints. 

II. CODING TECHNIQUES FOR SIMULATION SPEED 

Once reasonable expectations have been established for the 
different types of objects in the UVM environment, we can 
begin to look at some guidelines to speed up the different 
randomize calls. 

Before we begin discussing each, it’s important to note two 
things.  First, the performance impact of each approach will 
vary based on the specific structure of your classes and the 
constraints within them.  Second, this paper demonstrates 
approaches that have been useful with classes containing 
complex constraints or those randomized many times.  For the 
purposes of illustration, the examples contained here use small 
classes with a few constraints.  These techniques are most 
applicable when applied to classes with many constraints and 
variables or to those classes randomized many times.  



A. Use solve…before to simplify complex relationships 

Recall that constraint expressions are bi-directional.  
Consider the following code: 

class meal extends uvm_sequence_item; 

  rand day_t weekday; 

  rand meal_t lunch; 

  constraint example_c { 

    (weekday == TUESDAY) ->  

                  lunch != PIZZA); 

    If (weekday== WEDNESDAY )  

                     (lunch == SOUP); 

  } 

endclass 

Reading the above code, it would be intuitive to expect that 
the value of weekday is chosen prior to the value of lunch.  
However, that’s not the case.  In SystemVerilog, the values of 
all variables are chosen simultaneously.  This means that the 
randomization engine is selecting a value for lunch at the same 
time as it is selecting a value for the day of the week.  Solving 
for all values simultaneously allows the engine to ensure a 
uniform distribution across all the variables used in the class. 

When we write our constraints, we often anticipate an 
ordering, such as picking the day of the week prior to the 
picking the selection for lunch.  In these cases, solving both 
variables simultaneously and ensuring a uniform distribution 
across them is not necessary and can result in unneeded 
complexity. 

Fortunately, we can tell the randomization engine that we 
want some variables chosen before others.  This is done with 
the solve…before syntax.  For example, we can add the 
constraint: 

  solve weekday before lunch; 

In the simple example from the above code, this would not 
make a significant performance difference.  However, consider 
more complex cases such as: 

constraint mode_c { 

   mode inside {SINGLE, DUAL, /*and more*/}; 

   if (mode == SINGLE) { 

     data_width inside {2,4,6}; 

     // lots of other constraints 

   }  

   if( mode == DUAL) { 

     data_width inside {2,3,4,5,6}; 

     // lots of other constraints 

   } 

 

 

  if( data_width == 3 ) { 

    min_value = 5; 

    max_value = 11; 

  } 

} 

In the above code, we have a case where solving mode 
before data_width and solving data_width before min_value or 
max_value can indeed reduce the complexity.  Adding 
solve…before constraints can guide such an ordering.  Those 
constraints would look like: 

constraint ordering_c { 

   solve mode before data_width; 

   solve data_width before 

         min_value, max_value; 

} 

Adding these two solve…before constraints introduces an 
explicit ordering when solving the variables.   This ordering is 
what allows for the speedup.  

Before applying solve…before, it is important to be aware 
that this explicit ordering though does not always help.  There 
are two general cases to watch for.  First, this new ordering will 
change the distribution of values seen in the results.  You may 
find that adding some dist constraints will help resolve this.  
Second, solve…before constraints can sometimes result in 
slower randomization times due to the impact of the ordering 
change on other variables solved for during the randomization 
step.  

A general approach for adding solve…before constraints is: 
First, look for ordering patterns in your constraints where this 
approach may help.  Second, add a solve..before that pattern.  
At this point run the simulation and measure the results.  If a 
performance gain is observed, examine the distributions on the 
variables to ensure they fit the general requirements.  If the 
distribution is not ideal, then apply one or more dist 
constraints. 

B. Understand the impact of arrays with foreach constraints 

Foreach constraints are a useful way to apply repetitive 
constraint expressions to each item in an array.  When using 
foreach, it is important to remember that its usage effectively 
results in a new constraint for each item in the array.  Should 
the array have ten entries, this is like adding ten new 
constraints for each line in the foreach.  If the array has 100 
entries, it is like adding 100 new constraints.  This can quickly 
result in adding more random variables and more constraints to 
the problem the randomization engine needs to solve.  
Consider the following code: 



class packet extends uvm_sequence_item; 

  rand bit [31:0] data[]; 

  constraint data_values { 

    data.size() == 100; 

    foreach( data[i] ) { 

      if(i != 0) { 

        data[i] > data[i-1]; 

      } 

    } 

  } 

endclass 

Here we see that there is a data array, and that it has 100 
entries.  Each entry in the array must be greater than the value 
of the prior item in the array.  Not only does this code 
introduce more variables and more constraints, but it further 
complicates the problem by creating a relationship between 
every variable in the array.  This pattern results in 100 random 
variables that must all solved for simultaneously.  By creating 
this relationship, it further slows randomization. 

A similar use model for foreach that can lead to 
performance problems is seen with nested foreach constraints 
used to determine uniqueness: 

class config extends uvm_sequence_item; 

  rand int table[]; 

  constraint table_values { 

    table.size() == 50; 

    foreach( table[i] ) { 

      foreach( table[j] ) { 

        if( i != j ) 

          table[i] != table[j]; 

      } 

    } 

  }  

endclass 

This code uses nested foreach constraints to force every 
entry in the table to be different from every other entry – in 
other words, to create a table of unique entries.  This ensures 
that the randomization engine needs to be solve for all that 
values in the array simultaneously. 

The best way to speed foreach constraints is to make sure 
that there is no linkage between the arrays entries inside the 
foreach calls.  If that linkage exists, and is unavoidable, 
consider remodeling the code so that it can be solved 
procedurally inside a post_randomize function.  This will be 
discussed in the next section. 

C. Use pre_randomize() and post_randomize() to assign 
values procedurally 

The pre_randomize() and post_randomize() functions 
provide the ability to execute code procedurally either before 
or after the randomization engine runs.  These functions can be 
a simpler alternative to complex constraint code.  Consider the 
code: 

class item extends uvm_sequence_item; 

  rand int data[]; 

  int var_a, var_b, var_c; 

  constraint value_c { 

    value.size() == 50;   

    foreach( value[i] ) { 

      value[i] != (var_a*var_b)/var_c; 

    } 

  } 

endclass  

In the above code we can use the pre_randomize() function 
to eliminate the extra calculations of (var_a*var_b)/var_c from 
the constraint expression. The code can be written as: 

class item extends uvm_sequence_item; 

  rand int data[]; 

  rand int var_a, var_b, var_c; 

  rand int invalid_value; 

  function void pre_randomize(); 

    invalid_value =(var_a*var_b)/var_c; 

  endfunction 

  constraint value_c { 

    value.size() == 1024;    

    foreach( value[i] ) { 

      value[i] != invalid_value; 

    } 

  } 

endclass  

We will further discuss the use of complex expressions in 
constraints in the next section. 

Similarly, the post_randomize() function can also be used 
to eliminate array processing.  A common pattern seen in 
generating item classes is the generation of payload data.  
Often the values used in the data are the result of simple values 
with few constraints.  In our previous section, we saw a case 
where a user wanted an array of values, all larger than the prior 
one.  Using post_randomize(), that code could have been 
written as: 



class packet extends uvm_sequence_item; 

  bit [31:0] data[]; 

 

  function void post_randomize(); 

    data = new[100]; 

    foreach( data[i] ) begin 

      if(i ==0) begin 

        data[i] = $urandom(); 

      end else begin 

        do 

          data[i] = data[i-1] + $urandom(); 

        while( data[i] < data[i-1] ) 

      end 

    end 

  endfunction 

endclass  

Here, instead of solving the data array during 
randomization. a simple procedural foreach loop iterates 
through each entry and generates a simple random value.  This 
can be less work for a randomization engine and run faster.  
When moving randomization of specific variables like this to a 
post_randomize() function, make sure to also remove the rand 
keyword for the variable itself – it is no longer needed.   

Note, in the code above, some additional logic was needed 
to account for overflow when adding the result of data[i-1] and 
$urandom. Generally, post_randomize()  procedural code will 
be similar to the original constraint code, though it may be 
necessary to add additional code such as was done here. 

D. Reduce complex math in constraint expressions 

The process of finding a valid result in the constraint solver 
can be an iterative process where constraint expressions are 
evaluated multiple times.  In classes that are randomized 
frequently, this can result in complex expressions being 
calculated many, many times.  Consider the following code: 

class item extends uvm_sequence_item; 

   rand int x_pos[512], y_pos[512]; 

   int y_offset, var_a, var_b. var_c; 

   constraint position_c { 

   foreach( x_pos[i] ) { 

     x_pos[i]==((12*(y_pos[i] + y_offset)* 

                (var_a * var_c)) /var_b) - 

                ((var_a * var_b) /var_c); 

   } 

  } 

endclass 

In the above code, as we both iterate through the foreach 
constraint block and also iterate through each expression one or 
more times, we are causing the randomization engine to 

calculate expressions with a number of complex expressions 
such as multiplies or divides.   By rewriting the expression as 
well as adding some temporary variables, we can reduce the 
complexity of the expressions. The reduced complexities in the 
constraint expressions can result in less work for the constraint 
solver during each randomize call.  A simple rewrite could 
look like: 

class item extends uvm_sequence_item; 

   rand int x_pos[512], y_pos[512]; 

   int y_offset, var_a, var_b. var_c; 

   int tmp1, tmp2; 

   function void pre_randomize(); 

     tmp1 = 12 * (var_a * var_c)/var_b; 

     tmp2 = ((var_a * var_b) /var_c); 

    endfunction 

 

    constraint position_c { 

     x_pos[i]==((tmp1*(y_pos[i]+y_offset)) 

                              - tmp2; 

     }  

In the rewritten code, we were able to introduce two 
temporary variables that simplified the math in the constraint 
expression.  Now, much of the complex math is computed 
prior to randomization through the use of a pre_randomize() 
call.  Note, that in this case we were not able to remove all the 
complex math, but only reduce it. 

III.  CODING TECHNIQUES FOR MEMORY USAGE 

Runtime performance is not the only measurement of 
compute resources.  Memory usage is another important aspect 
to consider.  Simultaneously randomizing large numbers of 
variables, especially where there are complex relationships 
between those variables can result in more memory being 
consumed as the randomization engine accounts for all the 
variables.  Consider the following code: 

class address_table extends uvm_object; 

  rand int unsigned address[]; 

  int unsigned address_max; 

  constraint table_values { 

    address.size() == 250; 

    foreach( address[i] ) { 

      if( i != 0 ) { 

        address[i] > address[i-1]; 

      } 

      address[i] < address_max; 

      // Other address[i] constraints 

    } 

  }  

endclass  



In the above code, there are a large number of simultaneous 
variables to solve for.  This was discussed earlier in the paper 
in greater depth.   As the size of the randomization problem 
grows, the memory required to solve it grows.  The best 
approach to reducing memory is to simplify the problem and 
reducing the number of variables linked together.  However, if 
that is not possible, consider solving it in post_randomize or 
perhaps solving it in smaller increments. 

IV. CODING TECHNIQUES FOR PRODUCTIVITY 

Writing constraints that are easy to maintain and debug is 
as important as writing constraints that run fast.  As many 
UVM environments have grown, so too have the constraints 
that are in them.  Many users have found that as their constraint 
code has grown larger, managing that code and debugging 
problems has become more difficult.  There are several 
techniques we can use to help manage this complexity. 

A. Constraint organization for re-use & ease of maintenance 

One of the first steps in managing constraint complexity to 
follow a structured approach for organizing constraint code.  
Item classes generally have a limited number of random 
variables and constraints.  Configuration classes are often 
larger, have more variables, and a larger number of constraints.  
The larger the classes and the randomization problem, the more 
organization can help. 

1) Develop a consistent approach for organization of 
ranfom variables and constraint code. 

The code developed for verification environments will 
likely by read, and often debugged, by engineers other than the 
original author.  With that in mind, it is important to develop 
easy to read and maintain constraint code.  An easy way to start 
that process is to follow a consistent format for the 
organization of random variables and constraints. 

The authors have found it useful to organize your class 
structure so that random variables are grouped together and are 
separate from the constraints.  Another common approach is to 
place random variables together, just prior to their use in 
constraint blocks.  The most important thing here is to adopt a 
style and be consistent. 

As classes grow larger, external constraint blocks can also 
help to preserve the readability of the class definition by 
separating the constraint names from the constraint code. 

If the constraint code is subject to churn from project to 
project, but the variables remain the same, consider placing the 
constraint code into a separate file that is `included.  This helps 
preserve the consistency of the random variables and 
supporting functionality but allows for easy migration of 
constraints as you switch projects. 

2) Organize your constraints into multiple constraint 
blocks 

Instead of writing one large constraint block for a class, 
create multiple smaller constraint blocks with descriptive 
names.  In each constraint block place only those constraints 
needed to enforce a specific condition, mode, or rule.  This will 
allow for easier, long term maintenance of the class – 

especially when the maintenance is done by a team of 
engineers.  For example, this could look like: 

class device_config extends uvm_object; 

  rand mode_type mode; 

  rand int max_size; 

  rand int num_channels; 

  rand bit retry_allowed; 

 

  rand channel_config channels[]; 

 

  constraint half_mode_defaults { 

    if( mode == HALF ) { 

      max_size == 1024; 

      num_channels = 2; 

      retry_allowed = 1; 

    } 

  } 

  constraint full_mode_defaults { 

    if( mode == FULL ) { 

      max_size == 512; 

      num_channels = 4; 

      retry_allowed = 0; 

    }   

  } 

  constraint channel_defaults { 

    channels.size() == num_channels; 

    foreach(channels[i]) { 
       channels[i].max_size == 

             local::max_size; 

       channels[i].retry_allowed == 

             local::retry_allowed; 

     }   

  } 
 

endclass  

Splitting your constraints into well defined, and named, 
constraint blocks also makes it easier to use inheritance to 
redefine constraint blocks or to create new constraint blocks to 
augment the existing ones. 

3) Break constraints into multiple classes 
Create configuration objects for the different blocks in the 

design.  Each of those configuration objects should contain 
only the random variables and constraints needed for that 
block.  Create a single device level configuration object that 
creates each block level configuration.  At this level, you can 
choose to randomize the block level objections concurrently.  



If you randomize them concurrently, you could add constraints 
that span across the different blocks.  An example of this 
approach was seen in the prior section.   

You could also randomize the block level objects 
sequentially.  Randomizing them sequentially would involve 
randomizing some device level parameters as random variables 
and then randomizing the each block’s configuration object 
individually in post_randomize().  This could look like: 

class device_config extends uvm_object; 

  rand mode_type mode; 

  rand int max_size; 

  rand int num_channels; 

  rand bit retry_allowed; 

 

  channel_config channels[]; 

   

  constraint half_mode_defaults {/*…*/} 

  constraint full_mode_defaults {/*…*/} 

 

  function void post_randomize(); 

    channels = new[num_channels]; 

    foreach( channels[i] ) begin 

      channel[i] = 

channel_config::type_id::create(/*name*/, 

                                      this); 

      if( !channels[i].randomize() with { 

        channels[i].max_size == 

             local::max_size; 

        channels[i].retry_allowed == 

             local::retry_allowed; 

      } ) else 

      `uvm_error(“device_config”, 

                   ”randomize failed”) 

    end 

  endfunction 

endclass  

Regardless of which approach is chosen it will help in  
managing the constraint code.  Either approach can provide for 
an easy transition between block, device, and system level 
testing. 

B. Use macros to replace repetitive code 

The UVM library uses macros to replace repetitive coding 
and make it easier for code writers (and code readers).  In 
situations where you have repetitive constraint code, consider 
doing the same thing.  Macros could range in complexity from 
one or two constraints to an entire constraint block. 

Using user defined macros native to a configuration file can 
also reduce constraint complexity.  For instance, when a range 
of random variables may be either positive or negative, but the 
results of multiples of those values can’t be greater than the 
sum of the absolute value of those numbers, a macro may be of 
use to simplify the constraint equation, cutting down the 
number of evaluations in that constraint block, for instance: 

constraint macro_example {  

  x inside {[-50:50]};  

  y inside {[-50:50]};  

  max_value inside {[0:100]}; 

 

  if(x < 0 && y < 0 ) –x-y <= max_value; 

  if(x > 0 && y < 0 )  x-y <= max_value; 

  if(x < 0 && y > 0 )  y-x <= max_value; 

  if(x > 0 && y > 0 )  x+y <= max_value; 

}  

Could become much simplified if a absolute value (ABS) 
macro is created. 

`define ABS(value) (((value) < 0) ? \ 

      (-(value)) : (value))  

The macro_example above now becomes: 

constraint_macro_example {  

  x inside {[-50:50]};  

  y inside {[-50:50]};  

  max_value inside {[ 0:100 ]}; 

  `ABS(x) + `ABS(y) <= max_value; 

}  

C. Avoid modifying random fields manually after 
randomization 

When developing randomized classes, it’s important to 
think about the engineers that will need to use our code.  A 
common temptation is to randomize a class and then external 
to the class manually tweak one or two variables to obtain 
some specific result.  This can make it difficult for consumers 
of our code to understand just what we’re attempting to do.  A 
good rule is to limit any updates to random variables to the 
class itself.  Instead of manually changing the value use a 
“randomize() with {}”  call or even understand the condition 
and create constraints in the class itself to allow the condition 
to naturally happen.  The key here is to let the constraint solver 
do the work for you and break the constraints into parts that 
make sense such that there isn’t the need or temptation to set 
the random variable manually.  

D. Create standalone environments to prototype and test 
constraints 

Our complex constraint classes are just one part of a large 
UVM environment.  The scale of the environment can make it 
difficult to quickly prototype new ideas or to run a large 



number of randomize calls on our class.  For larger and more 
complex classes, it is a good idea to create a small, stand alone 
environment for just this class.  Creating these standalone 
environments early in the process often only takes a few 
minutes.  For this modest investment, you can save significant 
time as you introduce new ideas.    

Creating a stand-alone environment also allows you to run 
a large number of randomize calls in succession.  By doing 
this, you can get a good sense for the performance of the 
randomization in just that class – ignoring other simulation 
impacts.  In an hour of simulation in the full environment, 
perhaps the a test would create 100,000 packets.  In a stand-
alone environment a test could still create 100,000 packets.  
However, in this instance, you would be able to observe only 
the time required for the randomization to complete.  With that 
information you can then experiment with your code and try 
various optimizations.   While a simulation profiling tool could 
provide similar information, the simplified environment 
coupled with the shorter run times can allow more efficient 
experimentation. 

E. Record coverage on the random variables on your class 

It can be enlightening to record coverage on the random 
variables in your classes.  As these classes grow, and the 
constraints become more and more complex, there are often 
unintended consequences to constraint space.  A condition that 
you may expect to happen very frequently may almost never 
happen, or perhaps never even happen at all.  By adding 
covergroups to your randomized classes, you’re able to see the 
distribution of how the different random variables are selected.  
Simply trigger the covergroup’s sample method from 
post_randomize() to get a count from each randomize call. 

If you collect coverage on classes for which you have 
standalone environments, you can quickly create large numbers 
of items and get a very good understanding of how your class 
will react in your larger environment 

V. SUMMARY  

Developing UVM environments with randomization code 
that both runs fast and is easy to maintain is very important.  
As times the problem may seem daunting and perhaps even 
mysterious.  By following some straightforward rules, we can 
open the door to much high performance constraints that are 
indeed easy to maintain.   

To improve simulation performance, the key concepts are:  

• Selectively apply solve…before 

• Carefully use foreach 

• Use pre/post_randomize to reduce complexity 

• Reduce the complexity of expressions used in 
constraints. 

To improve productivity, the key concepts are:  

• Use consistent practices for organizing randomization 
code 

• Use macros to simplify and replace repetitive code 

• Avoid modifying random variables manually 

• Develop standalone environments for testing complex 
constraint code 

• Record coverage on random values 

As you write your own constraints, we invite you to try 
these approaches.  More importantly though, we encourage you 
to experiment with your own code and grow in your 
confidence with randomization and writing constraints 

VI. 6 ACKNOWLEDGEMENTS 

The authors would like to thank the IBM Cores team for 
input to and use of the suggestions in this paper and the 
Cadence randomization team for guidance as we have worked 
through optimizing constraint code. 

 


