Tweak-Free Reuse Using OVM

Sharon Rosenberg
Cadence Design Systems, Inc.
2655 Seely Avenue
Telephone #, 1-408-9146341
sharonr@cadence.com

ABSTRACT

Most companies today aim to leverage existing desigh
verification IP as part of the design and verificatilonv. Internal IP
is developed, tuned and reused over time to becomega
company asset and can be a competitive differentiathey
requirement for developing a central verification IPRYiepository
is to avoid the need to understand the implememtakatails or
modify existing IP for use in follow-on projects. In warg with
many large and small corporations, we find that wimiéeny
companies strive for such cross-company (and cross-project)
component reuse, only a few manage to achieve tiaik ghis
document describes the recurring practices that allompeaies to
excel in productivity and reuse.

1. INTRODUCTION

Unlike design, where specifications can (theoretic@lly capture
the desired functionality in a complete and deterstimform, the
verification process is fluid, dynamic and unpreditga A
verification environment architect cannot foresee eachevery
corner case test for a certain project, or future projhaetsmay
involve reuse as you move between block and systeet (vertical
reuse) or reuse between projects (horizontal reuse). Suackss
area involves a thought-out methodology that incuge-front
planning, consistant organization combined withahity to react
to unplanned design changes or esoteric test requitenigre OVM
has proven to be an ideal platform both for dealiith these issues
and for implementing reusable verification componeniés paper
covers the essence of OVM and the unique charaatsribit enable
both the initial correct construction of reusable veaifion
components and the ability to adopt changes to foenmnseen
requirements.

2. THE BIG STORY OF OVM

OVM is a multi-language methodology for the efficien¢ation of
reusable testbenches (SV, e, SC). It is based on therpro
foundations of eRM, factors in multiple perspectigaas expertise
from multiple vendors (mainly Cadence and Mentor), artdred to
user’s needs (OVM Advisory Group). For two years, OVM-S¥ ha
demonstrated huge success and momentum withindhbstiy.
There have been thousands of downloads from ovmweogld.o
adoption and standardization by many corporatiortsjeaasers and
a massive user-community that has already developet more
commercial and internal verification IP than with amiyer
methodology. What is unique about OVM is that i isingle, well-
designed methodology. Like other methodologiesiaviges a base
class library and automation, (OVM automation is aapable,
greatly appreciated and constantly adopted by batsusd other
commercial methodology develop&3, but it also provides a high-
level concept and a recipe for buildingisable components. This
high-level methodology is the class library backb@me] the power

automation serves this high-level goal. The compahishave been
successful in deploying a verification methodologgerstand that
while some features are useful and should be usedsgraading
and maintenance, other featuresauitical to reaping the benefits of
the OVM. For example, you may choose not to use the
synchronization classes (ovm_event_pool, ovm_barriet) pad
implement a different facility to achieve this gdélyou decide not
to adhere to the consistent OVM topology, you wélfacing more
severe implications. Independent islands of usergeards will
result in different verification components that maylimited to

their initial development needs, harder to read anénstahd by
others, and prevent co-existence and further reuse. $hefrthis
document is dedicated to the high-level concep@\df1 that put
you in the same league as the top-performing vetidindeams.

3. OVM STANDARD TOPOLOGY AND
HIGH-LEVEL ENCAPSULATION

Object-oriented programming methodology calls for elassl
reuse, meaning that each class has a well-definadtsig of
external services it provides and an internal impleatent that
should not externally accessible. This contrast betvtbe server
class and the client classes allows distributedldpugent and
maintenance of classes. As in a software developpreject,
construction of verification components also bendfiam this
separation. However, verification environments havelnmore in
common between themselves than with generic software
development. Verification environments all need comgonent for
generating traffic, one for driving a data item into design and
another passive component for monitoring the bus aimycthecks
and coverage. For a specific interface, a set of saoiponent
classes needs to be instantiated and connectedslthee common
configuration information. For some protocols, laygris needed,
and other joint resources need to be shared. This redpoth
understanding and effort from the environment integr&addv
provides this for you using a well-defined topologyhahigh-level
encapsulation, which means the environment develoggmeeds to
to instantiate and pre-connect the classes in aat@amaanner within
a larger container. Standard configuration attributelsean
mechanism for controlling the reusable cluster of elassinimizes
the effort and understanding required. Figure 1 desctfileefirst
level of containment in an “agent” container. A stard OVM agent
has an active operation mode in which traffic is gaedrand
injected and a passive mode in which only coveragechecking is
performed. Passive agents are instantiated to mdRtbrdevices
and the standard configuration switch allows vertieake as
external interfaces become internal in larger systemisteare is a
need to stop traffic injection. For some protocolsltiple agents are
needed per interface. Per application, they needaiee he same
configuration, virtual interfaces, common resources(noopietc.
OVM standard recommends a reusable OVM verificationpmmant
(OVC). (See Figure 2) Changing the number of agentstend

environment configuration is achieved using the sisohd
configuration mechanism. Following the high-level @psulation is
key for both environment developers and users. Devidapieo
follow these guidelines adopt a correct basic topglpgeventing
thoughts such as “what was he thinking?” when atiexopology is
enthusically described within a code review. For ussspting a
new verification IP is simplified and the environméigrarchy is
clear for both commercial and internal verification IP.

ovm_agent

ovm_agent

R —— ovm_ -
 Config. tf.‘onf.lg_.
| sequencer Is_active:
,,,,,,,,,,,,,,,,,,,, b |—| OVM_PASSIVE
Sequences minn_addr:
seq_item_export | 16°h0100
ovm_mqn’itor uvm_moln'itor passive
7777777 1',’,,,,, I seq_item_port I "””"i””
| events | events,
| status, -] ovm_driver | status, -1
| data E data
Lovi] I ovi | | Y
interface interface
DUT DUT

Figurel. Standard OVM Agent in Active
and Passive M odes

Environment
| 1 Caonfia’
- num_masters=3
master agent slave agent arbiter agent num_slaves=2
e sequencer] R —— sequencer o sequencel Virtual
Corifig Conifig 1 Contfig interface
| 1 |
”””””” seq T | seq T
if if
monitor] | monjt'or v mon’it'or monitor
A i A | / e
events, evenf.% event, 7;‘;;11;"
| statuss M driver i statuss b driver | status, -bl driver st
data | data data .
,,,,,,,,,,,,,,,,,,,,,,,,,, L,,,,,q,,,,,\
H | [il 1 [vi il vl il w1
interface
DUT

Figure 2. Standard OVM Environment

Figure 3 illustrates complete testbench integratiastidd that the
testbench instantiates reusable verification environsn@®VCs), as
opposed to agents directly. This reduces the instaoriand
configuration effort and makes the environment coestdor all
verification IP. It is recommended to avoid short-autsh as
instantiating agents directly in testbenches owiffgrentiating
between an agent in active and passive modeRuSe#1 for tweak-
free reusetUse the standard OVM topology and configuration
attributes.

OVM Testhench

Module OVC .—»@
V’ -
Scoreboard

Coverage

il N
JANVA
1
| o] || [l

Protocol! OYC JProtocoQ g

((- J0jRI8USS) 80UsNhas [BULBYD OjNA ~

Figure 3: Standard OVM Testbench

4. CODE GENERATORS

Some may think “Isn’t using the clean OVM definitioroduces
overhead? Also there is much more rules to learn rigkftet
reviewing many OVM adoptions, users typically experen
significant speedup in both development and integraif standard
OVM environments. In addition, the standard hieramlhgws
further automation as more commonality is defined.eCgeherators
can leverage the canonical structure and produce begrieely
commented code, with ever more consistency betwempaoents.
The Incisive Verification Builder (IVB) is a wizard tecHogy that
produces OVM standard environments. The user proviges
about the desired verification IP environment. Basethe initial
input more questions are imposed untill the systeraddy to
produce a verification environment skeleton. A sdtradlization
action items is provided to guide users on how toplete the
protocol specific OVC environment. The IVB technoldys
benefits both to naive users (no need to know algtheelines and
rules) and experts alike (productivity tool, “why stebuktart from

scratch?”)Rule # 2 for tweak-free reuse is what many managers ask

their team to doStart your reusable environment development
from a proven code generator.

5. PACKAGING AND NAME SPACES

Name space collisions are the shortest path to uadheode
modifications. In order to prevent name collisions$s imperative to
use the language name-spaces construetsiirthe package
construct in SystemVerilog. But the packaging debnitn this
paper goes beyond keeping your global name-spaae Sé&andard
directory structure, a designated location for the d@ruation,
consistent file names, appropriate “include” or “impsthemes,
and version control facilities are all examples forkzaing
guidelines that seems insignificant -- but have shbuge impacts
on teams’ ability to share and maintain code. Whélekpging
requirements should be intuitive and enable reugenibre
important to adhere to a common set of packagingetjnies.
Experience shows that various companies have diffefewswon

the optimal guidelines. It is critical to fight thentptation to
“improve” the standard directory structu@ Cadence OVM-ML
contribution contains a de-facto standard directory stra@and
packaging guidelines that were already adopted bymsers and
commercial VIP providers within the last seven yeahss gets us to
rule#3: keep your global name space clean and adhereto the
OVM packaging guidelines.

6. TEST CREATION AND RANDOMNESS

In Coverage Driven Verification methodologies, the useates a
smart testbench that can randomly create legal stifrests are
layered on top of the testbench to target coveragesh@hile the
concept is simple, a flexible solution is neededltow steering the
smart machine without major re-writes. For example, enkrtique
for nailing a corner case is reactive generation wheffictis
generated taking the design state into account. €susay want to
use both procedural style to dictate order of transastior
declarative constraints to alter the randomization (thisbe
achieved by the OVM factory). Using a randomizatiohnesne that
does not accommodate broad variety of test requiremeaysyield
expensive re-write of the randomization scheme. OVikbduces
the sequences mechanism that answers multiple iteeegsat test
scenarios impose in a reusable way. Sequences arefa se
interesting data-items that are tagged with a nantecan be reused
later by tests and by other sequences. Sequencég can
parameterized (for example a configuration sequencéchrme an
enumerated type field that allow the user to selextype of initial
configuration via constraint). OVM Sequences includeim
functionality and built-in solutions that the usesymot know or
care about in his implementation code. However asreme goals
compel an unplanned randomization, they are flexéhleugh to
serve the new need. And with this we hawvke #4: Use the OVM
sequences

7.EXTENSIBILITY

As was discussed in the introduction, in verificatyou can and
should plan as much as possible to accommodate rardge of
scenarios. However, when you build generic compongntcan
never predict the unique configuration and traffic thi¢itbe
necessary to place a DUT in a certain state. In s@®es, users do
not fully comply with the protocol or optimize itfa certain project.
Theelanguage, with it's Aspect Oriented Programming (AOP)
nature, was brilliantly designed with the “designdarhange”
concept in mind. Every construct of the languagebsmamodified or
further characterized without touching the original sewrade. For
example, you can add more struct members (constragvstage
definitions, assertions etc.) to a packet definitigtnout deriving a
new type and introducing it to a system. OVM sugtyee SW
design pattern solutions to enable extensions: @etband type
safe factory.

7.1 CALLBACKS

Callbacks are pre-determined strategic points in timehich the
reusable environment developer allows users to introth&geown
procedural extensions. A user can attach callbackeda®s various
components and define his extension logic to bedrd by the
reusable environment. Callbacks from multiple origiratan be
combined and ordered into a single joint environmEné major
drawback of callbacks is that the developer neegsadict the
callback location in advance -- in contradiction watlr initial
assumption that such predictions can not be maderOt
disadvantages of callbacks include risks for hard-tatdespaghetti
code (as opposed to structural enhancements), hard-to-add

declarative class members (can add these to the daltbess but
need to provide much context to it), and the riskxaérnal
interference with callbacks that should be executetidertain order.

7.20OVM FACTORY

The OVM factory is an advanced implementation ef¢hassic
software design pattern that is used to create gectie,
deferring to run-time to decide the exact sub-type efthject that
will be allocated. In functional verification, intrading class
variations is frequently needed. For example, in niasig you
might want to derive from the generic data item dééniand add
more constraints or fields to it. You might want te tise new
derived class in the entire environment or only imalsi interface.
Both infrastructure components and data-items canl@eastd via
the factory. For example you can modify the way éatent to the
DUT by deriving a new driver. The advantage of factorgr
callbacks is that every polymorphic construct caextended. You
can prepend, append and override virtual tasks; yoaddrlass
members -- all in a structural easy-to-debug manner. The
disadvantage of a factory is the lack of abilityctambine orthogonal
extensions.

And here igule#5 (for OVM-SV only): Allocate components and
data-items using the OVM built-in factory.

8. MESSAGING REQUIREMENTS

The rules in this paper discuss important concepts asic
architecture, randomness, extensibility, etc. One tapbtopic that
can force code modifications is trace messagesniie issue with
the good old $display is the lack of ability to tmhthe printed
message from outside (without original source codeifications or
re-compilation). Whether or not you use facilities sashdirecting
output to a file, change the format and much monelgyou will
find yourself enabling and disabling trace messagearkas that are
suspected to be malfunctioning. The OVM report meism
provides advanced message services. With the regaongchanism
is it important to use the macro messages as opposkiect
ovm_report_* calls. This is the only way to avoid expive
redundant string manipulation. The message macrositmated by
Cadence were added to the joint release of OVM2 Brither key
feature to enable message consistency is relatée fitetd
automation capabilities that are also macro enaldigking the users
to manually implement the do_print() functionalitynist only extra
development and maintenance effort, but it is a sutefpa
inconsistency in integration. When the integrator gick
environments that originated from different resources, #nestill
interested in a coherent log files from their jointhesiches. They
also expect format directives (such as print_optiamggtserved. |
know that we all trained to despy macro usage &oal, and we
understand macro limitations. However, the main difiees that we
see out there between the field automation macro aserthe ones
that preach against it, is that those that recommenhdsing it have
never tried to do sa). The field macro automations are simple,
they work, are easy to maintain and rarely require de¥og.can
read more about it in forums and from users that werewsiri
enough to try them out.

So write this one down as Rule numbele #6: use a messaging
facility

9. OBJECTIONS AND END-OF-TEST
MECHANISM

In simulation, agents may have a meaningful agende tachieved
before the test goals can be declared as done. &owpdx, a master
agent may need to complete all its read and writeadipes before

the simulation should stop. A re-active slave ageay not object
end-of-test as it is merely serving requests as thegaaputhout a
well-defined agenda. Only once all the componerasrtised end-
of-tests objections drop them, the simulation cap.stbe first
objection mechanism was introduced in eRM 1.0 (20023 dilitate
this need. The objection mechanism is hierarchicdladiows
containers to own their sub-components objectiors daain-time or
perform any other operation before propagating thectibjeup the
hierarchy. This feature is needed for vertical reusgstemss that
manage their own objections can be combined intoget system.
Without an agreed-upon end-of-test mechanism, thgriatier would
have to invent a mechanism to synchronize betweatipte end of
test solutions and may have to modify the implentenaf a
reusable component that unliterary forces end-of-test.

Rule#7: Usethe OVM end of test mechanism

10. MULTI-LANGUAGE (ML) SOLUTIONS

Multi-language design and verification is not a dogitself; it is
more a fact-of-life and an opportunity. No one choogdsiild a
multi-language testbench, but they surely want terage all
verification assets without re-writes (which is an exearase of a
tweak). However, users choose a methodology. Whethealyeady
have multiple internal VIPs implemented in multitdeguages or
whether you will run into the requirements in the futyau
probably need a multi-language methodology. The T&M multi-
language (e, SV, SC) standard that facilitates traioselevel
communication. It reduces the need to learn and bhidtgeeen
facilities with different semantics. However, somakiihat all you
need for multi-language simulation is the TLM funaotidity and a
free weekend, but TLM is just the basics of ML opéitgb Central
configuration mechanism, traffic randomization and ciatibn,
messages and other facilities are needs for practidétienguage
simulation. OVM uses TLM for all standard languaged examples
for multi-language usage for both TLM1 and TLM2 is de&rstrated
in the Cadence OVM contribution and Cadence rele&sde #3:
Choose a multi-language methodol ogy

11. COMPLIANCE CHECKLIST

Code generators are efficient productivity tools. Bybii did not
buy a commercial VIP, you still need to go throughphetocol
specifications and complete the wished for OVC. Wleimplate-
driven solutions can start the verification engineethenright path,
he can still stray from the methodology. It is the O\@dmpliance
Checklist, and associated automatic checkers, #massure the
author builds and the integrator receives OVCs compl@the
methodology, leading to tweak-free reuse.

The OVM compliance checklist contains the followiregegories:

e Packaging and Name Space — guidelines on how to
package environments in a consistent way for easy
shipping and delivery.

e Architecture — Checks to ensure similar high-level
topology for OVM environments. This is critical for
understanding a new OVC, its configuration and class
hierarchy.

* Reset and Clock — various reset and clock topics

e Checking — touches the self checking aspects o&ldels
ovcC

e Sequences — practices on creating reusable sequence
library and correct setup

« Messaging — defines message methodology to allew us
to efficiently debug environment and reduce support
requirements

« Documentation — captures the requirement for a complete
documentation requirements

e General Deliverables — more delivery requirements

¢ End of Tests — minimal end-of-test requirements

e OVM SV specific compliance checks — checks that are
specific to OVM SV implementation.

Rule #9 for tweak-free reusdJse the ovmworld.org OVM
compliance checklist

12. AUTOMATIC COMPLIANCE CHECKING

Many customers who have been using the OVM and aqaptiie
compliance checklist have requested an automatédbtochecking
VIP against the checklist. AMIQ, an EDA company tisgpart of the
growing OVM ecosystem, has enhanced a tool callédr'io
automate OVM compliance checking. DVT is an Eclipssed
integrated development environment (IDE) targeted atasang
productivity of OVM SystemVerilog and e developers.

DVT also provides a broad range of OVM complianceaevi
features based on the OVM Compliance Checklistudtiob:

- Overview of the environment architecture

- Customizable checks (grouped in categories includingitecture,
stimuli, checking, coverage, messaging, reset

handling, packaging, etc.)

- Statistics (sequence library, checks, coverage gretp$,

- Graphical user interface (filters, search, etc.)

- Direct jump to problematic source code

- Integrated review and development (checks are refreshgalifix
errors)

Atfter performing the analysis and adjusting the rblesanvironment
accordingly, the VIP developer can export an OVM coamae
HTML report to be delivered with the verification IP.

For more information on DVT please refer to
http://www.dvteclipse.com

And the final rule for today isule #10: Use an automatic
compliance checker

13. SUMMARY

As the title promises OVM enables a way to avoidatkireg reusable
code. You probably noticed that it is also a poweréathlyst for
ease-of-use and productivity. There are lots of cordtiadi
verification methodology recommendations availablbdoks and
blogs. This paper outlines a set of practical prougdedines (as
opposed to lab level recommendations) for developingatele
verification components. The important thing to rerbenis to
follow the user manual recommended methodology antt thke
shortcuts. On December 23, 2009, the Accellera Matibn
technical sub-committee voted that the OVM and isree-code
will be the basis for an industry standard library. sTikigreat news
for the SV user communities that were fragmented detw
commercial and home grown methodologies, and it's atether
reason to embrace OVM. Exciting times are a head!

