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Abstract— 

Simulation of today's SoC devices is not easy.  A typical SoC in 

the 'mobile' application domain consists of one or more 

processors, one or more levels of bus fabric, one or more internal 

memories or caches, one or more off-chip memory interfaces, one 

or more peripheral interfaces, one or more timing/control 

resources, one or more specialized processing elements or data 

pipes, etc., etc. 

The emphasis is normally on the 'more' than the 'one' as process 

technologies scale to allow us to integrate ever more levels of 

detail in one device, and mobile device manufacturers compete 

for functionality and performance. In 2011 the average high-end 

mobile SoC gate count was 104 million gates [Gary Smith 2012] 

and growing by 10% per year. 

That's a lot of gates to simulate at once. 

Adding hardware-assistance such as emulation can solve some 

verification problems, but for many projects there remains a 

need to simulate the final integrated RTL and/or gate-level SoC 

design in its entirety, at least to check power up, boot up from 

reset, and key architectural interactions. Given this need, many 

project teams still perform a significant portion of verification on 

this medium. 

Apart from the main challenge of scale and performance, which 

we will address, there are other challenges. Those simulations 

take the longest to run and are also the hardest to debug, and the 

hardest to develop. Providing the right stimulus to exercise 

system-level and chip-level concerns is not easy. Stimulus has to 

be orchestrated so that the different peripheral features of the 

SoC are being exercised in concert with test firmware running on 

the processor or more likely on multiple processors. 

In this paper we present a set of standard, freely available, easy 

to use techniques to accelerate all aspects of SoC simulation, 

allowing more rapid development, regression, and debug cycles 

during the integration phase of an SoC project. 

The techniques draw upon familiar concepts: 

Economics: 

 How to simulate more by simulating less 

Energy Efficiency: 

 How to increase power by reducing power 

Environmental Care: 

 Reducing overheads with zero-impact linkage 
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I.  INTRODUCTION 

The main challenges of today's SoC design/verification 
activities are: 

 Integration and partitioning of complex designs 

 Simulation and regression iteration time 

 Time taken for debugging of failing tests 

 Unnecessary debugging of incomplete testbenches 

 Productivity hit of wasted simulation runs 

 Explosion in reuse and configurability 

We seek to make improvements in all of these, but 
especially to build a strong productive foundation of a high 
performance simulation, the benefits of which can affect 
several aspects of the project. 

Simulator economics are well known. The design and 
verification structure is encoded into a huge data structure with 
nodes that are visited to propagate events and data values 
according to temporal and logical rules. This is typically an un-
cacheable data structure and just traversing it contributes much 
to simulation time. 

For general optimization of the simulation data structure, 
we consider approaches that can allow us to simulate fewer 
gates, and still achieve a particular verification objective. 
Approaches such as using a chassis to allow suppression of 
unused design content, or use of parameterization to reduce 
channel counts when not needed. 

Having reduced the overall data structure size, and given a 
certain amount of gates in a design, there are other 
optimizations we can apply to make our simulation more 
'energy efficient'. Of all the millions of connections being 
simulated, static nodes cost less to simulate than toggling 
nodes. Techniques drawing upon existing power management 
ideas to accelerate simulation are discussed here. 

A set of Design for Verification rules is explored; these 
seek to incorporate extra features in the specification of the 
DUT which are there only to benefit accelerated verification 
(and maybe also production test) by avoiding needless 
operations that consume large chunks of simulation time when 
compared to the cycles spent actually performing the 
verification objective. 

Finally, and our main topic in an SoC context, is to describe 
the various approaches to co-ordinated stimulus between test 



firmware running on the processor core or cores, and HVL 
stimulus on the peripherals and pins of the SoC DUT. 

Two widely used approaches for linkage between the two 
(commonly known as the 'Executive' and the 'Trickbox' 
approach to software-driven stimulus) are documented and 
analyzed to show the overhead and impact of the linkage in 
each case, and a third approach is introduced - 'Zero-Overhead 
Optimized' (ZOO) software-driven stimulus - which reduces 
the linkage to zero, enables a rich API between the worlds of 
test firmware and HVL stimulus, and provides several other 
benefits to the user for debug and development. 

When all the approaches described in this paper are used, 
SoC simulation regression run time can be cut by significant 
amounts, even 50%-75% depending on the stimulus and 
design.  Each of the techniques described offers performance 
gains of 10% or more and are worthy of consideration. 

These are tried and tested techniques that the Author has 
been familiar with since the early 1990s, and which still apply 
today, remaining as unused optimizations by many verification 
teams who suffer regression performance blight as a result. 

They have demonstrable effect on simulation throughput 
and verification throughput (which is a function of simulation 
throughput and verification efficiency per unit of simulation). 
Eliminating waste is a big part of the process. 

The result is simulation that is more relevant, that gives 
results per cycle, over fewer cycles, taking less hours, keeping 
regression time down to a manageable loop, and easier debug. 

The optimizations proposed here are invitations for you to 
invest in activities and improvements that will give you a 
favorable return in overall time-to-money productivity. 

Simulation Time is the most valuable resource in SoC Verification 

A. Useful Simulation Time 

An SoC simulation consists of activities that contribute 
differing amounts of value to the overall verification objective. 
Those activities include: 

 waiting for power, clock, reset to become stable 

 configuration of on-chip infrastructure 

 configuration and maintenance of protocol elements 

 preparing and/or fetching initial state, memory content 

 fetching and preparing the testcase stimulus 

 executing the testcase stimulus 

 waiting for response to checkable stimulus items 

 

 

 

 

 

 obtaining response from the SoC to do checking 

 repetition of stimulus with differing parameters 

 repetition of stimulus on different instances 

A typical SoC simulation timeline may look like the figure 
below, with many of the above activities taking up runtime. 

When we extract the ratio of actual verification to 
'overhead', it is clear that an investment in removal or reduction 
in overhead will have payback in regression time and hence 
team productivity. 

When the simulation includes an element of Software as 
stimulus, running on a DUT processor core, it is desirable to 
speed up the processor execution as well as the overall SoC 
simulation. The key to accelerating that software execution is 
to isolate it from the much slower logic simulator

[1]
. 

B. Indirect Benefits of Optimizing Simulation Time 

In making improvements in simulation performance, we 
achieve a side-effect of improvements in: 

 debug recording - less overhead to record waves and 
smaller wave databases to use in debug 

 debug time - easier for the user to see problems or 
correlate them to their root cause, shorter time spans. 

C. Using realistic Software stimulus in verification 

A side benefit of simulation using software running on a 
processor core (or model) in the DUT is that the software need 
not only be 'test' software that is otherwise a throwaway. 

Some routines from the real firmware co-development 
project can be incorporated here, which leads to more realistic 
interactions with the hardware of the SoC, improving both the 
quality of the hardware and of the firmware. 

Diagnostic code can be incorporated here to exhaustively 
test hardware interfaces, and some functionality (although most 
functionality should be verified strictly at block-level or 
subsystem-level and there is no benefit in repeating that at SoC 
level). 

For cases where more extensive functional verification is 
required at SoC level, for interactions that cannot be verified at 
a lower level, use of real driver code enables extensive 
functionality coverage and some interface coverage

[2]
. 

Convinced that some investment is worthwhile in this area 
to get a productivity return? We start with some easy 
fundamental improvements. 

 

 

 

 

 

 

Figure: Typical SoC Simulation Timeline 



II. SIMULATE MORE BY SIMULATING LESS 

Can we do more with less? We discuss the economics of 
SoC scale simulation. Economy of the simulated DUT footprint 
is worthy of analysis. 

A. Chassis Approach to SoC simulation 

The ultimate approach to optimizing the DUT footprint in 
the simulator is to build the SoC DUT as a chassis, having 
configurable elements for each major subsystem in the design 
specification. The DUT will probably already be divided up 
hierarchically along those lines. One possible investment is to 
provide a configurable subset that is compiled or elaborated, 
depending on the requirements of the test suite being run. 
Various approaches are possible here and all are useful; some 
combination of them may be the best approach for a given SoC 
DUT: 

1) Use Stub modules for unused blocks 
For each configurable subsystem, create a stub module 

which can be instantiated as a proxy for that subsystem in its 
inactive state, i.e. it should be instantiatable just as the real 
module is, and have outputs appropriately tied off so that it 
does not have a negative effect on the remainder of the SoC. 
Creating stub modules is good practice for incremental SoC 
development and integration anyway. We are suggesting that 
they are not thrown away - instead maintain them as first class 
deliverables which are 'views' of the module that take up the 
least possible simulation footprint at runtime (and compile time 
- which may also be a significant benefit when RTL 
compilation time can be saved) 

2) Use Behavioral Models for lightly used blocks 
Even if stub modules are not practical, e.g. because the 

module has to remain partly functional or must operate for 
some small portion of the total simulation, it is good practice to 
use a behavioral model as a substitute, provided that we are not 
currently verifying that module, there is no impact on overall 
'verification quality' while substituting it for a functional 
model. This is good practice for CPU or other processing 
elements anyway - leading to good debug capabilities as well 
as more instructions per second (IPS). This good practice 
benefits the performance because there are fewer gates to 
simulate, and the processor core by now is 100% verified. 

B. Optimize Multiple Instances 

When an SoC contains multiple instantiations of a module 
of complex functionality, it is necessary to verify each instance 
at SoC level to ensure that it is properly connected up to buses, 
interrupts, clock and low power signaling, and pin/pad 
connections. 

However, it is only necessary to do that once, in a test suite 
which has that particular aspect of the verification as its goal. 

All other test suites that need to use that module 
functionality can probably use a single instance, so there is no 
need to instantiate N instances for the remainder of the 
functional test suite at SoC level, provided we have taken care 
of verification of interactions at least once, and for the 
remainder, that we have taken care to ensure such interactions 
are benign. 

The multiple instances may be complex peripherals, e.g. 
networking controllers, but one obvious manifestation of this 
approach for today's SoCs is in the multicore CPU area. Apart 
from verification of interactions, coherency, involving more 
than one CPU, the remainder of the SoC testing needs only one 
CPU, and the other or others can be removed from runtime. 

C. Configure Selective / Unused Functionality 

What we have implied is that on a per test suite basis, or 
even on a per test basis, we can configure the DUT build for 
simulation, so that modules which are not used for this test, or 
this batch of tests, are ignored, or removed, or optimized out. 

Having a toplevel configuration profile is a useful 
approach, as the management of this set of DUT variants can 
be difficult. Above all, although there is a big runtime payback 
for reducing the DUT footprint, we must preserve the integrity 
of our verification; that would be too great a cost. 

D. Tradeoff between Compile, Elab and Runtime Control 

RTL and HVL have mechanisms in the languages to enable 
the chassis approach and configurability thereof, either at 
compile time, or elaboration time. What about runtime? 

III. USE POWER MANAGEMENT SPEEDUPS 

We describe here some techniques to increase the 
Verification Power of your simulation farm by simulating your 
SoC using its Low Power modes. Some may seem obvious. 

If you cannot reduce the simulation footprint by the 
"Simulating Less" techniques mentioned in the previous 
section, you can still optimize the footprint's impact on SoC 
simulation runtime in many ways. 

A. Put Unused Peripherals to Sleep 

If your SoC has power management configuration logic 
built-in that lets you control which functions of the device are 
clocked and which are not, then use those features to optimize 
runtime. 

At the expense of normally just one write to an SoC 
configuration register, many gate-transitions of simulation load 
can be saved by not clocking whole blocks of synchronous 
logic. 

Each testcase can start with a minimal configuration for 
only essential operations on the chip being clocked, and add 
only those peripherals or functions that are involved in the test. 
If the testcase involves different functions during different 
phases of the test, wake them up and put them to sleep as 
required. Normally the 'cost' of that one write, even if repeated 
several times during different phases of the simulation, is 
repaid by keeping large amounts of DUT gates and flops static 
rather than toggling. 

If as a result of this runtime configuration, your SoC DUT 
is not consuming as many milliwatts of battery power, then 
neither is it consuming excess simulation time. 



B. Align Clock Frequencies 

If there are multiple modules on chip with configurable 
clocking frequencies, set them up so that modules do not waste 
time waiting on a slow 'partner' module - slow them down to 
operate at common speed, or if that does not make sense for 
your design, speed them up to a common speed. 

Have an overall approach to choices of operating 
frequencies of the various subsystems of your SoC to give 
benefits for simulation efficiency while preserving the integrity 
of your verification requirement for this test. 

For example, if one peripheral is unnecessarily slow 
compared to the bus or CPU, then simulation cycles for all 
gates in the design are wasted on the slow part, while each 
CPU bus access to it waits for delay cycles. It is worthwhile to 
change the settings to minimize that effect. 

Sometimes those operating frequencies are dictated by off-
chip concerns e.g. a standard protocol operating at its normal 
frequency. Configure the whole SoC if necessary to match that, 
to avoid this disparity that wastes simulation-time-per-gate. 

Use this optimizing approach for all tests that do not require 
'real world' frequencies. 

Ask yourself "What are we verifying?" and optimize accordingly. 

If you are verifying 'at-speed' interactions, then setup your SoC 

operating frequencies for real world. Likewise, if you are validating 

performance at maximum specified load, you need real world 

interactions between SoC subsystems and off chip protocols. 

For all other verification, i.e. the majority of your functional testing 

at SoC level, optimize your SoC configuration for maximum 

simulation throughput. 

IV. USE DESIGN FOR VERIFICATION SPEEDUPS 

Design for Verification techniques can be applied to your 
SoC design in order to assist the verification process. We 
explore there here. These are techniques which add logic or 
structures inside the SoC design, specified in order to benefit 
accelerated verification (and in some cases also to benefit 
production test efficiency). 

The typical approach is to avoid needless operations that 
consume large chunks of simulation time when compared to 
the cycles spent actually performing the verification objective. 
This ratio of Simulator Efficiency depends on many factors and 
time taken to initialize or maintain the SoC operation in some 
context, is a significant factor. 

Examples of SoC operations that consume significant 
elapsed simulation time, for good functional reasons, but no 
benefit to simulation, are: 

 bus delays and timeouts 

 hardware or software watchdog timeouts and other 
timers 

 analog-driven reset initialization sequences, e.g. whole 
voltage or clock stabilizes 

 analog component bringup or synchronization e.g. 
PLLs or PHYs 

 calibration of interface delays e.g. DDR3 

A. Bus Delays and Timeouts 

The bus protocol and transfer mechanism should be verified 
separately at the appropriate level of module hierarchy. At SoC 
level there is no need for wait states or bus delays - configure 
them to the absolute minimum - and also bus timeouts should 
be set to the minimum effective value (avoiding false triggers). 

B. Watchdog Timeout Features 

Any other kind of timeout whether for software error 
recovery or in a hardware protocol such as Ethernet, should 
have a bypass mode which allows configuration out with the 
normal functional range of values, for effective verification. 

C. SoC Reset / Bringup Sequences 

Typically a power up sequence will await voltage stability, 
start any PLL/DLL functions, and then await clock stability, 
before releasing the majority of the SoC logic from reset 
allowing the main part of the simulation to proceed. Ensure 
both those delays can be bypassed for digital verification, 
where 'voltage' is instantly stable and clocks are 'instantly' 
active, locked and stable. 

Another reason to remove any clock stability logic and rely 
on an artificially stable clock is if recording waveforms for 
debug. Wave databases typically have optimization for periodic 
clock signals, but that optimization can break if there is an 
artificial injection of 'jitter' on the clock signal. Jitter rarely 
adds any value to SoC verification (except perhaps for that one 
test which validates the clock control mechanism under load). 

D. Protocol-specific Interface Delays 

Various protocols in common use today have overheads in 
their implementation that are required for electrical 
functionality but not for digital functionality. For example, look 
at the SDRAM progression from DDR to DDR2 to DDR3 to 
DDR4 - not only refresh, but calibration - in some cases initial 
one-off calibration, in others, a regular repeat of the calibration 
process, in order to train timing-sensitive data line capture. 

There is no need to spend time calibrating picosecond delay 
offsets for complex off chip memory arrays like DDR3 and 
DDR4, for the majority of SoC simulations. If it is possible to 
configure a DFV mode which bypasses the training phase, then 
do so. 

Again, only one simulation test needs to have that function 
enabled: the one which is responsible for verifying it. 

One caveat is that there may also be a set of 'performance' 
simulations for which accuracy may be paramount and some, 
not all, of the DFV modes discussed would need to be disabled. 

E. Analog / Mixed Signal Components 

Mixed signal blocks like PHYs or DLLs may be replaced 
with complex digital or behavioral models for SoC simulation - 
ensure these have DFV modes to fix clocks and reduce delays 
and timer count values of the type described above. 



F. Low-Power Design Features 

Even if your design does not need to run from batteries in a 
portable device, the optimizations described earlier may be one 
good reason to design in some low power features. 

If your SoC does not have those capabilities - consider 
adding them. The environment - and your verification 
environment - will benefit. 

V. CHOOSE OPTIMAL S/W STIMULUS APPROACH 

When a chip design includes one or more processor 
elements, they can be used to provide stimulus 'from the 
inside'. Processors are typically masters of activity, rather than 
being responsive to hardware activity. So in fact it is more true 
to say that they MUST provide stimulus from the inside. At 
least, they must respond to surrounding activity in such a way 
that a verification objective is met. 

However, the remainder of the SoC also requires stimulus 
(or controlled response) - the pins of the device, all the protocol 
interfaces, all the surrounding protocol VIPs, need stimulus to 
act in concert with what is happening on the CPU core. 
Someone has to plan and implement that overall set of stimulus 
and some technique or technology has to orchestrate it, 
facilitate its coordination, to meet the objective. 

In some cases, the software running on the CPU core is 
more than just test case code reading and writing a handful of 
registers; it may be real firmware implementing an API, indeed 
the verification objective may be to test the firmware layer as 
well as the SoC integration. In other cases, it exists only to 
facilitate HDL/UVM verification of integration pathways 
across the SoC. 

Design verification teams have been wrestling with this 
perennial problem since the earliest embedded CPU ASICs 
which were SoCs before the term SoC was coined. They want 
stimulus to the pins and hardware of the SoC, providing 
protocol input on its interfaces, and they also want a sequence 
of software operations to be run from within, executed code on 
the embedded processor core(s). 

In particular, they want those two kinds of stimulus to 
interact with each other, and assist in testing of both areas: the 
CPU and bus, and the peripherals and integration logic, and 
sometimes the firmware. 

At least three interfacing and synchronization techniques 
exist for coordinating software stimulus and HDL stimulus, 
each with varying degrees of initial development required: 

 the Software Executive API 

 the Trickbox interface, and 

 the Zero-Overhead Optimized approach 

We describe each of these approaches in turn and compare 
their advantages and disadvantages, in particular the amount of 
overhead they incur in DUT simulation time and the impact 
that has on overall productivity and return on upfront 
development investment. 

A. Option 1 - the S/W Executive Approach 

The Executive API is one approach to coordinating 
software stimulus running on an embedded CPU core with 
discrete HDL stimulus on the pins or hardware of the SoC 
DUT. 

The Executive approach to coordinating S/W and HVL stimulus 

has the HVL Stimulus (e.g. UVM sequences) as 'master' which 

invokes 'slave' S/W routines via an I/O interface on the CPU bus. 

It consists of an Executive - a software loop like an RTOS 
event dispatcher, running forever on the embedded processor 
core, which responds to available observed stimulus. 

1) How it works - Inputs - Processing - Outputs 
The Software loop requires an input mechanism from the 

Testbench, to cause Software activity and to specify which 
particular Software activity is required. This is typically some 
combination of an interrupt mechanism which exists already on 
the CPU / SoC integration logic, along with an I/O module 
allowing signaling to be read from the testbench. 

 
Figure: S/W Executive Architecture 

  
When the software loop is interrupted, the I/O is read and 

decoded in some kind of lookup table or case statement, and a 
subroutine or series of software instructions is selected and 
executed as a result. When the routine ends, the executive loop 
continues, ready for the next interrupt. 

2) Advantages 
It is difficult to think of many advantages, but there is one: 

this is the only approach where HVL is the master and software 
is the slave. That may be an advantage in some situations. 

3) Simulation Time Overheads 
The main overhead is that between each valid S/W stimulus 

routine triggered from the master HVL stimulus, there is a 
period of CPU cycles which is wasted overhead, either idling 
or in the process of responding to interrupt, decoding the 
required activity, calling the required routine, eventually 
returning from that routine, with all the related stack push/pop 
operations that interrupts and subroutines entail. 



4) Other Disadvantages 
The principal disadvantage, other than performance, is that 

the I/O interface needs to exist, consisting normally of some 
data I/O signaling (e.g. a GPIO module) plus some event I/O 
signaling (e.g. an Interrupt input signal). 

This approach necessitates either some modifications to the 
SoC architecture/RTL design purely to support SoC-level 
verification, or uses some existing peripheral I/O that happens 
to exist already in the DUT specification. This may be a 
limiting factor or more importantly prevents any verification 
that needs that I/O function (e.g. GPIO lines) for other 
operation as part of the verification - it becomes dedicated to 
the interfacing between HVL stimulus and the S/W executive. 

As a result, this approach is often used only with a 
temporary SoC integration chassis which augments the 
specified function of the SoC with an additional I/O capability. 
This complexity is a significant disadvantage and so this 
approach may be a niche solution. 

B. Option 2 - the Trickbox Approach 

A simpler approach to software-driven stimulus is to 
implement an adapter within the testbench, which acts as a 
memory-mapped device, connected to the DUT processor bus 
or bus-to-memory signals. This adapter implements the linkage 
needed to transform the specific bus access to the required 
testbench stimulus or action. 

 
Figure: Memory-Mapped Trickbox Architecture 

 
The adapter module is often referred to as a Trickbox. The 

technique is also referred to as a memory-mapped testbench 
interface. 

The 'Trickbox' approach to coordinating S/W and HVL stimulus 

has the Software stimulus as master, triggering HVL stimulus (e.g. 

UVM sequences) via a memory mapped adapter: the Trickbox. 

This linkage can be as simple as a predefined address value 
or range of values, and determination of which action from the 
set of supported testbench actions is to be triggered can be 
determined either by decoding some of the address bits within 

the decoded range, or by decoding the data value written to that 
address. 

1) Advantages 
The primary advantage is simplicity. Providing a self-

contained adapter written in HVL that recognizes bus activity 
and triggers HVL stimulus is the simplest way of implementing 
this linkage, even simpler if existing DUT memory-mapped I/O 
signals are used' 

Simplicity is a considerable advantage, because multiple 
team members may need to comprehend the code and the 
'magic' at different stages of the project. Also, debug may be a 
frequent occurrence, and is ideally a task that requires an 
understanding of the code and techniques, comprehensible by 
the design team as well as verification/HVL experts. 

The simplicity also applies to the implementation task 
which can be relatively straightforward, given the inflexible 
nature of this approach. A simple implementation can be used 
with multiple SW languages (C or assembly) and multiple 
testbench languages (SV or Verilog or VHDL) in multiple 
DUT/testbench architectures, without major engineering effort. 

2) Simulation Time Overheads 
The main disadvantage of this approach is the simulation 

time required to implement the simple linkage, to enable the 
software to convey instructions to the testbench to provide 
stimulus or other actions. 

Simulation time is spent not only on the bus cycles 
operating the linkage, but also on the bus cycles required to 
fetch the instructions that are used to create those bus cycles. 

[Verification teams often live with this overhead, but it can 
be eliminated, as we will describe shortly.] 

Interactions which cause HVL activity therefore are pure 
overhead - at least one opcode fetch and one bus write per 
instance. Interactions which retrieve data from addressable 
locations and then do some checking have more cycles of 
overhead - in the worst case the cycles taken to read data, apply 
a logical bit mask, compare the value with expected, and jump 
to a pass or fail endpoint, can be added as pure overhead PLUS 
the cycles required to fetch all of those masking and comparing 
and jumping instructions from memory. 

The ratio of simulation overhead to actual useful interaction 
is therefore at best 3:1, often 4:1 or 5:1. 

3) Other Disadvantages 
The Trickbox approach is inflexible and may be hard to 

extend from one project to the next, due to the fixed nature of 
the encodings that are passed across the linkage in address 
values and data values. 

This disadvantage can be minimized by a symbolic 
approach, where both software code (C or assembler) and HVL 
testbench code use a common set of enumerated identifiers to 
designate the functions that can be triggered. 

Often, an elaborate hierarchy of linkage sub-fields must be 
implemented in order to provide a more programmatic form of 
interface, e.g. using address values to select a function and data 
values to transmit some variable parameter to that function. 



C. Option 3 - Zero-Overhead Optimized Approach 

Both the Executive approach and Trickbox approach have 
overheads which consume simulation time. It is possible to 
eliminate those overheads, with some initial investment. 

The principal overhead is the runtime linkage that allows 
the software stimulus being executed on the processor to 
trigger HVL hardware stimulus or other testbench activity. 

The optimization we propose is to remove that runtime 
linkage overhead entirely, and replace it with a compile-time 
linkage that requires zero simulation time overhead. 

Instead of a sequence of software instructions to prepare, 
trigger stimulus, measure response, compare and check pass or 
fail, running at a particular program counter location within the 
runtime software image, we use the program counter directly, 
with a debug breakpoint mechanism, to trigger a pre-prepared 
sequence of HVL activity. 

Further, we enable the specification of the HVL code to be 
triggered in line with the remainder of the software stimulus. 
This requires the initial investment in customization of the 
compiler or assembler, or a wrapper and preprocessor for them. 

With this 'ZOO' optimized software-driven verification 
approach, a single stimulus file contains both the embedded 
software portion and the triggered HVL portion of the test 
stimulus, inline in one file with a shared syntax. 

 
Figure: Zero-Overhead Optimized SDV Architecture 

 

1) Implementation: Custom compiler/assembler tool 
A modified tool flow is required in order to take a single 

combined source language file and split it into the two parts: 
software to run on the processor and HVL to run on the 
testbench, synchronized by instruction address breakpoints. 

The instruction address for any given line of source code is 
not known until after compilation/assembly is done, and the 

ability to retrieve that information from the output of the 
compilation/assembly tool is required to set up the breakpoints. 

There are some options here. One is to customize the tool 
completely to enable additional syntax to allow HVL 
statements or triggers to be embedded in the software at the 
appropriate place, and to add a back-end code generator to the 
tool to write out the HVL breakpoints and the actions to be 
performed when they are hit. 

Another option is to create a wrapper around the software 
compiler/assembler tool which separates the two kinds of code, 
leaving only 'markers' in the S/W code, using existing legal 
syntax for pragmas or comments, that can be retrieved later 
from an enhanced listing output file that is already available as 
an output from the tool.  Such an enhanced listing file would 
need to retain (1) the address of the instructions generated and 
(2) the text of the marker tag (pragma or comment) preserved 
in the output in the correct location relative to the addressed 
instruction (otherwise some slight tool mods are required here) 

The wrapper preprocesses the combined source, runs the 
compilation or assembly tool, and then creates a file containing 
all the HVL breakpoint activities and linkage to trigger them 
retrieved from the instruction addresses in the enhanced listing 
output, keyed by the marker tags that passed through the tool. 

2) Implementation: Processor Breakpoint Logic 
The other half of the implementation of Zero-Overhead 

Optimized SDV is the instrumentation of the processor in the 
DUT, to interface to the testbench, so that the required HVL 
activity in the tool-generated breakpoint file can be triggered 
on an instruction-address basis during SW execution. 

A processor model, whether RTL, gate-level, behavioral 
model, or ISS with a bus wrapper, has a Program Counter that 
tracks the location instructions that are fetched, decoded, 
executed and retired. This Program Counter (PC) value must be 
made available to the testbench to enable stimulus 
synchronized to software execution. 

High level models will have a debug API to support tracing 
which can be used here. Behavioral, RTL, or Gate models will 
be successively more complex but the PC value is in there 
somewhere, it just has to be brought out. 

The complication here is modern pipelined processors, 
which have speculative execution, branch prediction, 
rewinding. In these cases an algorithm is required to indicate 
that the instruction at a particular PC address X has been 
committed, not just fetched, or decoded, or speculatively 
executed in the ALU. A useful triggering algorithm is to enable 
triggering of events to occur AFTER an instruction has been 
executed, i.e. when the PC leaves that instruction address and 
moves on to the next instruction. 

In addition, it is desirable to synchronize after any data 
accesses that occur as a result of that instruction, but prior to 
any that occur in the following instruction. Also it is necessary 
to take into account any effects of branches that are taken vs 
branches that are not taken. 

If necessary, a NOP can be inserted in the instruction 
stream in the case of complex series of operations that are 



indistinguishable, but that reduces the benefit of the technique 
so should only be used when necessary. 

Ensure that interrupts or exceptions (which can by 
definition change the flow of control unexpectedly) are 
accommodated, also the RTI or RTE statements which return 
from those routines. 

This requirement is a significant portion of the up-front 
one-off development effort. Consider using a standard 
behavioral model for your processor core that already has a 
committed instruction PC or trace capability. 

Once you have this signaling and/or state machine set up, 
encapsulate in an API which calls the generated HVL 
'breakpoint definition' file at the appropriate time, passing in 
the PC value. 

3) Example Stimulus Code 
Depending on the tools available for your project, and for 

the processor core in your DUT, and depending on your design 
decision either to customize the tool to allow embedded HVL 
constructs, or add a wrapper/preprocessor to extract those and 
later synchronize them, there are different ways of delineating 
and demarcating the source file. Both assembler and C code 
examples could use a similar syntax, and enable both simple 
Verilog task calls and UVM-style sequence invocations. 

TEST1: MOVI.W $1234,R0 
 MOV.W  R0,(DMA_CNTRL_REG_1) 
 //UVM StartDmaSequence(32'hA0000000,1); 
 CLR.W  (DMA_COUNT_REG) 
 MOV.W  (DMA_STATUS),R1 
 //UVM CheckDataRead(16'h0001,.mask(16'hAA00)); 
 JMP.S  TEST2 

Example 1. HVL Code embedded in Assembler Software comments 

4) Pre-canned macros 
Named HVL subroutines or macros can be used as 

shorthand to trigger common activities in a concise way e.g. a 
function to mask and check the next bus read prior to reading a 
result from a volatile I/O location, may be wrapped in a task or 
macro called 'CheckDataRead(data,mask)' with all the masking 
and comparison and jumping to pass or fail being done in zero 
'DUT time' in the HVL. 

5) Advantages and Disadvantages 
The advantage in simulation performance is clear. There is 

zero overhead at runtime, saving (N clocks x G,GGG,GGG 
switching gates) worth of unnecessary simulation effort. 

Requiring a custom compiler / assembler flow requires an 
initial investment and maintenance. To minimize this upfront 
cost, plan to reuse this investment across multiple projects that 
need this kind of SW stimulus approach (a slight disadvantage). 

Requiring a runtime state machine tracking the processor 
state and in particular the program counter for committed 
instruction execution requires initial investment and can be 
complex. This complexity can be perceived as a disadvantage. 
However, many other desirable benefits of debuggability are 
enabled by this approach (enabling a generic trace/disassembly 
and breakpoint mechanism for example) diluting the cost. A 
slight disadvantage. 

Requiring the link between two kinds of stimulus to be 
made at compile time rather than run time seems initially 
inflexible. However, the stimulus (both SW and HVL) does not 
change from one run to the next, and neither does the 
synchronization between the two, so there is no 'compile tax' to 
pay - the stimulus only needs compiled once, just as with the 
other approaches. Also, the Test specification is all in one file. 

Having a section of HVL code which is machine-generated 
as part of the automation flow rather than written by a user and 
checked-in, can be perceived as an added complexity. This 
should be minimized by adding clarity so that the file is 
comprehensible by the reader, including comments and naming 
that help to relate the triggered activity clearly to the source. 

VI. CONCLUSIONS 

Various standard performance improvements were 
described and are possible at the testbench architectural level, 
and they can be used and benefitted from in conjunction with 
(and independently of) the performance improvements of 
specialist EDA vendor tools e.g. CodeLink, MC2 and inFact. 

Simulation Time is the most valuable resource in SoC Verification 

Providing the foundation of simulation performance 
optimizations described here is a good start, and worthy of up 
front architectural design, before the inefficient testbench takes 
root in the project and is hard to change. 

VII. RESOURCES 

Other solutions are available for SoC-level software-driven 
verification, providing further performance optimizations 
and/or abstractions for more powerful verification. 

1) Graph-based stimulus and SDV 
If a more comprehensive mapping between software and 

UVM stimulus is required, graph-based solutions such as 
Mentor's UVM Software Package used with Mentor inFact

[3]
 

can be used. 

2) Codelink: Replacing Processor Cores with models 
Replacing a processor core with a cycle-accurate model can 

result in speedups in software execution up to 10,000x faster, 
providing a ratio of overall simulation speedup of 5x to 10x 
depending on the ratio of SW execution to logic simulation

[2]
.  

The optimizations provided by fast models are essential, but 
the speedups described in this paper are independent of them - 
they save multiple clock cycles of elapsed DUT time - where 
all the gates in the DUT are contributing pure overhead. That 
saving scales with the size and complexity of the SoC; it is a 
vast improvement and worthy of some upfront investment. 
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