
Unconstrained UVM SystemVerilog
Performance

You may add your company logo to this page, ONLY

Presented by
Wes Queen

Verifcation Manager
IBM

Sponsored By:

2 of 15

Randomization Performance is
Important!
• Randomization is an integral part of UVM

– It is used most often in configuring the environment and
in writing sequences

• A typical UVM environment can easily contain tens of
thousands of randomize calls.
– Large environments can contain orders of magnitudes

more.
• Writing high performance constraints is not hard, but

requires engineers to think about it.
• Start thinking about randomization performance from the

beginning of the project.

Sponsored By:

3 of 15

Set some reasonable goals for
randomization times
• Understand how constraints are used in the UVM

environment
– Configuration constraints – Test level constraints

• Only randomized a few times in a run
• Medium to very high complexity
• Can afford to run for longer times

– Data Item constraints – data flow
• Used many, many times in a run
• Low to medium complexity
• Needs to be optimized to run very fast. Small performance

differences can greatly impact simulation run times

Sponsored By:

4 of 15

Coding for Speed
• Relationships between variables cause the solver to work

harder. Remove unnecessary relationships.
• Constraint expressions are often invoked many times.

Simplifying expressions lets the solver run faster.
– Move complex math out of constraint code.

class item extends uvm_sequence_item;
rand int x_pos, y_pos;
int y_offset, var_a, var_b. var_c;
constraint position_c {

x_pos ==((12 * (y_pos + y_offset) *
(var_a + var_b)) / var_c) -
((var_a * var_b) /var_c);

}
endclass

Note
the lack

of
“rand”

Sponsored By:

5 of 15

Coding for Speed
• Use solve…before to simplify complex relationships

– Constraints are bi-directional by default.
– We often don’t expect them to be bi-directional.
– Creating an order can greatly reduce the amount of work

needed to solve.
class meal extends uvm_sequence_item;

rand day_t weekday;
rand meal_t lunch;
constraint lunch_choice_c {

(weekday == TUESDAY) -> (lunch != PIZZA);
(weekday == WEDNESDAY) -> (lunch == SOUP);

solve weekday before lunch;
}

endclass

Sponsored By:

6 of 15

Coding for Speed
• Understand the impact of arrays with foreach constraints

– foreach constraints result a new constraint for each loop
• A few lines of foreach code can result in many new constraints

– Especially watch out for foreach constraints that result in
creating new dependencies

class config extends uvm_sequence_item;
rand int table[];
constraint table_values {

table.size() == 50;
foreach(table[i]) {

foreach(table[j]) {
if(i != j)

table[i] != table[j];
}

}
}

endclass

Foreach
better in

procedural

Sponsored By:

7 of 15

Coding for Speed
• Use pre_randomize() and post_randomize() to assign

values procedurally.
• Procedural code is most often less complex than similar

looking constraint expressions
• Particularly useful in reducing the need for foreach

constraints
class config extends uvm_sequence_item;

function void post_randomize();
foreach(table[i]) {
foreach(table[j]) {

if(i != j)
table[i] != table[j];

}
endfunction

endclass

foreach moved
from constraint

block from
previous slide

Sponsored By:

8 of 15

Coding for memory usage
• Speed is not the only measure of randomization

performance.
• Large memory usage can drive slow solver performance.
• Very large memory usage can push 32bit simulations to

64bit mode, resulting in a double performance impact.
• Particular trouble spot - look out for classes randomizing

large tables simultaneously.

Sponsored By:

9 of 15

Coding for productivity
• Organize your classes and constraints for re-use & ease of

maintenance. Break up into units and features or
algorithms
– Crucial for large classes with many complex constraints

• Separate variables from constraint code.
– As UVC’s evolve and grow, a clear separation makes it

easier to upgrade and modify.

Top Level
Constraint

Lower level
constraint

instantiation
and

constraint
blocks

Unit1

Unit1

Algorithm1

Feature1

Sponsored By:

10 of 15

Coding for productivity
• Organize your constraints into multiple constraint blocks

– A single large constraint block is harder for others to
understand & debug.

– Break constraints into blocks based on purpose.
– This also makes it easier when classes are extended and

constraint functionality is augmented or replaced.
class device_config extends uvm_object;

rand mode_type mode;
rand int max_size;

constraint half_mode_defaults {
if(mode == HALF) { max_size == 1024; }

}
constraint full_mode_defaults {

if(mode == FULL) { max_size == 512; }
}

endclass

Sponsored By:

11 of 15

Coding for productivity
• Use macros to replace repetitive code.

– Simplification and readability
constraint_macro_example {
x inside {[-50:50]};
y inside {[-50:50]};
max_value inside {[0:100]};
if(x < 0 && y < 0) –x-y <= max_value;
if(x > 0 && y < 0) x-y <= max_value;
if(x < 0 && y > 0) y-x <= max_value;
if(x > 0 && y > 0) x+y <= max_value;
}

`define ABS(value) (((value) < 0) ? (-(value)) : (value))

constraint_macro_example {
x inside {[-50:50]};
y inside {[-50:50]};
max_value inside {[0:100]};
`ABS(x) + `ABS(y) <= max_value;
}

Same as
above with

simplification
through
macros

Sponsored By:

12 of 15

Coding for productivity
• Avoid modifying random fields manually after randomization

– There is a temptation to hand modify the results of a
randomize call to achieve a specific result.

– It can be difficult for users other than the original
developer to understand what is happening.

– Limit modification of rand variables to constraint
expressions, and pre_/post_randomize calls.

– If it is difficult to achieve a specific result, consider
restructuring the problem – perhaps breaking it into a
number of smaller expressions/

– Let the constraint solver do the work for you!

Sponsored By:

13 of 15

Coding for productivity
• Build stand alone environments to test classes with complex

randomization.
• These environments can often be built in just a few

minutes.
• They make it easier to:

– Compile, build, and simulate
– Prototype new code and try new experiments quickly
– Run many more iterations than in a regular test

• These standalone environments can be placed in a
regression suite to catch inadvertent errors caused by code
changes.

Sponsored By:

14 of 15

Thank You!
• Developing fast, easy to work with randomization code in

UVM environments is critical.
• By following simple rules, this is a straightforward process.

• Special thanks to the IBM Cores team for ideas,
suggestions, and real world examples that have tested
these concepts.

	Unconstrained UVM SystemVerilog Performance
	Randomization Performance is Important!
	Set some reasonable goals for randomization times
	Coding for Speed
	Coding for Speed
	Coding for Speed
	Coding for Speed
	Coding for memory usage
	Coding for productivity
	Coding for productivity
	Coding for productivity
	Coding for productivity
	Coding for productivity
	Thank You!

