
Tweak-Free Reuse Using OVM

Sharon Rosenberg
Cadence Design Systems, Inc.

2655 Seely Avenue
Telephone #, 1-408-9146341

sharonr@cadence.com

ABSTRACT
Most companies today aim to leverage existing design and
verification IP as part of the design and verification flow. Internal IP
is developed, tuned and reused over time to become a major
company asset and can be a competitive differentiator. A key
requirement for developing a central verification IP (VIP) repository
is to avoid the need to understand the implementation details or
modify existing IP for use in follow-on projects. In working with
many large and small corporations, we find that while many
companies strive for such cross-company (and cross-project)
component reuse, only a few manage to achieve this goal. This
document describes the recurring practices that allow companies to
excel in productivity and reuse.

1. INTRODUCTION
Unlike design, where specifications can (theoretically ☺) capture
the desired functionality in a complete and deterministic form, the
verification process is fluid, dynamic and unpredictable. A
verification environment architect cannot foresee each and every
corner case test for a certain project, or future projects that may
involve reuse as you move between block and system level (vertical
reuse) or reuse between projects (horizontal reuse). Success in this
area involves a thought-out methodology that includes up-front
planning, consistant organization combined with the ability to react
to unplanned design changes or esoteric test requirements. The OVM
has proven to be an ideal platform both for dealing with these issues
and for implementing reusable verification components. This paper
covers the essence of OVM and the unique characteristics that enable
both the initial correct construction of reusable verification
components and the ability to adopt changes to them for unseen
requirements.

2. THE BIG STORY OF OVM
OVM is a multi-language methodology for the efficient creation of
reusable testbenches (SV, e, SC). It is based on the proven
foundations of eRM, factors in multiple perspectives and expertise
from multiple vendors (mainly Cadence and Mentor), and is tuned to
user’s needs (OVM Advisory Group). For two years, OVM-SV has
demonstrated huge success and momentum within the industry.
There have been thousands of downloads from ovmworld.org,
adoption and standardization by many corporations, active users and
a massive user-community that has already developed much more
commercial and internal verification IP than with any other
methodology. What is unique about OVM is that it is a single, well-
designed methodology. Like other methodologies, it provides a base
class library and automation, (OVM automation is very capable,
greatly appreciated and constantly adopted by both users and other
commercial methodology developers ☺), but it also provides a high-
level concept and a recipe for building reusable components. This
high-level methodology is the class library backbone, and the power

automation serves this high-level goal. The companies that have been
successful in deploying a verification methodology understand that
while some features are useful and should be used for easy coding
and maintenance, other features are critical to reaping the benefits of
the OVM. For example, you may choose not to use the
synchronization classes (ovm_event_pool, ovm_barrier_pool) and
implement a different facility to achieve this goal. If you decide not
to adhere to the consistent OVM topology, you will be facing more
severe implications. Independent islands of users and teams will
result in different verification components that may be limited to
their initial development needs, harder to read and understand by
others, and prevent co-existence and further reuse. The rest of this
document is dedicated to the high-level concepts of OVM that put
you in the same league as the top-performing verification teams.

3. OVM STANDARD TOPOLOGY AND
HIGH-LEVEL ENCAPSULATION
Object-oriented programming methodology calls for class-level
reuse, meaning that each class has a well-defined signature of
external services it provides and an internal implementation that
should not externally accessible. This contrast between the server
class and the client classes allows distributed development and
maintenance of classes. As in a software development project,
construction of verification components also benefits from this
separation. However, verification environments have much more in
common between themselves than with generic software
development. Verification environments all need one component for
generating traffic, one for driving a data item into the design and
another passive component for monitoring the bus and doing checks
and coverage. For a specific interface, a set of such component
classes needs to be instantiated and connected, then share common
configuration information. For some protocols, layering is needed,
and other joint resources need to be shared. This requires both
understanding and effort from the environment integrator. OVM
provides this for you using a well-defined topology with high-level
encapsulation, which means the environment developer only needs to
to instantiate and pre-connect the classes in a standard manner within
a larger container. Standard configuration attributes and a
mechanism for controlling the reusable cluster of classes minimizes
the effort and understanding required. Figure 1 describes the first
level of containment in an “agent” container. A standard OVM agent
has an active operation mode in which traffic is generated and
injected and a passive mode in which only coverage and checking is
performed. Passive agents are instantiated to monitor RTL devices
and the standard configuration switch allows vertical reuse as
external interfaces become internal in larger systems and there is a
need to stop traffic injection. For some protocols, multiple agents are
needed per interface. Per application, they need to share the same
configuration, virtual interfaces, common resources(monitor), etc.
OVM standard recommends a reusable OVM verification component
(OVC). (See Figure 2) Changing the number of agents and the

environment configuration is achieved using the standard
configuration mechanism. Following the high-level encapsulation is
key for both environment developers and users. Developers who
follow these guidelines adopt a correct basic topology, preventing
thoughts such as “what was he thinking?” when an exotic topology is
enthusically described within a code review. For users, adopting a
new verification IP is simplified and the environment hierarchy is
clear for both commercial and internal verification IP.

 Figure1. Standard OVM Agent in Active
 and Passive Modes

 Figure 2. Standard OVM Environment

Figure 3 illustrates complete testbench integration. Notice that the
testbench instantiates reusable verification environments (OVCs), as
opposed to agents directly. This reduces the instantiation and
configuration effort and makes the environment consistent for all
verification IP. It is recommended to avoid short-cuts such as
instantiating agents directly in testbenches or not differentiating
between an agent in active and passive modes. So Rule #1 for tweak-
free reuse: Use the standard OVM topology and configuration
attributes.

Figure 3: Standard OVM Testbench

4. CODE GENERATORS
Some may think “Isn’t using the clean OVM definition introduces
overhead? Also there is much more rules to learn right?” After
reviewing many OVM adoptions, users typically experience
significant speedup in both development and integration of standard
OVM environments. In addition, the standard hierarchy allows
further automation as more commonality is defined. Code generators
can leverage the canonical structure and produce bug-free, nicely
commented code, with ever more consistency between components.
The Incisive Verification Builder (IVB) is a wizard technology that
produces OVM standard environments. The user provides input
about the desired verification IP environment. Based on the initial
input more questions are imposed untill the system is ready to
produce a verification environment skeleton. A set of finalization
action items is provided to guide users on how to complete the
protocol specific OVC environment. The IVB technology has
benefits both to naïve users (no need to know all the guidelines and
rules) and experts alike (productivity tool, “why should I start from
scratch?”). Rule # 2 for tweak-free reuse is what many managers ask
their team to do: Start your reusable environment development
from a proven code generator.

5. PACKAGING AND NAME SPACES
Name space collisions are the shortest path to uninvited code
modifications. In order to prevent name collisions, it is imperative to
use the language name-spaces constructs in e or the package
construct in SystemVerilog. But the packaging definition in this
paper goes beyond keeping your global name-space clean. Standard
directory structure, a designated location for the documentation,
consistent file names, appropriate “include” or “import” schemes,
and version control facilities are all examples for packaging
guidelines that seems insignificant -- but have shown huge impacts
on teams’ ability to share and maintain code. While packaging
requirements should be intuitive and enable reuse, it is more
important to adhere to a common set of packaging guidelines.
Experience shows that various companies have different views on

the optimal guidelines. It is critical to fight the temptation to
“improve” the standard directory structure ☺. Cadence OVM-ML
contribution contains a de-facto standard directory structure and
packaging guidelines that were already adopted by many users and
commercial VIP providers within the last seven years. This gets us to
rule #3: keep your global name space clean and adhere to the
OVM packaging guidelines.

6. TEST CREATION AND RANDOMNESS
In Coverage Driven Verification methodologies, the user creates a
smart testbench that can randomly create legal stimuli. Tests are
layered on top of the testbench to target coverage holes. While the
concept is simple, a flexible solution is needed to allow steering the
smart machine without major re-writes. For example, one technique
for nailing a corner case is reactive generation where traffic is
generated taking the design state into account. Or users may want to
use both procedural style to dictate order of transactions, or
declarative constraints to alter the randomization (this can be
achieved by the OVM factory). Using a randomization scheme that
does not accommodate broad variety of test requirements may yield
expensive re-write of the randomization scheme. OVM introduces
the sequences mechanism that answers multiple necessities that test
scenarios impose in a reusable way. Sequences are a set of
interesting data-items that are tagged with a name, and can be reused
later by tests and by other sequences. Sequences can be
parameterized (for example a configuration sequence can include an
enumerated type field that allow the user to select the type of initial
configuration via constraint). OVM Sequences include much
functionality and built-in solutions that the user may not know or
care about in his implementation code. However as coverage goals
compel an unplanned randomization, they are flexible enough to
serve the new need. And with this we have rule #4: Use the OVM
sequences

7. EXTENSIBILITY
As was discussed in the introduction, in verification you can and
should plan as much as possible to accommodate wide-range of
scenarios. However, when you build generic components you can
never predict the unique configuration and traffic that will be
necessary to place a DUT in a certain state. In some cases, users do
not fully comply with the protocol or optimize it for a certain project.
The e language, with it’s Aspect Oriented Programming (AOP)
nature, was brilliantly designed with the “design for a change”
concept in mind. Every construct of the language can be modified or
further characterized without touching the original source code. For
example, you can add more struct members (constraints, coverage
definitions, assertions etc.) to a packet definition without deriving a
new type and introducing it to a system. OVM suggest two SW
design pattern solutions to enable extensions: Callbacks and type
safe factory.

7.1 CALLBACKS
Callbacks are pre-determined strategic points in time in which the
reusable environment developer allows users to introduce their own
procedural extensions. A user can attach callback classes to various
components and define his extension logic to be executed by the
reusable environment. Callbacks from multiple originators can be
combined and ordered into a single joint environment. The major
drawback of callbacks is that the developer needs to predict the
callback location in advance -- in contradiction with our initial
assumption that such predictions can not be made. Other
disadvantages of callbacks include risks for hard-to-debug spaghetti
code (as opposed to structural enhancements), hard-to-add

declarative class members (can add these to the callback class but
need to provide much context to it), and the risk of external
interference with callbacks that should be executed in a certain order.

7.2 OVM FACTORY
The OVM factory is an advanced implementation of the classic
software design pattern that is used to create generic code,
deferring to run-time to decide the exact sub-type of the object that
will be allocated. In functional verification, introducing class
variations is frequently needed. For example, in many tests you
might want to derive from the generic data item definition and add
more constraints or fields to it. You might want to use the new
derived class in the entire environment or only in a single interface.
Both infrastructure components and data-items can be allocated via
the factory. For example you can modify the way data is sent to the
DUT by deriving a new driver. The advantage of factory over
callbacks is that every polymorphic construct can be extended. You
can prepend, append and override virtual tasks; you can add class
members -- all in a structural easy-to-debug manner. The
disadvantage of a factory is the lack of ability to combine orthogonal
extensions.
And here is rule #5 (for OVM-SV only): Allocate components and
data-items using the OVM built-in factory.

8. MESSAGING REQUIREMENTS
The rules in this paper discuss important concepts such as
architecture, randomness, extensibility, etc. One important topic that
can force code modifications is trace messages. The main issue with
the good old $display is the lack of ability to control the printed
message from outside (without original source code modifications or
re-compilation). Whether or not you use facilities such as directing
output to a file, change the format and much more, surely you will
find yourself enabling and disabling trace messages for areas that are
suspected to be malfunctioning. The OVM report mechanism
provides advanced message services. With the reporting mechanism
is it important to use the macro messages as opposed to direct
ovm_report_* calls. This is the only way to avoid expensive
redundant string manipulation. The message macros contributed by
Cadence were added to the joint release of OVM2.0.3. Another key
feature to enable message consistency is related to the field
automation capabilities that are also macro enabled. Asking the users
to manually implement the do_print() functionality is not only extra
development and maintenance effort, but it is a sure path for
inconsistency in integration. When the integrator picks-up
environments that originated from different resources, they are still
interested in a coherent log files from their joint testbenches. They
also expect format directives (such as print_options) to be served. I
know that we all trained to despy macro usage at all cost, and we
understand macro limitations. However, the main differences that we
see out there between the field automation macro users and the ones
that preach against it, is that those that recommend not using it have
never tried to do so (☺). The field macro automations are simple,
they work, are easy to maintain and rarely require debug. You can
read more about it in forums and from users that were curious
enough to try them out.
So write this one down as Rule number rule #6: use a messaging
facility

9. OBJECTIONS AND END-OF-TEST
MECHANISM
In simulation, agents may have a meaningful agenda to be achieved
before the test goals can be declared as done. For example, a master
agent may need to complete all its read and write operations before

the simulation should stop. A re-active slave agent may not object
end-of-test as it is merely serving requests as they appear without a
well-defined agenda. Only once all the components that raised end-
of-tests objections drop them, the simulation can stop. The first
objection mechanism was introduced in eRM 1.0 (2002) to facilitate
this need. The objection mechanism is hierarchical and allows
containers to own their sub-components objections, add drain-time or
perform any other operation before propagating the objection up the
hierarchy. This feature is needed for vertical reuse as systems that
manage their own objections can be combined into a larger system.
Without an agreed-upon end-of-test mechanism, the integrator would
have to invent a mechanism to synchronize between, multiple end of
test solutions and may have to modify the implementation of a
reusable component that unliterary forces end-of-test.
Rule #7: Use the OVM end of test mechanism

10. MULTI-LANGUAGE (ML) SOLUTIONS
Multi-language design and verification is not a goal by-itself; it is
more a fact-of-life and an opportunity. No one chooses to build a
multi-language testbench, but they surely want to leverage all
verification assets without re-writes (which is an extreme case of a
tweak). However, users choose a methodology. Whether you already
have multiple internal VIPs implemented in multiple languages or
whether you will run into the requirements in the future, you
probably need a multi-language methodology. The TLM is a multi-
language (e, SV, SC) standard that facilitates transaction level
communication. It reduces the need to learn and bridge between
facilities with different semantics. However, some think that all you
need for multi-language simulation is the TLM functionality and a
free weekend, but TLM is just the basics of ML operability. Central
configuration mechanism, traffic randomization and coordination,
messages and other facilities are needs for practical multi-language
simulation. OVM uses TLM for all standard languages and examples
for multi-language usage for both TLM1 and TLM2 is demonstrated
in the Cadence OVM contribution and Cadence releases. Rule #8:
Choose a multi-language methodology

11. COMPLIANCE CHECKLIST
Code generators are efficient productivity tools. But if you did not
buy a commercial VIP, you still need to go through the protocol
specifications and complete the wished for OVC. While template-
driven solutions can start the verification engineer on the right path,
he can still stray from the methodology. It is the OVM Compliance
Checklist, and associated automatic checkers, that can assure the
author builds and the integrator receives OVCs compliant to the
methodology, leading to tweak-free reuse.

The OVM compliance checklist contains the following categories:

• Packaging and Name Space – guidelines on how to
package environments in a consistent way for easy
shipping and delivery.

• Architecture – Checks to ensure similar high-level
topology for OVM environments. This is critical for
understanding a new OVC, its configuration and class
hierarchy.

• Reset and Clock – various reset and clock topics
• Checking – touches the self checking aspects of reusable

OVC
• Sequences – practices on creating reusable sequence

library and correct setup

• Messaging – defines message methodology to allow user
to efficiently debug environment and reduce support
requirements

• Documentation – captures the requirement for a complete
documentation requirements

• General Deliverables – more delivery requirements
• End of Tests – minimal end-of-test requirements
• OVM SV specific compliance checks – checks that are

specific to OVM SV implementation.

Rule #9 for tweak-free reuse: Use the ovmworld.org OVM
compliance checklist

12. AUTOMATIC COMPLIANCE CHECKING
Many customers who have been using the OVM and applying the
compliance checklist have requested an automated tool for checking
VIP against the checklist. AMIQ, an EDA company that is part of the
growing OVM ecosystem, has enhanced a tool called “DVT” to
automate OVM compliance checking. DVT is an Eclipse-based
integrated development environment (IDE) targeted at increasing
productivity of OVM SystemVerilog and e developers.
DVT also provides a broad range of OVM compliance review
features based on the OVM Compliance Checklist, including:
- Overview of the environment architecture
- Customizable checks (grouped in categories including architecture,
stimuli, checking, coverage, messaging, reset
handling, packaging, etc.)
- Statistics (sequence library, checks, coverage groups, etc.)
- Graphical user interface (filters, search, etc.)
- Direct jump to problematic source code
- Integrated review and development (checks are refreshed as you fix
errors)
After performing the analysis and adjusting the reusable environment
accordingly, the VIP developer can export an OVM compliance
HTML report to be delivered with the verification IP.
For more information on DVT please refer to
http://www.dvteclipse.com

And the final rule for today is rule #10: Use an automatic
compliance checker

13. SUMMARY
As the title promises OVM enables a way to avoid tweaking reusable
code. You probably noticed that it is also a powerful catalyst for
ease-of-use and productivity. There are lots of contradicting
verification methodology recommendations available in books and
blogs. This paper outlines a set of practical proven guidelines (as
opposed to lab level recommendations) for developing reusable
verification components. The important thing to remember is to
follow the user manual recommended methodology and don’t take
shortcuts. On December 23, 2009, the Accellera Verification
technical sub-committee voted that the OVM and it’s source-code
will be the basis for an industry standard library. This is great news
for the SV user communities that were fragmented between
commercial and home grown methodologies, and it’s also another
reason to embrace OVM. Exciting times are a head!

