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Randomization Performance is 
Important!
• Randomization is an integral part of UVM

– It is used most often in configuring the environment and 
in writing sequences

• A typical UVM environment can easily contain tens of 
thousands of randomize calls.
– Large environments can contain orders of magnitudes 

more.
• Writing high performance constraints is not hard, but 

requires engineers to think about it.
• Start thinking about randomization performance from the 

beginning of the project.
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Set some reasonable goals for 
randomization times
• Understand how constraints are used in the UVM 

environment
– Configuration constraints – Test level constraints

• Only randomized a few times in a run
• Medium to very high complexity
• Can afford to run for longer times

– Data Item constraints – data flow
• Used many, many times in a run
• Low to medium complexity
• Needs to be optimized to run very fast.  Small performance 

differences can greatly impact simulation run times
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Coding for Speed
• Relationships between variables cause the solver to work 

harder.  Remove unnecessary relationships.
• Constraint expressions are often invoked many times.  

Simplifying expressions lets the solver run faster.  
– Move complex math out of constraint code.

class item extends uvm_sequence_item;
rand int x_pos, y_pos;
int y_offset, var_a, var_b. var_c;
constraint position_c {

x_pos ==( (12 * (y_pos + y_offset) * 
(var_a + var_b) ) / var_c) -
( (var_a * var_b) /var_c);

}
endclass

Note 
the lack 

of 
“rand”
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Coding for Speed
• Use solve…before to simplify complex relationships

– Constraints are bi-directional by default.  
– We often don’t expect them to be bi-directional.
– Creating an order can greatly reduce the amount of work 

needed to solve.
class meal extends uvm_sequence_item;

rand day_t weekday;
rand meal_t lunch;
constraint lunch_choice_c {

(weekday == TUESDAY) -> (lunch != PIZZA);
(weekday == WEDNESDAY ) -> (lunch == SOUP);

solve weekday before lunch;
}

endclass
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Coding for Speed
• Understand the impact of arrays with foreach constraints

– foreach constraints result a new constraint for each loop
• A few lines of foreach code can result in many new constraints

– Especially watch out for foreach constraints that result in 
creating new dependencies

class config extends uvm_sequence_item;
rand int table[];
constraint table_values {

table.size() == 50;
foreach( table[i] ) {

foreach( table[j] ) {
if( i != j )

table[i] != table[j];
}

}
} 

endclass

Foreach 
better in 

procedural
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Coding for Speed
• Use pre_randomize() and post_randomize() to assign 

values procedurally.
• Procedural code is most often less complex than similar 

looking constraint expressions
• Particularly useful in reducing the need for foreach 

constraints
class config extends uvm_sequence_item;

function void post_randomize();
foreach( table[i] ) {
foreach( table[j] ) {

if( i != j )
table[i] != table[j];

}    
endfunction

endclass

foreach moved 
from constraint 

block from 
previous slide
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Coding for memory usage
• Speed is not the only measure of randomization 

performance.
• Large memory usage can drive slow solver performance.
• Very large memory usage can push 32bit simulations to 

64bit mode, resulting in a double performance impact.
• Particular trouble spot - look out for classes randomizing 

large tables simultaneously.
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Coding for productivity
• Organize your classes and constraints for re-use & ease of 

maintenance.  Break up into units and features or 
algorithms
– Crucial for large classes with many complex constraints

• Separate variables from constraint code.
– As UVC’s evolve and grow, a clear separation makes it 

easier to upgrade and modify.

Top Level
Constraint

Lower level 
constraint 

instantiation 
and 

constraint 
blocks

Unit1

Unit1

Algorithm1

Feature1
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Coding for productivity
• Organize your constraints into multiple constraint blocks

– A single large constraint block is harder for others to 
understand & debug.

– Break constraints into blocks based on purpose.
– This also makes it easier when classes are extended and 

constraint functionality is augmented or replaced.
class device_config extends uvm_object;

rand mode_type mode;
rand int max_size;

constraint half_mode_defaults {
if( mode == HALF ) { max_size == 1024; }

}
constraint full_mode_defaults {

if( mode == FULL ) { max_size == 512; }  
}

endclass
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Coding for productivity
• Use macros to replace repetitive code.

– Simplification and readability
constraint_macro_example { 
x inside {[-50:50]}; 
y inside {[-50:50]}; 
max_value inside {[ 0:100 ]};
if(x < 0 && y < 0 ) –x-y <= max_value;
if(x > 0 && y < 0 )  x-y <= max_value;
if(x < 0 && y > 0 )  y-x <= max_value;
if(x > 0 && y > 0 )  x+y <= max_value;
}

`define ABS(value) (((value) < 0) ? (-(value)) : (value))

constraint_macro_example { 
x inside {[-50:50]}; 
y inside {[-50:50]}; 
max_value inside {[ 0:100 ]};
`ABS(x) + `ABS(y) <= max_value;
}

Same  as 
above with 

simplification 
through 
macros
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Coding for productivity
• Avoid modifying random fields manually after randomization

– There is a temptation to hand modify the results of a 
randomize call to achieve a specific result.

– It can be difficult for users other than the original 
developer to understand what is happening.

– Limit modification of rand variables to constraint 
expressions, and pre_/post_randomize calls.

– If it is difficult to achieve a specific result, consider 
restructuring the problem – perhaps breaking it into a 
number of smaller expressions/

– Let the constraint solver do the work for you!
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Coding for productivity
• Build stand alone environments to test classes with complex 

randomization. 
• These environments can often be built in just a few 

minutes.
• They make it easier to:

– Compile, build, and simulate
– Prototype new code and try new experiments quickly
– Run many more iterations than in a regular test

• These standalone environments can be placed in a 
regression suite to catch inadvertent errors caused by code 
changes.
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Thank You!
• Developing fast, easy to work with randomization code in 

UVM environments is critical.
• By following simple rules, this is a straightforward process.

• Special thanks to the IBM Cores team for ideas, 
suggestions, and real world examples that have tested 
these concepts.
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