
UCIS Applications: Improving Verification
Productivity, Simulation Throughput, and

Coverage Closure Process

by

Ahmed Yehia

Verification Technologist

Mentor Graphics Corp.

Questa Verification Platform

Sponsored By:

 2 of (22)

Motivation

• Designs are getting more
complex

– Effort spent in verification is
increasing

– Larger designs require more
tests to verify them

– Time spent in simulation
regression is significant for
larger designs

– Verification Challenges

• Managing the verification
process, closing coverage,
finding/isolating bugs, and
debugging

Verification Challenges
Wilson Research Group Functional Verification Study 2010

UCIS, how can it help?

Sponsored By:

 3 of (22)

Idea at a Glance…

• Make use of UCIS developing useful applications

– Can be easily developed and deployed in any project

– Serve post-run needs, improving:

• Analysis, verification management, coverage closure process, and
project tracking

– Serve runtime needs, improving:

• Simulation throughput, tests quality, verification productivity, and
coverage closure

Sponsored By:

 4 of (22)

Outline

• Introduction to UCIS

• UCIS Runtime Applications

– Test preparation for runtime applications

– Guiding test behavior at runtime

– Save test runtime and functional metrics

• UCIS Post-run Applications

– Regression Analysis and Reporting

– Merging

– Ranking

• Conclusion

Sponsored By:

 5 of (22)

Introduction to UCIS

• Unified Coverage Interoperability Standard

– Open and industry-standard API to improve verification productivity

– Allow interoperability of verification metrics across different tools
from multiple vendors

– UCIS 1.0 released by Accellera UCIS committee in June 2012

Sponsored By:

 6 of (22)

Introduction to UCIS

• UCIS Database (UCISDB)

– Single repository of all coverage data from all
verification processes

– Main structures

• Scope: A hierarchical node that stores
hierarchical design structure

• Coveritem: Holds actual counts of recorded
events

• Historical nodes: Track historical construction
processes and record environment attributes

• APIs and data structures

– C language based

– Enables access and manipulation of data
inside UCISDB

Sponsored By:

 7 of (22)

A. UCIS Runtime Applications

• Apps loaded as shared objects during
simulation

• Connected to running test

– Feedback information of interest to the test
controller at runtime

• Guide test behavior at runtime

– Maximize throughput and minimize resources

– Tracking and improving test quality

– Faster coverage closure

• Save test specific data of interest in a
UCISDB for further post-run analysis

– Tracking and trending project momentum

Sponsored By:

 8 of (22)

Test Preparation for Runtime Apps
1. Linking test to its coverage goals and targets

• Objective

– Track/Measure test quality

– Improve test efficiency

• How?

– Test normally written to
fulfill specific objectives

– Embed info in dynamically
executable documents

• E.g. Verification plan

– Pass info to test at
beginning of simulation

Test

Environment

DUT

Agent

Scoreboard
Functional

Coverage

Config

Controller

Stim. Gen.

Goals /

Targets

vsim fpu_tb_top +UVM_TESTNAME=test1

+COVERSCOPES=/19:fpu_agent_pkg/11:fcoverage

Sponsored By:

 9 of (22)

Test Preparation for Runtime Apps
2. Connecting UCIS apps to HVL testbench at runtime

• Test saves coverage
metrics/model in a
UCISDB at run time

• UCIS App loaded as
shared object in
simulation

• Using DPI test
controller talks to
C application

Test

Environment

DUT

Agent

Scoreboard
Functional

Coverage

Config

Controller

Stim. Gen.

Goals /

Targets

UCISDB

UCIS
APP

DPI

Sponsored By:

 10 of (22)

A. UCIS Runtime Applications
1. Guiding test behavior at runtime

• On the fly change tests’
runtime behavior upon
collected coverage
analysis

• Maximize simulation
throughput

• Track tests quality

Start

Monitor Coverage Momentum

Coverage falls
behind threshold?

Collect/Report
Coverage holes

Coverage goal
of target met?

Get Next coverage
Target

Remaining
coverage targets?

end

Focus on
coverage holes

Yes

No

Yes

No

No

Yes

Sponsored By:

 11 of (22)

A. UCIS Runtime Applications
1. Guiding test behavior at runtime (cont.)

• Monitor achieved coverage

– Notify testbench components
when a target is achieved

– Exit simulation when all
targets/objectives are met

import "DPI-C" function int checkCoverGoalMet

(string dbname, string scopename,

 output real scopecoverscore);

task test1::run_phase(uvm_phase phase);

 uvm_event target_met_e;

 phase.raise_objection (this, "test1");

 fork

 //Coverage score monitor loop

 while (1) begin

 //When no more targets to cover break

 if (i >= coverscopes.size()) break;

 wait_for_next_transaction();

 assert(!$coverage_save_mti("test1.ucisdb",

 "/fpu_agent_pkg/fcoverage"));

 if (checkCoverGoalMet("test1.ucisdb",

 coverscopes[i].scope,

 coverscopes[i].coverage_score) > 0)

 begin

 //Notify testbench components when

 //specific coverage target is met

 uvm_config_db # (uvm_event)::get (agent,

 "", {coverscopes[i++].scope, "_goalmet"},

 target_met_e);

 target_met_e.trigger();

 end

 end

 //Start main test virtual sequence

 test1_v_seq.start(m_env.m_v_sqr);

 join_any

 phase.drop_objection (this, "test1");

endtask

int checkCoverGoalMet(const char* dbname,

const char* scopename, double* scopecoverscore){

 ucisT db; /*UCIS in-memory DB handle*/

 ucisScopeT scope = NULL;/*UCIS scope handle*/

 int scopecovergoal;

 /*Populate in-memory DB from physical UCISDB*/

 db = ucis_Open(dbname);

 /*Find matching scope by name, get its handle*/

 scope = ucis_MatchScopeByUniqueID(db, NULL,

 scopename);

 *scopecoverscore = coverageScore(db, scope);

 scopecovergoal= ucis_GetIntProperty(db,scope,

 -1, UCIS_INT_SCOPE_GOAL);

 /*Close DB and return list of holes string*/

 ucis_Close(db);

 return(*scopecoverscore*100 >=scopecovergoal);

}

Sponsored By:

 12 of (22)

A. UCIS Runtime Applications
1. Guiding test behavior at runtime (cont.)

• Monitor coverage momentum

– Collect coverage holes when
momentum falls behind threshold

import "DPI-C" function string getCoverHoles

 (string dbname,

 string scopename);

task test1::run_phase(uvm_phase phase);

 //Coverage monitor loop

 while (1) begin

 ...

 coverage_momentum =

 coverscopes[i].coverage_score /

 num_of_trans;

 if(coverage_momentum < threshold_momentum)

 begin

 coverscopes[i].coverholes =

 getCoverHoles("test1.ucisdb",

 coverscopes[i].scope);

 uvm_config_db # (uvm_event)::get (agent,

 "", {coverscopes[i].scope, "_holes"},

 coverholes_update_e);

 coverholes_update_e.trigger();

 end

 end

 end

endtask

char* getCoverHoles(const char* dbname,

 const char* scopename){

 db = ucis_Open(dbname);

 scope = ucis_MatchScopeByUniqueID(db, NULL,

 scopename);

 scopetype = ucis_GetScopeType(db, scope);

 if((scopetype == UCIS_COVERPOINT)||

 (scopetype == UCIS_CROSS)){

 /*Coverpoint or a cross scope*/

 populateHolesList (db, scope, &holeslist);

 } else if(scopetype == UCIS_COVERGROUP) {

 /*Covergroup scope: Loop on all sub-scopes*/

 ucisScopeT subscope = NULL;

 ucisIteratorT iterator = ucis_ScopeIterate(

 db, scope, -1);

 while(subscope = ucis_ScopeScan(db, iterator)){

 populateHolesList(db,subscope,&holeslist);

 }

 } else {/*Handle other FCOV scopetypes...*/}

 ...

 return holeslist;

}

• Feedback coverage holes
to testbench components

Sponsored By:

 13 of (22)

A. UCIS Runtime Applications
2. Save test functional and runtime attributes

• Test may save specific
functional and/or runtime
metrics for post-run analysis

– Help determine quality, cost-
benefit, and means for
improvement

– Runtime metrics

• Test name, test status,
simtime, cputime, mem
footprint, sim CLI, seed, date,
username, etc.

– Functional metrics

• Test objective(s), targets
met/missed, execution paths,
sequences exercised, user-
defined metrics

function void test1::extract_phase(uvm_phase phase);

 ...

 value.svalue = "PASSED";

 saveAttr("test1.ucisdb", "TESTSTATUS", value);

 value.svalue = "YES";

 saveAttr("test1.ucisdb", "COVER_TARGETS_MET",

 value);

 value.svalue = coverholes;

 saveAttr("test1.ucisdb", "COVER_HOLES", value);

 ...

endfunction

void saveAttr (const char* dbname, const char * key,

 AttrValueT * value){

 ...

 db = ucis_Open(dbname);

 /*Get handle to the test record inside UCISDB*/

 iterator = ucis_HistoryIterate

 (db, NULL, UCIS_HISTORYNODE_TEST);

 while (test = ucis_HistoryScan (db, iterator))

 {

 value_.type = (ucisAttrTypeT) value->type_;

 if (value_.type == UCIS_ATTR_STRING) {

 value_.u.svalue = value->svalue;

 } else if (...) {...}

 assert(!ucis_AttrAdd(db,test,-1, key, &value_));

 }

 ucis_Write(db, dbname, NULL, 1, -1);

 ucis_Close(db);

}

Sponsored By:

 14 of (22)

B. UCIS Post-Run Applications

• Require UCISDBs generated
prior to simulation run
termination

– A test should save a UCISDB
holding its run metrics

• Measure/Analyze

– Tests and regression runs status

– Individual tests and aggregated
regression coverage results

• React

– Improve tests quality, efficiency
and regression throughput

– Leads to achieve coverage
closure

Build

Verify

Analyze

Design

Spec

Testplan

Refine

Sponsored By:

 15 of (22)

B. UCIS Post-Run Applications
1. Regression analysis and reporting

Reporting
App

• Reports general test info

• Pass/Fail status

– Failing reasons facilitates
debugging and results analysis

• Coverage targets status

– Coverage holes identification
helps improving tests quality

• Performance profiling

– Spots bottlenecks and provides
means to regression throughput
improvement

• Regression summary statistics

UCIS

DB

UCIS

DB

UCIS

DB
UCIS

DB

UCIS

DB

UCIS

DB

Sponsored By:

 16 of (22)

B. UCIS Post-Run Applications
2. Merging UCISDBs

Merging
APP

UCIS

DB

UCIS

DB

UCIS

DB
UCIS

DB

UCIS

DB

UCIS

DB

Merge

DB

• Merges tests individual coverage results
altogether in a single UCISDB

• Gets insight about overall regression
coverage score w.r.t. verification plan target
and objectives

• Helps answering questions “Are we done?”,
“What’s missing to get things done?”

Sponsored By:

 17 of (22)

B. UCIS Post-Run Applications
2. Merging UCISDBs (cont.)

• Many merge modes do exist

• Totals Merge

– All coveritems coverage scores in
all UCISDBs are aggregated and
written in the final merged UCISDB

– Pros: simple, fast, compact
merged UCISDB

– Cons: no information about which
test hit which coveritem is retained

• Test-Association Merge

– Retains information about which
test hit which coveritem

– Pros: verbose, better analysis

– Cons: Complex, additional coding,
relatively larger merged UCISDB

– Less overhead when solution is
reused from supporting tools

Start

I/P UCISDBs,
start scope,

O/P merge UCISDB

Open next I/P UCISDB

Insert master test
node(s) into merged
UCISDB parent node

Open O/P merged UCISDB

First I/P
UCISDB

Take as a master

Get next scope of master + corresponding scope
of current I/P UCISDB

Get next coveritem of master + corresponding
coveritem of current I/P UCISDB

Increment coveritem score in o/p UCISDB with
coveritem score of current i/p UCISDB

Insert master test
node(s) into merged
UCISDB parent node

end

No

Yes

Sponsored By:

 18 of (22)

B. UCIS Post-Run Applications
3. Ranking UCISDBs

Ranking APP

UCIS

DB

UCIS

DB

UCIS

DB
UCIS

DB

UCIS

DB

UCIS

DB

• Value tests individually according to their
contribution to overall regression coverage

• Abandon redundant tests from regression

– Save resources and boosts regression throughput

– Hints for improving redundant tests

• Identify highly contributing tests in the
regression

– Acceptance sanity checking regression subset

– Verify recent code changes with high TAT (Turn
Around Time)

• Taking runtime metrics into consideration can
also help in boosting overall regression
performance

N

2

1

UCIS

DB

UCIS

DB

UCIS

DB
UCIS

DB

UCIS

DB

UCIS

DB

Non contrib. tests

Contrib. tests

Sponsored By:

 19 of (22)

B. UCIS Post-Run Applications
3. Ranking UCISDBs (cont.)

• Iterative Ranking

– Ranks i/p UCISDBs by iterative merges
seeking greatest coverage score

– Although simple, it is a slow and greedy
algorithm

• Requires merges

– Requires identical i/p UCISDBs

• Test-associated Ranking

– Single merge

• Rank based upon a test-associated
merged results held in memory

– Complex to implement

– Much faster than iterative ranking

– Less overhead when solution is reused
from supporting tools rather than being
built from scratch

Start

I/P UCISDBs, start scope

Spot UCISDB of greatest coverage score (master)
score = master score (print master UCISDB info)

M = R = (Number of i/p UCISDBs – 1)

M = R = R -1
update UCISDB list

R > 1

End

M = M - 1

M > 1

Merge next UCISDB in list to o/p merged

current score >
score?

score = current score
next UCISDB = UCISDB

Print
Next UCISDB

Yes

No

No Yes

Yes

No

Sponsored By:

 20 of (22)

B. UCIS Post-Run Applications
3. Ranking UCISDBs (cont.)

End

Start

I/P UCISDBs, start scope

Spot UCISDB of greatest coverage score (master)
score = master score (print master UCISDB info)

M = R = (Number of i/p UCISDBs – 1)

M = R = R -1
update UCISDB list

R > 1

End

M = M - 1

M > 1

Merge next UCISDB in list to o/p merged

current score >
score?

score = current score
next UCISDB = UCISDB

Print
Next UCISDB

Yes

No

No Yes

Yes

No

Sponsored By:

 21 of (22)

Conclusion

• The UCIS contribution in the verification process can be
significant.

• UCIS does not only help in post-run analysis and project
tracking, however can be extended to runtime as well.

– Runtime Apps: can maximize simulation throughput, on the fly
change tests’ behaviors and track tests’ quality.

– Post-run Apps: Verification Metrics analysis, improve coverage
closure process and project tracking.

• Market expects growth and activities in UCIS to address
many of its challenges.

Sponsored By:

 22 of (22)

References

[1] Accellera Unified Coverage Interoperability Standard (UCIS)
Version 1.0, June 2, 2012.

[2] Wilson Research Group, 2010 Functional Verification Study.

[3] IEEE Standard for SystemVerilog, Unified Hardware Design,
Specification, and Verification Language, IEEE Std 1800-2012, 2012.

[4] UVM User Manual, uvmworld.org.

uvmworld.org

