DESIGHN aAMD VERIFICATIOMN™

COMNFERENCE AMD EXHIBITIHOMN

Ultimate Shift Left: Unleash the
Power of UVM Virtual LAB
Methodology upon SoC Verification

Roman Wang
Advanced Micro Devices, Inc. Shanghai, China

AMD

DESIGHN aAMD VERIFICATIOMN™

DVEDN 1. Abstract

The project execution schedule is the one of the important factors for a project
to be successful in the market. The challenges of SoC verification execution
typically come from the complexity of design and flow, stability of the database,
resources, reuse, simulation performance, debugging turnaround time, and so
on. Therefore, how to meet the schedule with high verification quality is always
Important for verification engineers.

In this paper, we promote a new practical Universal Verification Methodology
(UVM) virtual laboratory(vLAB) methodology to address these challenges. It
supports the requirements of reusability, scalability, and flexibility. Powered by
it, the IP/SoC verification teams gain great benefits from finding issue, reporting
for fix early and quick bring up. It has been widely adopted in many SoC
projects for more than two years, and has successfully demonstrated a ‘shift
left’ to pull in schedules with high quality.

DESIGHN aAMD VERIFICATIOMN™

BVETIN 2. The Challenges

 Complexity of the SoC design, environment, and flow.

e Stability of the SoC database.

* |P integration has semi-pipeline rule in the SoC.

* Lots of integration re-spins between the IP and the SoC.
* The bring-up of IP verification works as the serial mode in the SoC.
e Simulation performance and debugging turnaround time.

Combo Whacker (CW) is a sub-system verification environment
based on SoC database.

DESIGHN aAMD VERIFICATIOMN™

~~~~~~~~~~~~~~~~~~~~ 3. Question Ourselves

 How to decouple the verification complexity?
 How to reduce the verification dependency?
 How to bring up verification environment in parallel?

* How to reuse design verification (DV) stimulus and test benches
without any change?

 How to reduce or eliminate the re-spins because of the reuse?

How can we do things a little earlier and better?




2018

DESIGHN aAMD VERIFICATIOMN™

DVCOIN

COMNFERENCE AMD EXHIBITIHOMN

4. Brainstorming

|
|
|
|
|
\

________________ -
Mother Board {Portable & Generic IP CWTB)
=SATA P Card LISE IFP Card
(ETL or Shell) I (ETL or Shell) l
[ BIND{SoCKet) | [ BIND{SOCKet) | [ BIND{SOCKet) |
I
I
SolC Card Vitual Lab Other I[P Card
(RTL or Shell) Card (RTL or Shell) .
l Knobs in CFG

Sheil is"Card Remove® RTL 1s"Card fnsert”

I Indicates the verification proparfies reuse




DESIGHN aAMD VERIFICATIOMN™

DY e 5. UVM Virtual Lab Solution

* The virtual Lab (VLAB) architecture is looking like a complex laboratory
which is a highly configurable, scalable UVM framework.

* |t contains several different types of UVM Verification IP (VIP), reusable
pase testbench and generic UVM abstract layering.

* |t defines different bring up modes to boost verification schedule.

* |t is also powered by our UVM verification solution library to handle the
shared verification challenges across multiple IPs and SoCs.

o A




. 6. The Concept of Plug-Play

EEEEEEEEEEEEEEEEEEEEE

Verification Point of View

1 Mother board (the SoC level Verification
database and flow).

Design Point of View
1 Motherboard (SoC RTL database),

daught.er cards (IPs). | 1 Daughter cards (the IP level UVM

-/ Configure the IP as RTL view to environment, including Testbench, Register
represent plug-in design under test Abstract Model (RAL), UVM memory model,
(DUT). sequence, test, etc.).

- Configurel the IP as Shell view to ] Daughter cards are attached on DUT via
el [DIUE-OUL DN System Verilog interface binds methodology.

-/ The shell should drive lower 1 Configure daughter cards as passive
strength value by default to avoid the mode to represent the plug-out.

X propagation. The UVM VIP will Confi Daught q 6 q
drive the port of shell in the testbench. 0 Eenuguire LB e cards as active mode
to represent the plug-in.




2018

DESIGHN aAMD VERIFICATIOMN™

SAATIN /. The UVM vLAB Bring Up Modes

JdvLAB Upper Link Mode
It's intent to bring up the upper layer DUT
complex data path where the IP is attached
on.

JdvLAB IP Present Mode
It's intent to bring up the IP itself DE/DV

guality in SOC. Especially for different

connection between IP standalone and SOC.

JvLAB Full Link Mode

RRRRR

It's intent to bring up full data path including

upper DUT complex & IP (SATA, USB3,etc.) .
It’s out final goal!




DESIGHN aAMD VERIFICATIOMN™

~~~~~~~~~~~~~~~~~~~~ 8. Virtual Prototyping and New Modes

To make good use of the time window between the IP- and SoC-level
verification, we create several virtual UVM models to support Virtual CW
Prototyping and qualify the IP2SoC reuse earlier.

JdvLAB IP Virtual Full Link Mode

It's only intent to qualify the vLAB framework
and IP environment/binds/sequence/test
reuse in vCW platform.

dvLAB SoC Virtual Full Link Mode

When the SoC database is ready and the
upper layer design complex is not fully
functional, replace the DUT with vLAB virtual
UVM models.

2018

DESIGHN aAMD VERIFICATIOMN™

DV

COMNFERENCE AMD EXHIBITIHOMN

9. The UVM vLAB Methodology
Execution Workflow in Real Projects

- s i
IP Development |ucw Development | SoC CW Development
. Phase \. Phase \ Phase

“Soc Database CW”

“Virtual CW (vCW)”

\
| g = == o = = = >
| | %R wLAB Complex 1' | %M wLAB Complex 1' |

_____ | 50C Startup CW Stage | : | : |
R “] | pm———— — || S0C Database ﬂ' S0C Database |
! \ | == |
g L wLAE C omplex h : | 0 s Compie | | a1| | a1| y
! IF1 Er / IP1.. % Env |
_ Iy _ Iy — __
UM vL&B C omplex ‘l (=1 I \ | S0C Database | V| branch l 4 branch | |
1 mainline |] | J \ J \ J
d \ et ANl AT T ___=C — i
. _‘-f
_respin - |
o main
IF'“I_ E_rw R | branching _
fnainling e | | branching
[P= Enw | branching
IP% Eny ""teg"ate"% mainling]
_ mainline '#i“‘wespln—-—_#‘_ —_——

2018

DESIGHN aAMD VERIFICATIOMN™

vl 10. Scalable vLAB UVM Abstract Layering

" UWM Libraries Accellera "

UVM Verfication
Solution Library

k]
e i P

vLAB Smoke Tedts Suite
vL&H Basze Test |

I
I
\

System Tests Suite |
s, s s s s s s s s s e S s s S S S S S S s s s s s
; CWLEVEL — N
i H
H L]
i [C"ICFG — [IP CV¥ Test Base :
& T J'
— ity = [i—— = i i— — I]I;' M—— ':'"“""_ — —
| ™
LA IP TOP Test Basze
Top IF Env CFG P [;ysiem Memory Purﬁ;\rl
| Sub Blockl Test Sub Block? Test Systemn Memory |
Base Base \I E xport
s T Syztem Mem ory
| IP Enw CFG IP EnwCFG Il ool |
Haost T | Latency Model |
mUYC CFG mUYC CFG -
Unigue Mem ory
| = Flattzn Slave Sequence |
iU%C CFGs
LG EIFE ME M Hriok s
| 52
mUYC CFG |
IP Top RAL Block
Flaﬂen SWS SE&T Concurrent run
| iUWC CFGs Flatten S¥<S Test suites | Blk1 R AL Block |
L] R euse S&T Tests) |
[Blkz RALBlock |
[Blkn RALBlock |
Reused IP LEVEL Flatien SY5 |
I Rl Adapter

2018

DESIGHN aAMD VERIFICATIOMN™

DV

COMNFERENCE AMD EXHIBITIHOMN

. f2
11. Conclusions !

“/ »r &
Al \

_/1"

» Successfully deployed in multiple SoC projects for 3+years, and has
been successful in achieving a ‘shift left’ to pull in projects’ schedules.

Projects/IP New SoC (First adoption) 15t derived SoC 20d derived SoC
IP1 Tune 15t sanity pass Tune 15t sanity pass Tune 15t sanity pass
vLAB > 4 weeks 2 weeks 1 week
(@ project phase two (@ project phase two (@ project phase two
Regression Regression pass rate > 80% Regression pass rate > 80% Regression pass rate> 80%
> 4 weeks after sanity pass 2 weeks after sanity pass 1 week after sanity pass
IP2 Tune 15t sanity pass Tune 15t sanity pass Tune 15t sanity pass
without =5 weeks 3~4 weeks 2~3 weeks
vLAB (@ project phase three (@ project phase three (@ project phase three
Regression Regression pass rate > 80% Regression pass rate > 80% | Regression pass rate > 80%
> 6 weeks after sanity pass 4~5 weeks after sanity pass | 3~4 weeks after sanity pass

roman.wang@amd.com

	Ultimate Shift Left: Unleash the Power of UVM Virtual LAB Methodology upon SoC Verification
	1. Abstract
	2. The Challenges
	3. Question Ourselves
	4. Brainstorming
	5. UVM Virtual Lab Solution
	6. The Concept of Plug-Play
	7. The UVM vLAB Bring Up Modes
	8. Virtual Prototyping and New Modes
	9. The UVM vLAB Methodology �Execution Workflow in Real Projects
	10. Scalable vLAB UVM Abstract Layering
	11. Conclusions

