
UCIS APPLICATIONS: IMPROVING VERIFICATION PRODUCTIVITY,

SIMULATION THROUGHPUT, AND COVERAGE CLOSURE PROCESS

Ahmed Yehia

Mentor Graphics Corp.

Cairo, Egypt

ahmed_yehia@mentor.com

ABSTRACT

Given today‟s design sizes and complexities, complex

verification environments are built to ensure high levels of

quality, reliability, and stability are maintained in the DUV

(Design Under Verification) before tape out. Yet, this

challenges the ability to analyze and track the huge amount of

data generated from today‟s verification environments and

manage the underlying resources. Vast amounts of simulation

and coverage data (due to huge regressions runs and long

simulation cycles) need to be analyzed and tracked to help

answer the important verification questions “Does it work?”,

“Am I done?”, “What am I missing to get things done?”,

“How can I improve my productivity?”

The Accellera‟s Unified Coverage Interoperability

Standard (UCIS) is a new, open, and industry-standard API

just released in June 2012. It promises to facilitate and

improve on verification productivity. It provides an

application-programming interface (API) that enables sharing

of coverage data across multiple tools from multiple vendors

[1].

In this paper, we present several generic UCIS

applications that can be easily developed and deployed to help

improve the verification productivity, simulation throughput,

coverage analysis, and coverage closure process.

1. INTRODUCTION

The increasing size and complexities of today‟s designs

introduce many challenges to the verification goals, tasks, and

process that result in a noticeable increase in the effort spent

on verification, and has forced the necessity to increase the

industries adoption of various new functional verification

techniques [2]. Typical verification environments encompass

automation, coverage-driven constrained random verification,

assertion-based verification, and transaction level modeling,

while sophisticated verification environments may include

formal verification, analog-digital mixed signal verification,

and software-hardware co-simulation.

Indeed, many verification technologies and

methodologies adopted by the industry have succeeded in

improving the verification process in general, yet many

verification challenges still exist in managing the verification

process, writing/maintaining tests, time to debug, reaching

coverage closure, and tracking project momentum smoothly.

The Accellera UCIS committee has released the Unified

Coverage Interoperability Standard (UCIS) as an open and

industry-standard API that promises to facilitate and improve

verification productivity, and with an ultimate goal to allow

interoperability of verification metrics across different tools

from multiple vendors.

In this paper, we show how UCIS can help ease some of

today‟s verification challenges, especially:

 Tests and testbench quality improvement.

 Simulation and regression throughput.

 Analysis of verification metrics.

 Coverage closure process.

 Project tracking.

2. UNIFIED COVERAGE INTEROPERABILITY

STANDARD (UCIS) OVERVIEW

The Accellera‟s Unified Coverage Interoperability Standard

(UCIS) is an open and industry-standard API that promises to

facilitate and improve on verification productivity. It provides

an Application-Programming Interface (API) that enables the

sharing of coverage data across software simulators, hardware

accelerators, symbolic simulations, formal tools or custom

verification tools [1]. The Accellera UCIS committee was

formed in November 2006, many companies joined and

contributed to the committee including EDA vendors and user

representatives from the largest companies in the industry.

Mentor Graphics donated its UCDB (Unified Coverage

DataBase) technology in June 2008 as a starting point of the

UCIS standard. The UCIS 1.0 standard was released in June

2012.

UCIS defines a coverage database (UCISDB) as a single

repository of all coverage data from all verification processes

(e.g. Functional and Code Coverage, Formal Verification,

Assertion Based Verification, Emulation, verification plan

goals and objectives, user-defined coverage, etc.). The two

main structures that form a UCISDB are:

 Scope: A hierarchical node that stores hierarchical

design structure. A scope can have children scopes

or coveritems.

 Coveritem: Holds actual counts of recorded events.

A coveritem is a leaf construct; it cannot have

children, and is essentially an informational wrapper

around an integral count.

Figure 1. The UCISDB

Focusing on functional coverage1 in this paper, and

taking the IEEE SystemVerilog [3] language as a vehicle, a

SystemVerilog Covergroup2 would be represented in a

UCISDB as a scope which has a parent scope (design unit

enclosing the Covergroup), and child scopes (Coverpoints3

and Crosses4). Coverpoints and Crosses are scopes that

contain leaf nodes Bins5 that in turn are represented as

coveritems in a UCISDB.

The UCIS also defines specialized history nodes to

describe primary coverage in a UCISDB like a Test Record.

The test record specialization is a history node with which

coverage counts may be associated. This provides a great

value in attributing coverage numbers achieved to individual

tests in regression run, which would help in merging, ranking

of coverage data while assessing and improving the quality of

tests.

The UCIS defines data structures and API functions,

which are a group of C language [4] data structures and

functions that enable access and manipulation of data inside a

1 The terms “functional coverage” and “coverage” are used

interchangeably in the paper to describe DUV functional

coverage.
2 A Covergroup is a construct that encapsulates the specification of a

coverage model. It may contain coverpoints, crosses, and options.
3 A Coverpoint specifies an integral expression to be covered.
4 Specifies the cross coverage between two or more Coverpoints.
5 Each coverage point includes a set of bins associated with its

sampled values or its value transitions.

UCISDB. Once a UCISDB has been generated to hold

coverage data, the UCIS API would enable opening and

closing a UCISDB, navigating scopes, extraction, and

manipulation of data inside a UCISDB. Out of the entire

UCIS API (approximately 110 routines), we will focus on the

API of interest that supports the UCIS applications presented

in this paper.

 ucis_Open(): Creates an in-memory database,

optionally populating it from a specified UCIS file.

Returns a database handle.

 ucis_Close(): Invalidates the specified database

handle and frees all memory associated with the

handle.

 ucis_MatchScopeByUniqueID(): Finds a single

scope in an in-memory database by its Unique ID.

The unique ID string may be the full or relative

form.

 ucis_GetScopeType(): Returns the scope type of the

specified scope.

 ucis_ScopeIterate(): Returns an iterator handle used

to scan all scopes below the specified starting scope.

 ucis_ScopeScan(): Returns next scope handle in a

specified iterator handle.

 ucis_CoverIterate(): Returns an iterator handle used

to scan all coveritems below the specified starting

scope.

 ucis_CoverScan(): Returns next coveritem handle in

a specified iterator handle.

 ucis_GetCoverData(): Gets name, data and source

information for the specified coveritem.

 ucis_FreeIterator(): Frees an iterator handle.

 ucis_HistoryScan(): Serially scans through the

history nodes of the type selected by the iterator.

 ucis_HistoryIterate(): Returns an iterator handle

used to scan all history nodes below the specified

starting scope.

 ucis_AttrAdd(): Adds the specified attribute

(key/value) to the specified database object or global

attribute list.

 ucis_CallBack(): Traverses the part of the database

rooted at and below the specified starting scope.

 ucis_CreateHistoryNode(): Creates a history node of

the specified kind in the specified database.

In the next sections, we present a variety of UCIS

applications together with testbench examples that can be

deployed either during simulation runtime, or in post-run

mode to help improve verification productivity, simulation

throughput, coverage analysis, and the coverage closure

process. The UCIS applications presented are written in C

language, while testbench examples presented are written in

SystemVerilog language. At the time of writing this paper, all

the major vendors have publicly announced their intent to

support the UCIS API. All the applications presented in this

paper are tested on the Questa© simulator which currently

supports the UCIS API, however due to the standardization of

the UCIS and SystemVerilog, the applications presented

should work on any simulator that supports the standards
6
.

3. UCIS RUNTIME APPLICATIONS

In this section, we present some generic UCIS applications

that can be easily deployed in any project. Making use of the

UCIS API, these applications can be loaded as shared objects

during simulation and be connected to the running

test/testbench to feedback information of interest to the test

controller at runtime. It is also possible to save test/testbench

specific data of interest in a UCISDB generated from a

simulation run for further post-run processing steps. An

abstract summary of benefits and goals of these applications

would be to:

 Maximize simulation throughput.

 On the fly change tests‟ runtime behavior upon

collected coverage analysis.

 Track tests quality.

3.1 Testbench and Tests Preparation

Before presenting the UCIS applications that a regular

test/testbench can make use of, we need to prepare the

test/testbench for this usage. This section describes the

preparations needed.

3.1.1 Linking a Test to its Coverage Goals and Targets

A test is normally written by a verification engineer to fulfill

specific objectives and exercise specific scenarios. Scenarios,

metrics and scopes in the testbench coverage model (inspired

from the verification plan), normally provide in depth

translation of the test/testbench goals and targets. Therefore,

the first step in tracking and maximizing a test quality is to

link the test implementation to its goals and objectives. To

ensure modularity and reuse, this can be achieved by passing

to a test at runtime the scope(s) and scenario(s) in the

coverage model it needs to exercise. This information can be

embedded in dynamically executable documents like the

verification plan document, or the verification environment

scripts holding the tests information.

Many modular ways exist to pass coverage scopes of

interest to a test: (1) automatically generated systemVerilog

files to be included by the test, (2) text file to be read by the

test at runtime, (3) value plusarg passed to the test execution

command line (CLI) as shown below. The example below

shows a test based on UVM [5].

6 Processing the output data of an UCIS API call could differ from

one vendor to another, since data representation inside a UCISDB is

implementation and data dependent, however, the UCIS interface of

a UCISDB should be common across vendors.

As shown above, the test takes the value of the

COVERSCOPES plusarg when passed to the CLI. If a test is

targeting several coverage scopes, one can pass them all

separated by commas to the COVERSCOPES plusarg on the

CLI, the test would then parse the long string provided by the

CLI and populate a list of coverage scopes of interest for ease

of use later on. A test could also be interested in specific

coveritems (bins) in a specific scope; in this case, one could

update the coveritems queue of the coverscopesT to hold the

bin names of interest for a specified scope. The simulation

CLI in this case would be as follows:

3.1.2 Connecting UCIS Applications to HVL Testbench

All High-level verification languages define a way to connect

to foreign programming languages. The SystemVerilog

language defines the Direct Programming Interface (DPI) as

an interface between SystemVerilog and a foreign

programming language. DPI allows direct inter-language

function calls between the languages on either side of the

interface. Specifically, functions implemented in a foreign

language can be called directly from SystemVerilog; such

functions are referred to as imported functions. In our case,

we will import the C language UCIS method, and call it

directly from the SystemVerilog code. When to call the

method is left to the user to define according to runtime

needs.

typedef struct {

 string scope, coverholes;

 string coveritems [];

 real coverage_score;

} coverscopesT;

class test1 extends uvm_test;

 //Coverage scopes of interest queue

 coverscopesT coverscopes [];

 function new(string name,

 uvm_component parent);

 string coverscopes_s, s;

 int cnt, i;

 byte char;

 super.new(name, parent);

 ...

 if ($value$plusargs("COVERSCOPES=%s",

 coverscopes_s)) begin

 while((char=coverscopes_s.getc(cnt++))!=0)

 //Mark coverage scopes separators

 if (char != ",")

 s = {s, string'(char)};

 else begin

 coverscopes[i].scope = s;

 s = "";

 i++;

 end

 if (s != "") coverscopes[i].scope = s; end

 endfunction

endclass

import "DPI-C" function string scanCovScope(

 string dbname, string scopename)

vsim fpu_tb_top +UVM_TESTNAME=test1

 +COVERSCOPES=/19:fpu_agent_pkg/11:fcoverage

In the example above, scanCovScope() is a C function to

be called directly from the SystemVerilog testbench, provided

that the shared library object holding the method

implementation is loaded at runtime.

3.2 Guiding Tests Behavior at Runtime using UCIS

Applications

After getting tests and testbench prepared for using UCIS

applications, in this section we present some applications to

guide test/testbench runtime behavior based on detailed

coverage analysis of the UCISDB.

3.2.1 Monitoring Coverage Score of Scopes of Interest

If a test can monitor and score the dynamically achieved

coverage of its scopes of interest at runtime, then it could take

interesting actions:

 If the achieved coverage of a scope (i.e. test target)

hits its predefined goal, a test would then change the

execution sequence to focus on other targets (if other

targets are not met), or just quit the simulation to

save time and resources when all coverage targets

are met.

 When achieved coverage momentum of a scope

stalls or falls behind a predefined threshold value,

the test can change tactics to focus on the remaining

coverage holes.

A UCIS application to monitor the coverage of specific

scope would be as follows:

In the above code we defined a C function

checkCoverGoalMet(). The C function would take as

arguments the UCISDB file name, as well as the functional

coverage scope name of interest, then returns true if coverage

of the specified scope achieved its predefined goal. The

checkCoverGoalMet() function does the following:

 Loads and populates an existent physical UCISDB

file in memory.

 Finds a matching scope with same name as the

scopename argument and gets a handle for it. If a

“NULL” argument was passed, then the coverage

scoring will be applied to the entire UCISDB which

requires the ucis_CallBack() shown in section 4.2.

 Calculate the current coverage percentage of the

scope of interest using the coverageScore() method

presented below
7
.

 Returns TRUE if coverage goal was met otherwise

returns FALSE.

The SystemVerilog test would then make use of the C

checkCoverGoalMet() method as shown below. In its

run_phase() method:

7 Assuming coverage scope types and option.merge_instances=1.

int checkCoverGoalMet(const char* dbname,

const char* scopename, double* scopecoverscore){

 ucisT db; /*UCIS in-memory DB handle*/

 ucisScopeT scope = NULL;/*UCIS scope handle*/

 int scopecovergoal;

 /*Populate in-memory DB from physical UCISDB*/

 db = ucis_Open(dbname);

 /*Find matching scope by name, get its handle*/

 scope = ucis_MatchScopeByUniqueID(db, NULL,

 scopename);

 *scopecoverscore = coverageScore(db, scope);

 scopecovergoal= ucis_GetIntProperty(db,scope,

 -1, UCIS_INT_SCOPE_GOAL);

 /*Close DB and return list of holes string*/

 ucis_Close(db);

 return(*scopecoverscore*100 >=scopecovergoal);

}

double coverageScore(ucisT db,ucisScopeT scope){

 ucisScopeTypeT scopetype; /*Type of a scope*/

 double total_coverage = 0;

 int weight, total_weight;

 if (scope) {

 /*Determine the type of the found scope*/

 scopetype = ucis_GetScopeType(db, scope);

 if((scopetype == UCIS_COVERPOINT)||

 (scopetype == UCIS_CROSS)){

 /*Coverpoint or a cross scope*/

 total_coverage=coverageScoreCore(db,scope);

 } else if(scopetype == UCIS_COVERGROUP) {

 /*Covergroup scope: Loop on all sub-scopes*/

 ucisScopeT subscope = NULL;

 ucisIteratorT iterator = ucis_ScopeIterate(

 db, scope, -1);

 while(subscope = ucis_ScopeScan(db,

 iterator)){

 weight = ucis_GetIntProperty(db,subscope,

 -1, UCIS_INT_SCOPE_WEIGHT);
 total_coverage += coverageScoreCore(db,

 subscope) * weight;

 total_weight += weight;

 }

 /*Free the iterator handle*/

 ucis_FreeIterator(db, iterator);

 total_coverage = total_weight ?

 total_coverage / total_weight : 0;

 }

 } else {/*NULL scope, score entire UCISDB*/}

 return total_coverage;

}/*coverageScore*/

double coverageScoreCore (ucisT db,

 ucisScopeT scope){

 int coveritems_hit, coveritems_num;

 iterator = ucis_CoverIterate (db, scope,

 UCIS_ALL_BINS);

 while((binindex = ucis_CoverScan (db,

 iterator))!= -1){

 ucis_GetCoverData(db, scope, binindex,

 &binname, &cvdata, &srcinfo);

 if ((cvdata.type == UCIS_ILLEGALBIN) ||

 (cvdata.type == UCIS_IGNOREBIN)) {

 continue;

 }

 coveritems_num++;

 /*If bin is covered. Assume 64-bit UCISDB*/

 if(cvdata.data.int64 >= cvdata.goal){

 coveritems_hit++;

 }

 }

 /*Free the iterator handle*/

 ucis_FreeIterator (db, iterator);

 return (double) coveritems_hit/coveritems_num;

}/*coverageScoreCore*/

 A continuous loop to monitor coverage score of

scopes of interest starts by saving the runtime

coverage data, residing inside the memory allocated

by the simulator, in a UCISDB. The SystemVerilog

language does not provide means to access memory

handles of the coverage information at runtime,

hence the need to use the UCIS API. The

SystemVerilog language defines the

$coverage_save() method to save coverage runtime

information in a database, however the method

specification is limited to code and assertion

coverage types and does not extend to functional

coverage types. The $coverage_save_mti() method

used below is a simulator specific method that can be

considered as a super set of $coverage_save(),

extending the specification to functional coverage

types, and allowing to save coverage information

underneath specific scope of interest.

 When one of the scopes coverage score meets its

predefined goal, a corresponding UVM event is

triggered and propagated to all the testbench

components. Testbench components (i.e. sequencers,

sequences, drivers, etc.) can stop and/or alter

execution of current execution threads and focus on

meeting coverage goals for next targets.

 When all tests‟ targets are met, then there is no need

to continue running the test; terminating the test at

this point would save time and free resources

required for simulation runs.

3.2.2 Inspecting Coverage Momentum and Extracting

Coverage Holes of Scopes of Interest

A test monitoring the coverage momentum of its targets, may

decide to terminate active threads and/or initiate others when

coverage momentum stalls or falls behind a pre-defined

threshold, this indirectly improves simulation throughput.

Another decision would be to fetch remaining coverage holes

(uncovered coveritems) from the coverage model, this would

be useful for other testbench components to re-define the

tactics of sequences execution or even modify the constrained

random data generated of the system transactions to fully

cover the test targets.

The code above shows how a test checks coverage

momentum, i.e. coverage score w.r.t. number of transactions8

generated. When coverage momentum decreases below a

threshold value, the test calls getCoverHoles() to extract a list

of coverage holes of the scope of interest then it triggers a

UVM event to notify all interested testbench components (i.e.

sequences and stimuli generators) that coverage holes of

current scope/target are available. Appendix A shows a

hypothetical example of how stimuli generators can make use

of the extracted coverage holes string to guide the constrained

randomization attempts of the system transactions, on the fly

during runtime, to focus on covering uncovered coveritems.

The implementation of getCoverHoles() is as follows:

8 A transaction is a single transfer of high-level representation of

control or data from random stimuli generator to DUV.

import "DPI-C" function int checkCoverGoalMet

(string dbname, string scopename,

 output real scopecoverscore);

task test1::run_phase(uvm_phase phase);

 uvm_event target_met_e;

 phase.raise_objection (this, "test1");

 fork

 //Coverage score monitor loop

 while (1) begin

 //When no more targets to cover break

 if (i >= coverscopes.size()) break;

 wait_for_next_transaction();

 //Save snapshot of runtime coverage

 assert(!$coverage_save_mti("test1.ucisdb",

 "/fpu_agent_pkg/fcoverage"));

 if (checkCoverGoalMet("test1.ucisdb",

 coverscopes[i].scope,

 coverscopes[i].coverage_score) > 0)

 begin

 //Notify testbench components when

 //specific coverage target is met

 uvm_config_db # (uvm_event)::get (agent,

 "", {coverscopes[i++].scope, "_goalmet"},

 target_met_e);

 target_met_e.trigger();

 end

 end

 //Start main test virtual sequence

 test1_v_seq.start(m_env.m_v_sqr);

 join_any

 phase.drop_objection (this, "test1");

endtask

import "DPI-C" function string getCoverHoles

 (string dbname,

 string scopename);

task test1::run_phase(uvm_phase phase);

 //Coverage monitor loop

 while (1) begin

 assert(!$coverage_save_mti("test1.ucisdb"));

 if (checkCoverGoalMet("test1.ucisdb",

 coverscopes[i].scope,

 coverscopes[i].coverage_score) > 0)

 ...

 else begin

 //compute coverage momentum when coverage

 //goal is not met

 coverage_momentum =

 coverscopes[i].coverage_score /

 num_of_trans;

 if(coverage_momentum < threshold_momentum)

 begin

 coverscopes[i].coverholes =

 getCoverHoles("test1.ucisdb",

 coverscopes[i].scope);

 uvm_config_db # (uvm_event)::get (agent,

 "", {coverscopes[i].scope, "_holes"},

 coverholes_update_e);

 coverholes_update_e.trigger();

 end

 end

 end

endtask

In the above code we defined a C function

getCoverHoles() to return the list of coverage holes in a

scope. The C function would take as arguments the UCISDB

file name, as well as the functional coverage scope name of

interest, then returns a string holding the list of coverage

holes (i.e. uncovered coveritems names) in the given scope.

This list can be fed to testbench components of interest to

focus on generating the uncovered scenarios. The

getCoverHoles function does the following:

 Loads and populates an existent physical UCISDB

file in memory.

 Finds a matching scope with same name as the

scopename argument and gets a handle for it.

 Once a matching scope is found, gets its type.

 If the scope type is a Coverpoint or a Cross, this

means that scope does not contain child scopes and

would only contain coveritems, then it calls the C

function populateHolesList() to loop on all

coveritems (bins) enclosed.

 If the type is a Covergroup, this means that scope

contains child scopes (i.e. Coverpoints and Crosses)

and hence we have to loop on enclosed scopes and

for each call the populateHolesList() function.

 Return the list of coverage holes of the scope as a

string.

The populateHolesList() can implemented be as follows:

As shown above, populateHolesList() takes a scope

handle, database handle, and a reference to the holeslist

string. The function then loops on all bins inside a scope

checking if a bin was covered or not. When not covered, the

bin name is added to the list of coverage holes. Extra coding

may be required to ease the parsing of the returned holeslist

string (e.g. begin of scope flag, scope name/type, reduce

clutter of bin names specially the auto-generated ones to

something more meaningful for stimuli generators, etc.).

3.3 Save Functional and Runtime Attributes of a Test

Beside coverage metrics, a test may want to save specific

functional and/or runtime metrics for future post-run analysis

that would help determine tests quality, cost-benefit with

means for improvement, as well as project momentum and

general trends. Test name, exit status, simulation time, cpu

time, memory footprint, simulation CLI, seed, date, and

username are all examples of runtime metrics. Test

objective(s), coverage targets met/missed, execution paths,

void populateHolesList(ucisT db,

 ucisScopeT scope,

 char** holeslist){

 ...

 /*Add start of scope flag, scope name and type

 to holeslist str*/

 strcat (*holeslist, "%");

 strcat (*holeslist, ucis_GetStringProperty

 (db, scope, -1,UCIS_STR_SCOPE_NAME));

 strcat (*holeslist, ":");

 strcat (*holeslist, scopetypename);

 strcat (*holeslist, ":");

 /*Iterator handle: loop on all enclosed bins*/

 iterator = ucis_CoverIterate (db, scope,

 UCIS_ALL_BINS);

 while((binindex = ucis_CoverScan (db,

 iterator))!= -1){

 ucis_GetCoverData(db, scope, binindex,

 &binname, &cvdata, &srcinfo);

 ...

 /*If bin is not covered.

 Assume 64-bit UCISDB*/

 if (cvdata.data.int64 < cvdata.goal){

 ...

 /*If bin not covered, add to holes list*/

 strcat (*holeslist, binname);

 strcat (*holeslist,"|");/*Bins separator*/

 }

 }

 /*Free the iterator handle*/

 ucis_FreeIterator (db, iterator);

 /*Add end of scope flag to holeslist str*/

 strcat (*holeslist, "%");

}

char* getCoverHoles(const char* dbname,

 const char* scopename){

 ucisT db; /*UCIS in-memory DB handle*/

 ucisScopeT scope = NULL; /*UCIS scope handle*/

 ucisScopeTypeT scopetype; /*Type of a scope*/

 char * holeslist; /*List of holes string*/

 /*Populate in-memory DB from physical UCISDB*/

 db = ucis_Open(dbname);

 /*Find matching scope by name, get its handle*/

 scope = ucis_MatchScopeByUniqueID(db, NULL,

 scopename);

 /*return if required scope is not found*/

 if(scope == NULL){return NULL;}

 /*Determine the type of the found scope*/

 scopetype = ucis_GetScopeType(db, scope);

 if((scopetype == UCIS_COVERPOINT)||

 (scopetype == UCIS_CROSS)){

 /*Coverpoint or a cross scope*/

 populateHolesList (db, scope, &holeslist);

 } else if(scopetype == UCIS_COVERGROUP) {

 /*Covergroup scope: Loop on all sub-scopes*/

 ucisScopeT subscope = NULL;

 ucisIteratorT iterator = ucis_ScopeIterate(

 db, scope, -1);

 while(subscope = ucis_ScopeScan(db,

 iterator)){

 populateHolesList(db,subscope,&holeslist);

 }

 /*Free the iterator handle*/

 ucis_FreeIterator(db, iterator);

 } else {/*Handle other FCOV scopetypes...*/}

 /*Close DB and return list of holes string*/

 ucis_Close(db);

 return holeslist;

}/*getCoverHoles*/

sequences exercised, and user-defined metrics are all

examples of functional metrics. The UCIS defines attributes

as name-value pairs that may be associated with history

nodes, scopes, or coveritems in a UCISDB.

As shown above, before the test exists (in its post-run

phase), a test could save its functional and runtime metrics as

attributes. The code above is an example of saving three

important attributes. The TESTSTATUS attribute holds the

functional pass/fail information of the test, this is important

for regression summary population and faster time to debug.

The COVER_TARGETS_MET attribute is linked to what has

been presented in previous sections of linking a test to its

coverage targets and objectives. A test may pass on the

functional level, but may fail to achieve its coverage targets,

having the information handy and populated easily could help

verification engineer take actions for improvement (e.g.

enhance the test sequence library, restructure testbench, write

more new directed tests, explore benefits of other technologies

like formal verification, graph-based test coverage, etc.). One

could also save the remaining coverage holes for more details

as shown above. The more important functional and runtime

metrics are saved in the UCISDB, the easier the analysis and

tracking of regression runs and coverage closure will be.

Simulators supporting UCIS should save runtime metrics by

default in the UCISDB, allowing verification engineers to

focus on saving tests functional metrics.

The C implementation of the saveAttr() method used by

the test above is shown below. Since the attributes passed to

the method are linked to the test, the method saves them in

the test record. Global attributes can be saved in the UCISDB

if NULL was passed instead of test in the ucis_AttrAdd()

method call below.

4. UCIS POST-RUN APPLICATIONS

After demonstrating UCIS applications at runtime, either to

enhance test quality and performance on the fly, or to help

identify tests unachieved targets for further post-run analysis,

we now present some standalone UCIS applications which

can be used to analyze tests and regression runs status,

achieved coverage and guide the next steps to improve tests

and regression quality and throughput. Applications presented

here require UCISDBs generated prior to simulation run

termination; a test should save a UCISDB holding its run

metrics. Application would be compiled using C compiler

(e.g. gcc) then executed on required UCISDBs.

void saveAttr (const char* dbname,

 const char * key,

 AttrValueT * value){

 ucisT db; /*UCIS in-memory DB handle*/

 ucisAttrValueT value_;

 ucisHistoryNodeT test;

 ucisIteratorT iterator;

 db = ucis_Open(dbname);

 /*Get handle to the test record inside UCISDB*/

 iterator = ucis_HistoryIterate

 (db, NULL, UCIS_HISTORYNODE_TEST);

 while (test = ucis_HistoryScan (db, iterator))

 {

 /*Register the type of the attribute (string,

 int, float, double...)*/

 value_.type = (ucisAttrTypeT) value->type_;

 /*Save the corresponding value of the attr*/

 if (value_.type == UCIS_ATTR_STRING) {

 value_.u.svalue = value->svalue;

 } else if (value_.type == UCIS_ATTR_INT) {

 value_.u.ivalue = value->ivalue;

 } else if((value_.type == UCIS_ATTR_FLOAT) ||

 (value_.type == UCIS_ATTR_DOUBLE)){

 value_.u.dvalue = value->rvalue;

 }

 assert(!ucis_AttrAdd(db,test,-1,

 key,&value_));

 }

 ucis_FreeIterator (db, iterator);

 /*Save UCISDB after adding the new attribute*/

 ucis_Write(db, dbname, NULL, 1, -1);

 ucis_Close(db);

}/*saveAttr*/

typedef enum {

 ATTR_INT,

 ATTR_FLOAT,

 ATTR_DOUBLE,

 ATTR_STRING

} AttrTypeT;

typedef struct {

 AttrTypeT type_; /* Value type */

 int ivalue; /* Integer value */

 real rvalue; /* Real value */

 string svalue; /* String value */

} AttrValueT;

import "DPI-C" function void saveAttr (

 string dbname,

 string key,

 output AttrValueT value);

function void test1::extract_phase(uvm_phase

 phase);

 AttrValueT value;

 value.type_ = ATTR_STRING;

 value.svalue = "PASSED";

 saveAttr("test1.ucisdb", "TESTSTATUS",

 value);

 value.svalue = "YES";

 for (int i=0; i<coverscopes.size(); i++)

 if (checkCoverGoalMet("test1.ucisdb",

 coverscopes[i].scope,

 coverscopes[i].coverage_score) == 0)

 begin

 value.svalue = "NO";

 coverholes ={coverholes,

 getCoverHoles("test1.ucisdb",

 coverscopes[i].scope)};

 end

 saveAttr("test1.ucisdb", "COVER_TARGETS_MET",

 value);

 value.svalue = coverholes;

 saveAttr("test1.ucisdb", "COVER_HOLES",

 value);

 ...

endfunction

4.1 Reporting Regression and Tests Runs Summary

At the end of a regression run, it is always useful for a

verification engineer to provide summary of the regression

runs with relevant details about pass/fail tests with failure

reasons, tests achieved/did not achieve coverage targets

(reporting corresponding coverage holes if any), and general

simulation run information.

The standalone application presented below starts by

taking all regression UCISDBs, which correspond to tests

runs, as input arguments. It then loops on each UCISDB

extracting the corresponding test runtime data and attributes.

The ucisTestDataT is a UCIS built-in struct holding the test

status, simulation run cputime, seed, simulation time (and

unit), CLI, etc. The application then gets the specific

attributes added by the test; as an example below it shows if

the test succeeded to meet its coverage targets and the

corresponding coverage holes if not.

The application reports the summary data for each test

then a summary of the whole regression. The implementation

of reporting methods (reportTestCore() and

regressionSummaryReport()) is left to the user to define. The

format could be ASCII, XML, HTML or in this example we

chose to generate a spreadsheet table. Different formats can be

used to exchange and interface information with other

consumers in the flow. The spreadsheet for the report could

look as follows:

Figure 2. Tests and regression report snippet

As shown above, the generated report could help in post-

run analysis as follows:

 Provides general information about the test; name,

objective, category (e.g. simulation, formal,

emulation, positive, negative, etc.), runtime seed

used, CLI args and coverage targets.

 Provides pass/fail information of the test. Upon a test

failure, it prints out the failing reason and the

simulation time at which it occurs. All these

attributes can be added to a test‟s UCISDB as user

defined attributes at runtime. This helps in grouping

common failures to identify the number of unique

issues that need to be fixed in the DUV or testbench.

 Provides information about coverage targets missed

(coverage holes) in coverage scopes of interest. This

could help a verification engineer to revisit the test

for enhancements. Simulation stimuli patterns can

be generated easily from coverage holes to be applied

at runtime if needed to elevate coverage numbers9.

 Provides runtime details related to performance (e.g.

cputime, peak memory consumed), this could help

determining bottleneck tests and provide means for

future regression throughput improvements (e.g.

long running tests that do not meet their targets may

be re-architected, split, or omitted).

9 This requires visiting the source code, and it assumes that direct

correlation between the coverage model and the system input

transactions can be established.

typedef struct {

 ucisTestDataT testdata;

 char *testname, *coverholes, *fail_msg,

 *covertargets, *teststatus,

 *covertargets_met;

 double coverage_score;

} reportDataT;

void testSummaryReport (char * filename) {

 ucisT db;

 ucisHistoryNodeT test;

 ucisIteratorT iterator;

 ucisAttrValueT * value;

 reportDataT data;

 db = ucis_Open(filename);

 iterator = ucis_HistoryIterate (db, NULL,

 UCIS_HISTORYNODE_TEST);

 while (test = ucis_HistoryScan (db, iterator))

 {

 data.testname = ucis_GetStringProperty(db,

 test, -1, UCIS_STR_TEST_NAME);

 ucis_GetTestData(db, test, & data.testdata);

 /*If coverage targets are met*/
 value = ucis_AttrMatch(db, test, -1,

 "COVER_TARGETS_MET");

 data.covertargets_met = value->u.svalue;
 /*Coverage holes if any*/
 value = ucis_AttrMatch(db, test, -1,

 "COVER_HOLES");
 data.coverholes = value->u.svalue;
 /*Coverage score*/
 data.coverage_score=coverageScore(db,NULL);

 /*Test status*/
 value = ucis_AttrMatch(db, test, -1,
 "TESTSTATUS");
 data.teststatus = value->u.svalue; ...
 reportTestCore(data);

 }

 ucis_FreeIterator (db, iterator);

 ucis_Close(db);

}

int main(int argc, char* argv[]) {

 for (i = 1; i < argc ; i++) {

 testSummaryReport (argv[i]);

 }

 regressionSummaryReport();

}

 A general regression summary; e.g. number of

passing/failing tests w.r.t. total number of tests,

number of tests that meet (or do not meet) their

coverage targets, total regression time, etc.

4.2 Generate Regression Coverage Summary by

Merging Individual Tests Coverage

In order to get insight about overall regression coverage score

achieved and compare it w.r.t. the project‟s verification plan

target and objectives, an application is required to merge tests

individual coverage results altogether. The resulting

information would help answer questions “Are we done?”, or

suggest additional steps required; e.g. enhance or write new

tests to cover uncovered scenarios, or try out new technologies

as discussed before.

The application works as follows:

 Take as arguments: (1) the required scope to merge

the input UCISDBs upon (i.e. start scope; passing

NULL would mean to merge all scopes of input

UCISDBs), (2) the output UCISDB holding the

merged data, (3) all input UCISDBs to be merged.

 The mergeUcisdb() method would take the first

input UCISDB as a master UCISDB and uses it as

the basis for the merge output. It would loop on all

test records in all input UCISDBs and create

typedef struct { /*UCISDB Carrier for callback*/

 ucisT db;

} dbCarrierT;

void mergeScope (ucisCBDataT* cbdata,

 dbCarrierT * nextdb, ucisScopeT scope_m){

 ...

 char * scopename_m = ucis_GetStringProperty (

 cbdata->db, scope_m, -1, UCIS_STR_UNIQUE_ID);

 ucisScopeT scope2 = ucis_MatchScopeByUniqueID(

 nextdb->db, NULL, scopename_m);

 ucisIteratorT iterator = ucis_CoverIterate

 (cbdata->db, scope_m , UCIS_ALL_BINS);

 while((coverindex_m = ucis_CoverScan (

 cbdata->db, iterator))!= -1){

 /*Get coveritems data for same scope in both

 UCISDBs (master and next UCISdb in list)

 Assuming identical UCISDBs in structure*/

 ucis_GetCoverData(cbdata->db, scope_m,

 coverindex_m, &binname_m,

 &cvdata_m, &srcinfo_m);

 ucis_GetCoverData (nextdb->db, scope2,

 coverindex_m, &binname2, &cvdata2, &srcinfo2);

 /*Increment coverages scope of coveritem in

master UCISDB by coverage score in next UCISDB*/

 ucis_IncrementCover (cbdata->db, scope_m,

 coverindex_m, cvdata2.data.int64);

 }

 ucis_FreeIterator (cbdata->db, iterator);

}

ucisCBReturnT callback(void* userdata,

 ucisCBDataT* cbdata) {

 dbCarrierT* nextdb = (dbCarrierT*) userdata;

 if(cbdata->reason == UCIS_REASON_SCOPE) {

 if (UCIS_COVERGROUP & (scopetype =

 ucis_GetScopeType(cbdata->db,cbdata->obj))){

 /*Covergroup scope loop on all subscopes*/

 ucisScopeT subscope = NULL;

 ucisIteratorT iterator =ucis_ScopeIterate(

 cbdata->db, cbdata->obj, -1);

 while(subscope =ucis_ScopeScan(cbdata->db,

 iterator)){

 mergeScope(cbdata, nextdb, subscope);

 }

 ucis_FreeIterator(cbdata->db, iterator);

 }

 }

 return UCIS_SCAN_CONTINUE;

}

double mergeUcisdb (int argc, char* argv[]){

startScopeName = argv[1];

outfilename = argv[2];

 /*First UCISDB treated as master DB */

 printf ("* Merging file %s (Master)\n",

 argv[3]);

 dbmaster = ucis_Open(argv[3]);

 startScope=ucis_MatchScopeByUniqueID(dbmaster,

 NULL, startScopeName);

 mergenode = ucis_CreateHistoryNode(dbmaster,

 NULL, "TopHistoryNode", outfilename,

 UCIS_HISTORYNODE_MERGE);

/*Master UCISDB as basis for merge output*/

 iterator = ucis_HistoryIterate(dbmaster,

 NULL, UCIS_HISTORYNODE_TEST);

 while(test=ucis_HistoryScan(dbmaster,iterator))

 {

 /*All test nodes are children of mergenode*/

 ucis_SetHistoryNodeParent(dbmaster, test,

 mergenode);

 }

 ucis_FreeIterator (dbmaster, iterator);

 for (i = 4; i < argc ; i++) {

 /*Loop on all UCISDBs and create

 corresponding test records in master UCISDB*/

 printf("* Merging file %s\n", argv[i]);

 db = ucis_Open(argv[i]);

 iterator = ucis_HistoryIterate(db, NULL,

 UCIS_HISTORYNODE_TEST);

 while(test = ucis_HistoryScan(db, iterator)){

 testname = ucis_GetStringProperty(db, test,

 -1, UCIS_STR_TEST_NAME);

 ucis_GetTestData(db, test, &testdata);

 testnode = ucis_CreateHistoryNode(dbmaster,

 mergenode, testname,

 argv[i],

 UCIS_HISTORYNODE_TEST);

 if (testnode) ucis_SetTestData(dbmaster,

 testnode, &testdata);

 }

 ucis_FreeIterator (db, iterator);

 nextdb.db = db;

 ucis_CallBack(dbmaster, startScope,

 callback, &nextdb);

 ucis_Close(db);

 }

 ucis_Write(dbmaster, outfilename, NULL, 1, -1);

 mergescore=coverageScore(dbmaster, startScope);

 ucis_Close(dbmaster);

 return mergescore;

}

/*Prepare Linked lists for input UCISDBs files*/

int main(int argc, char* argv[]) {

 mergescore = mergeUcisdb (argc, argv);

 return 0;

}

corresponding test records as children of a parent

merge node record in the merge output UCISDB.

 The method then use the ucis_CallBack() to loop on

all scopes in the master UCISDB under the start

scope. The callback() method once spots a

UCIS_COVERGROUP scope (corresponds to a

SystemVerilog Covergroup), it loops on all sub

scopes (e.g. Coverpoints and Crosses) and for each

call the mergeScope() method.

 The mergeScope() method loops on all coveritems in

the master UCISDB and increments the coverage

score of each with the coverage score of the

corresponding coveritem in the next input UCISDB.

The application above is simple for demonstration

purposes assuming identically structured UCISDBs given as

inputs, also the first UCISDB is being treated as a master

UCISDB, and hence the merge algorithm would be performed

only on the scopes found in the master UCISDB. The merge

algorithm applied in this application is a totals merge, in

which all the coveritems coverage scores in all UCISDBs are

aggregated and written in the final UCISDB holding the

result. This would be a relatively fast application and would

result in a compact UCISDB holding the merge result. The

catch here is that no specific information about which test hit

which coveritem is retained in the merge output UCISDB,

which could be useful for analysis purposes. Such UCISDB

can be generated by the test-associated merge, which is more

complex and hence requires additional coding and resources

than the totals merge, and results in a larger output UCISDB

due to the extra information. There are many trade-offs in the

merging of coverage data that an application needs to

understand and give flexibility to the user. Merge modes such

as totals versus test-association, union versus master mode,

coverage types to include, block into system, multithreading,

„or‟ versus „anding‟ flags and attributes, etc.10

4.3 Ranking Regression Most Contributing Tests to

Coverage

After a regression run, it is often required to value each test in

the regression individually according to its contribution to the

overall regression coverage. This could be useful to:

 Abandon redundant tests that do not contribute to

overall coverage and consume huge amount of

resources. This indirectly minimizes resources

utilization and boosts regression throughput.

 Identify highly contributing tests in the regression;

this helps in constructing an acceptance sanity

checking regression subset, which would act as

quick and effective subset used for sanitizing recent

10 The list is endless but the merge application is the value that

tools like Questa© Verification Management add to the flow.

code changes instead of waiting for days/weeks for a

full regression run.

 Ranking can also take into consideration the runtime

metrics of tests aiming to boost regression

performance.

The ranking presented in this application is based on the

greatest coverage score a UCISDB can offer w.r.t. the overall

aggregated coverage score when all UCISDBs are merged

together. The application offers iterative ranking which ranks

int rankUcisdb(int argc, char* argv[]) {

 /*Get best coverage score of all i/p UCISDBs

 Winner will be basis for subsequent merges*/

 for (i = 2; i < argc ; i++) {

 checkCoverGoalMet (argv[i], argv[1],

 &score);

 if (score > max_score) {

 max_score = score;

 base_ucisdb_name = argv[i];

 }

 }

 printf("*** RANKING RESULTS ***\n");

 printf("1. %s: %f\n", base_ucisdb_name,

 max_score*100);

 ucisdb_pool[0] = base_ucisdb_name;

 ucisdb_pool_size = 1;

 db = ucis_Open(base_ucisdb_name);

 ucis_Write("db","merged.ucisdb", NULL, 1, -1);

 ucis_Close(db);

 /*iterative merge based on winner UCISDB*/

 for(itr=1; itr<=argc-3; itr++) {

 for (i = 2; i < argc ; i++) {

 found = 0;

 for (j = 0; j < ucisdb_pool_size ; j++) {

 if (!strcmp (argv[i], ucisdb_pool[j])){

 found = 1;

 break;

 }

 }

 if (found) continue;

 sprintf(curr_mergefilename,"%d.ucisdb",i);

 score = mergeUcisdb(5, (char*[]) {argv[0],

 argv[1], curr_mergefilename,

 "merged.ucisdb", argv[i]});

 if (score > max_score) {

 max_score = score;

 next_ucisdb_name = argv[i];

 strcpy (merged_ucisdb_name,

 curr_mergefilename;

 }

 }

 db = ucis_Open(merged_ucisdb_name);

 ucis_Write(db, "merged.ucisdb",

 NULL, 1, -1);

 ucis_Close(db);

 remove(merged_ucisdb_name);

 printf("%d. %s: %f\n", itr+1,

 next_ucisdb_name, max_score);

 ucisdb_pool[itr] = next_ucisdb_name;

 ucisdb_pool_size +=1;

 }

 return 0;

}

int main(int argc, char* argv[]) {

 return rankUcisdb (argc, argv[]);

}

each individual test UCISDB by performing an iteration of

merges on the input UCISDBs.

Iterative ranking is a greedy ranking algorithm, (1) it

requires merges (where N is the number of tests) hence

can be very time consuming, (2) ranking is performed w.r.t.

the entire coverage space, hence it requires identically

structured input UCISDBs to work effectively otherwise the

ranking result will not be accurate. The test-associated

ranking performs a single merge of the databases and

proceeds to rank based upon a test-associated merge results

held in memory, it is much more complex to implement

however, it super exceeds iterative ranking in terms of

performance11. The application presented above shows the

simple iterative ranking approach as follows:

 Take as arguments: (1) the required scope to rank

the input UCISDBs upon (i.e. start scope; passing

NULL would mean to rank based on the entire

UCISDB score), (2) all input UCISDBs to be ranked.

 Start by computing the greatest coverage score of all

inputs UCISDBs, the outcome UCISDB will be the

basis for all future merges (i.e. base UCISDB).

 In an iterative loop of length (N-2), where N is the

number of input UCISDBs, it performs iterative 1-

to-1 merge between the merge base UCISDB and the

next UCISDB in the loop, and picks the UCISDB

that contributes most to the merge output. It then

takes the output of the merge process of iteration M,

as the basis for the merge process for iteration M+1,

till all required iterations are executed.

Output of the application can be as follows:

Figure 3. Tests ranking report snippet

As can be seen, from the above ranking report one could

put hands on noncontributing tests to overall regression

coverage score. This is useful from a verification engineer

perspective for inspections and enhancements purposes on

these tests, or eliminating them from regression runs to

improve the regression throughput.

11 Again, Questa© Verification Management includes algorithms

that use techniques to speed up the ranking of databases,

including test association, quick and multi-threading.

5. CONCLUSION

The paper started by giving some background about the

verification process challenges for today‟s complex designs.

The paper touched upon tests and testbench quality

improvement, single simulation and regression throughput,

analysis of verification metrics, faster coverage closure, and

project tracking.

The paper makes use of the UCIS and shows how the

capabilities of such standard must not be underestimated in

terms of the value it could bring to the verification process. It

was shown how the UCIS open API can bring a huge value in

building applications that will not only help in post-run

analysis and tracking, however they can help during runtime

as well.

We presented several runtime UCIS applications that

would help maximize the simulation throughput, on the fly

change tests‟ runtime behavior upon collected coverage

analysis, and register tests specific runtime and functional

metrics for post-run track of tests quality. Then we presented

several post-run applications which can be used to analyze

tests and regression runs status, achieved coverage, and guide

the next steps to improve tests quality and regression

throughput.

6. ACKNOWLEDGMENTS

The author would like to thank Abigail Moorhouse,

Samiran Laha, and Darron May, of Mentor Graphics Corp.,

for their significant contribution to the UCIS standard and for

their help getting some of the applications presented here up

and running.

7. REFERENCES

[1] Accellera Unified Coverage Interoperability Standard (UCIS)

Version 1.0, June 2, 2012.

[2] Wilson Research Group, 2010 Functional Verification Study.

[3] IEEE Standard for SystemVerilog, Unified Hardware Design,

Specification, and Verification Language, IEEE Std 1800-2012,

2012.

[4] PJ Plauger: The Standard C Library, Prentice Hall, 1992.

[5] UVM User Manual, uvmworld.org.

APPENDIX A. – HYPOTHETICAL EXAMPLE,

SHOWING STIMULI GENERATORS MAKING USE

OF COVERAGE HOLES EXTRACTED AT

RUNTIME

// $Id: fcc_lib.sv,v 1.0 2011/09/13 Ayehia Exp$

//--

// Ahmed Yehia ahmed_yehia@mentor.com

// Copyright 2005-2013 Mentor Graphics Corporation

// All Rights Reserved Worldwide

//

// Licensed under the Apache License, Version 2.0

// (the "License"); you may not use this file

// except in compliance with the License. You may

// obtain a copy of the License at

//

// http://www.apache.org/licenses/LICENSE-2.0

//

// Unless required by applicable law or agreed to

// in writing, software distributed under the

// License is distributed on an "AS IS" BASIS,

// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,

// either express or implied. See

// the License for the specific language governing

// permissions and limitations under the License.

//--

/*Hypothetical example showing difficulties to

close coverage of simple transaction coverage

model with 3 random variables a,b,&d. The

coverage model consists of a coverpoint for each

of rand variable, and a cross between a&b&d.

Normal ways need several thousands of cycles to

close coverage, whereas proposed method can

close coverage in few hundred cycles.

User added code does not exceed 50 lines, while

way to coverage closure shortened dramatically.*/

<transaction.svh>
/*As shown below no changes required in the

transaction definition except including file that

would be generated/written to apply the proposed

method. Transaction makes use of macros defined in

fcc_macros.svh to define rand variables */

`include "fcc_macros.svh"

import fcc_pkg::*;

class mytrans extends fcc_transaction;

 /*Replace "rand bit[3:0] a,b,d" with a macro

defines rand objs of type and ID passed, and

queues of same type to hold object cover holes.*/

 `fcc_def_rand(bit[3:0], a)

 `fcc_def_rand(bit[3:0], b)

 `fcc_def_rand(bit[1:0], d)

 covergroup cvg;

 /*Auto-generated bins for A and B CVPs

 e.g. "auto[0]", "auto[1]", "auto[2]"*/

 A: coverpoint a;

 B: coverpoint b;

 D: coverpoint d {

 //User-Defined bins for D CVP

 bins D_1 = {0,1};

 bins D_2 = {2,3};

 }

 A_B_D_CROSS: cross A, B, D;

 endgroup

 function new();

 cvg = new;

 endfunction

 /*Insert/Write code to apply proposed method

 Code can be automatically generated*/

 `include "mytrans__fcc_generated.sv"

endclass

<test.sv>

/*Few lines were added to the test to start the

proposed method by saving a coverage database then

extracting the list of coverage holes as a string.

A loop is then active, as long as there are more

holes to cover, inside which normal test operation

is cloned with the exception of calling

fcc_randomize() instead of normal SystemVerilog

randomize() for doing the actual transaction

randomization. The fcc_randomize() would be a

simple generic method that loops on all coverage

holes and for each call the core_randomize()

method that would do the real work, transforming

from strings to additional values constraints: do

the transaction generation(i.e. randomization).*/

import "DPI-C" function string getCoverHoles

 (string dbname,

 string scopename);

`include "uvm_macros.svh"

import uvm_pkg::*;

import fcc_pkg::*;

class test1 extends uvm_test;

 `uvm_component_utils (test1)

 mytrans tr;

 real coverage_momentum, threshold_momentum=1,

 normal_max_method_score;

 int num_of_trans, goal_met;

 coverscopesT coverscopes[];

 byte char;

 function new(string name,uvm_component parent);

 super.new (name, parent);

 tr = new;

 coverscopes = new [1];

 coverscopes[0].scope =

 "/19:my_pkg/11:mytrans/12:cvg";

 endfunction

 task run_phase(uvm_phase phase);

 phase.raise_objection (this, "test1");

 `uvm_info("test1", "NORMAL TEST RUN: SEEKING

COVERAGE CLOSURE!", UVM_LOW);

 //Coverage monitor loop

 while (1) begin

 //Drive "tr" to DUV and sample Covergroup.

 assert (tr.randomize());

 tr.cvg.sample();

 num_of_trans += 1;

 coverscopes[0].coverage_score =

 $get_coverage();

 coverage_momentum =

 coverscopes[0].coverage_score /

 num_of_trans;

 `uvm_info("test1", $sformatf("ITERATION

#%0d, COVERAGE=%0f, MOMENTUM=%0f", num_of_trans,

coverscopes[0].coverage_score, coverage_momentum),

UVM_HIGH);

 if (coverscopes[0].coverage_score < 100)

 begin

 //compute momentum when goal is not met

 if(coverage_momentum <threshold_momentum)

 begin

 $coverage_save_mti("test1.ucisdb");

 coverscopes[0].coverholes=getCoverHoles

 ("test1.ucisdb",

 coverscopes[0].scope);

 break;

 end

 end else begin goal_met = 1; break; end

 end

 if (!goal_met) begin

 `uvm_info("test1", "ADVANCED TEST RUN:

SEEKING COVERAGE CLOSURE!", UVM_LOW);

 /*While coverage holes exist.

 Extract next coverage hole and randomize

 transaction accordingly*/

 while(coverscopes[0].coverholes!="") begin

 tr.fcc_randomize(

 coverscopes[0].coverholes);

 //Drive "tr" to DUV, sample Covergroup.

 tr.cvg.sample();

 num_of_trans +=1;

 coverscopes[0].coverage_score =

 $get_coverage();

 `uvm_info("test1", $sformatf("ITERATION

#%0d, COVERAGE=%0f", num_of_trans,

coverscopes[0].coverage_score), UVM_HIGH);

 end

 end

 phase.drop_objection (this, "test1");

 endtask

endclass

module top;

 initial

 run_test();

endmodule

<fcc_macros.svh>
/*Library of handy macros re-used to smoothen the

transformation from string bin names to meant

object values and defines randomization process

to generate them.

Written once and re-used in each testbench*/

`define fcc_def_rand(T, ID) \

 rand T ID;\

 T ID``_fcc_q [$];\

 int ID``_fcc_transition_cnt;

`define fcc_update_queue(ID,VAL)\

 ID``_fcc_q = VAL;

`define fcc_constraint(ID)\

 ID inside {ID``_fcc_q};

`define fcc_do_rand(ID)\

 assert (this.randomize() with \

 {`fcc_constraint(ID)});

`define fcc_do_rand3(ID1, ID2, ID3)\

 assert (this.randomize() with \

 {`fcc_constraint(ID1)\

 `fcc_constraint(ID2)\

 `fcc_constraint(ID3)});

<fcc_pkg.sv>
/*Package defining transaction (class)

infrastructure that can be utilized by

transactions just importing this package. Written

once and re-used in each testbench.*/

package fcc_pkg;

 import uvm_pkg::*;

 class fcc_transaction extends uvm_sequence_item;

 ...

 virtual function void fcc_randomize (ref string

 holes_list);

 ...

 while ... begin

 //Loop on coverage holes string to extract

 //next hole and corresponding scope name

 //Then pass them to core_randomize() to do

 //the actual randomization/stim generation

 ...

core_randomize(scopename, hole);

break;

...

 end

 ...

 endfunction

 /*User to implement. Represents the mapping from

 The bin name string to the meant value to be

 applied to corresponding object.*/

 virtual function void core_randomize (

 string scope_name, string hole,

 bit coming_from_cross=0);

 endfunction

 endclass

endpackage

 <mytrans__fcc_generated.sv>
/* This code generates an additional constraint

applied to the next transaction generation that

corresponds to a coverage hole of a corresponding

object. The code makes use of macros introduced

above making it compact, straightforward and has

direct correlation with the coverage model

definition; hence can be automatically

generated.*/

function void core_randomize (string scope_name,

 string hole, bit coming_from_cross=0);

 byte char;

 case (scope_name)

 //Auto-generated bin name clutter was

 //removed by C code to something like "0"

 //making atoi() all what one needs to

 //transform bin name to meant value.

 "A": begin

 `fcc_update_queue(a, {hole.atoi()})

 if (!coming_from_cross) `fcc_do_rand(a)

 end

 "B": begin

 `fcc_update_queue(b, {hole.atoi()})

 if (!coming_from_cross) `fcc_do_rand(b)

 end

 "D": begin

 //User defined bins for Coverpoint D needs

 //special handling.

 case (hole)

 "D_1": `fcc_update_queue(d, {0,1})

 "D_2": `fcc_update_queue(d, {2,3})

 endcase

 if (!coming_from_cross) `fcc_do_rand(d)

 end

 "A_B_D_CROSS": begin

 //For a cross bin, loop on bins of

 //enclosed CVPs, and update queues of each

 //according to order of definition.

 string s;

 int cur_item_num, cnt;

 while((char = hole.getc(cnt)) != 0) begin

 cnt++;

 if (char != ",")//Mark cross separators

 s = {s, string'(char)};

 else begin

 case(cur_item_num)

 0: core_randomize("A", s, 1);

 1: core_randomize("B", s, 1);

 2: core_randomize("D", s, 1);

 endcase

 cur_item_num++;

 s="";

 end

 end

 `fcc_do_rand3(a,b,d)

 end

 endcase

endfunction

	UCIS Applications: Improving VERIFICATION productivity, simulation THROUGHPUT, and coverage closure PROCESS
	Abstract
	3.1.1 Linking a Test to its Coverage Goals and Targets
	3.1.2 Connecting UCIS Applications to HVL Testbench
	3.2.1 Monitoring Coverage Score of Scopes of Interest
	3.2.2 Inspecting Coverage Momentum and Extracting Coverage Holes of Scopes of Interest

