
Tried/Tested speedups for SW-driven SoC Simulation

Gordon Allan

Mentor Graphics Corporation

Fremont, California, USA

gordon_allan@mentor.com

Abstract—

Simulation of today's SoC devices is not easy. A typical SoC in

the 'mobile' application domain consists of one or more

processors, one or more levels of bus fabric, one or more internal

memories or caches, one or more off-chip memory interfaces, one

or more peripheral interfaces, one or more timing/control

resources, one or more specialized processing elements or data

pipes, etc., etc.

The emphasis is normally on the 'more' than the 'one' as process

technologies scale to allow us to integrate ever more levels of

detail in one device, and mobile device manufacturers compete

for functionality and performance. In 2011 the average high-end

mobile SoC gate count was 104 million gates [Gary Smith 2012]

and growing by 10% per year.

That's a lot of gates to simulate at once.

Adding hardware-assistance such as emulation can solve some

verification problems, but for many projects there remains a

need to simulate the final integrated RTL and/or gate-level SoC

design in its entirety, at least to check power up, boot up from

reset, and key architectural interactions. Given this need, many

project teams still perform a significant portion of verification on

this medium.

Apart from the main challenge of scale and performance, which

we will address, there are other challenges. Those simulations

take the longest to run and are also the hardest to debug, and the

hardest to develop. Providing the right stimulus to exercise

system-level and chip-level concerns is not easy. Stimulus has to

be orchestrated so that the different peripheral features of the

SoC are being exercised in concert with test firmware running on

the processor or more likely on multiple processors.

In this paper we present a set of standard, freely available, easy

to use techniques to accelerate all aspects of SoC simulation,

allowing more rapid development, regression, and debug cycles

during the integration phase of an SoC project.

The techniques draw upon familiar concepts:

Economics:

 How to simulate more by simulating less

Energy Efficiency:

 How to increase power by reducing power

Environmental Care:

 Reducing overheads with zero-impact linkage

Keywords—SoC,Simulation,Software,Coverification,Stimulus

I. INTRODUCTION

The main challenges of today's SoC design/verification
activities are:

 Integration and partitioning of complex designs

 Simulation and regression iteration time

 Time taken for debugging of failing tests

 Unnecessary debugging of incomplete testbenches

 Productivity hit of wasted simulation runs

 Explosion in reuse and configurability

We seek to make improvements in all of these, but
especially to build a strong productive foundation of a high
performance simulation, the benefits of which can affect
several aspects of the project.

Simulator economics are well known. The design and
verification structure is encoded into a huge data structure with
nodes that are visited to propagate events and data values
according to temporal and logical rules. This is typically an un-
cacheable data structure and just traversing it contributes much
to simulation time.

For general optimization of the simulation data structure,
we consider approaches that can allow us to simulate fewer
gates, and still achieve a particular verification objective.
Approaches such as using a chassis to allow suppression of
unused design content, or use of parameterization to reduce
channel counts when not needed.

Having reduced the overall data structure size, and given a
certain amount of gates in a design, there are other
optimizations we can apply to make our simulation more
'energy efficient'. Of all the millions of connections being
simulated, static nodes cost less to simulate than toggling
nodes. Techniques drawing upon existing power management
ideas to accelerate simulation are discussed here.

A set of Design for Verification rules is explored; these
seek to incorporate extra features in the specification of the
DUT which are there only to benefit accelerated verification
(and maybe also production test) by avoiding needless
operations that consume large chunks of simulation time when
compared to the cycles spent actually performing the
verification objective.

Finally, and our main topic in an SoC context, is to describe
the various approaches to co-ordinated stimulus between test

firmware running on the processor core or cores, and HVL
stimulus on the peripherals and pins of the SoC DUT.

Two widely used approaches for linkage between the two
(commonly known as the 'Executive' and the 'Trickbox'
approach to software-driven stimulus) are documented and
analyzed to show the overhead and impact of the linkage in
each case, and a third approach is introduced - 'Zero-Overhead
Optimized' (ZOO) software-driven stimulus - which reduces
the linkage to zero, enables a rich API between the worlds of
test firmware and HVL stimulus, and provides several other
benefits to the user for debug and development.

When all the approaches described in this paper are used,
SoC simulation regression run time can be cut by significant
amounts, even 50%-75% depending on the stimulus and
design. Each of the techniques described offers performance
gains of 10% or more and are worthy of consideration.

These are tried and tested techniques that the Author has
been familiar with since the early 1990s, and which still apply
today, remaining as unused optimizations by many verification
teams who suffer regression performance blight as a result.

They have demonstrable effect on simulation throughput
and verification throughput (which is a function of simulation
throughput and verification efficiency per unit of simulation).
Eliminating waste is a big part of the process.

The result is simulation that is more relevant, that gives
results per cycle, over fewer cycles, taking less hours, keeping
regression time down to a manageable loop, and easier debug.

The optimizations proposed here are invitations for you to
invest in activities and improvements that will give you a
favorable return in overall time-to-money productivity.

Simulation Time is the most valuable resource in SoC Verification

A. Useful Simulation Time

An SoC simulation consists of activities that contribute
differing amounts of value to the overall verification objective.
Those activities include:

 waiting for power, clock, reset to become stable

 configuration of on-chip infrastructure

 configuration and maintenance of protocol elements

 preparing and/or fetching initial state, memory content

 fetching and preparing the testcase stimulus

 executing the testcase stimulus

 waiting for response to checkable stimulus items

 obtaining response from the SoC to do checking

 repetition of stimulus with differing parameters

 repetition of stimulus on different instances

A typical SoC simulation timeline may look like the figure
below, with many of the above activities taking up runtime.

When we extract the ratio of actual verification to
'overhead', it is clear that an investment in removal or reduction
in overhead will have payback in regression time and hence
team productivity.

When the simulation includes an element of Software as
stimulus, running on a DUT processor core, it is desirable to
speed up the processor execution as well as the overall SoC
simulation. The key to accelerating that software execution is
to isolate it from the much slower logic simulator

[1]
.

B. Indirect Benefits of Optimizing Simulation Time

In making improvements in simulation performance, we
achieve a side-effect of improvements in:

 debug recording - less overhead to record waves and
smaller wave databases to use in debug

 debug time - easier for the user to see problems or
correlate them to their root cause, shorter time spans.

C. Using realistic Software stimulus in verification

A side benefit of simulation using software running on a
processor core (or model) in the DUT is that the software need
not only be 'test' software that is otherwise a throwaway.

Some routines from the real firmware co-development
project can be incorporated here, which leads to more realistic
interactions with the hardware of the SoC, improving both the
quality of the hardware and of the firmware.

Diagnostic code can be incorporated here to exhaustively
test hardware interfaces, and some functionality (although most
functionality should be verified strictly at block-level or
subsystem-level and there is no benefit in repeating that at SoC
level).

For cases where more extensive functional verification is
required at SoC level, for interactions that cannot be verified at
a lower level, use of real driver code enables extensive
functionality coverage and some interface coverage

[2]
.

Convinced that some investment is worthwhile in this area
to get a productivity return? We start with some easy
fundamental improvements.

Figure: Typical SoC Simulation Timeline

II. SIMULATE MORE BY SIMULATING LESS

Can we do more with less? We discuss the economics of
SoC scale simulation. Economy of the simulated DUT footprint
is worthy of analysis.

A. Chassis Approach to SoC simulation

The ultimate approach to optimizing the DUT footprint in
the simulator is to build the SoC DUT as a chassis, having
configurable elements for each major subsystem in the design
specification. The DUT will probably already be divided up
hierarchically along those lines. One possible investment is to
provide a configurable subset that is compiled or elaborated,
depending on the requirements of the test suite being run.
Various approaches are possible here and all are useful; some
combination of them may be the best approach for a given SoC
DUT:

1) Use Stub modules for unused blocks
For each configurable subsystem, create a stub module

which can be instantiated as a proxy for that subsystem in its
inactive state, i.e. it should be instantiatable just as the real
module is, and have outputs appropriately tied off so that it
does not have a negative effect on the remainder of the SoC.
Creating stub modules is good practice for incremental SoC
development and integration anyway. We are suggesting that
they are not thrown away - instead maintain them as first class
deliverables which are 'views' of the module that take up the
least possible simulation footprint at runtime (and compile time
- which may also be a significant benefit when RTL
compilation time can be saved)

2) Use Behavioral Models for lightly used blocks
Even if stub modules are not practical, e.g. because the

module has to remain partly functional or must operate for
some small portion of the total simulation, it is good practice to
use a behavioral model as a substitute, provided that we are not
currently verifying that module, there is no impact on overall
'verification quality' while substituting it for a functional
model. This is good practice for CPU or other processing
elements anyway - leading to good debug capabilities as well
as more instructions per second (IPS). This good practice
benefits the performance because there are fewer gates to
simulate, and the processor core by now is 100% verified.

B. Optimize Multiple Instances

When an SoC contains multiple instantiations of a module
of complex functionality, it is necessary to verify each instance
at SoC level to ensure that it is properly connected up to buses,
interrupts, clock and low power signaling, and pin/pad
connections.

However, it is only necessary to do that once, in a test suite
which has that particular aspect of the verification as its goal.

All other test suites that need to use that module
functionality can probably use a single instance, so there is no
need to instantiate N instances for the remainder of the
functional test suite at SoC level, provided we have taken care
of verification of interactions at least once, and for the
remainder, that we have taken care to ensure such interactions
are benign.

The multiple instances may be complex peripherals, e.g.
networking controllers, but one obvious manifestation of this
approach for today's SoCs is in the multicore CPU area. Apart
from verification of interactions, coherency, involving more
than one CPU, the remainder of the SoC testing needs only one
CPU, and the other or others can be removed from runtime.

C. Configure Selective / Unused Functionality

What we have implied is that on a per test suite basis, or
even on a per test basis, we can configure the DUT build for
simulation, so that modules which are not used for this test, or
this batch of tests, are ignored, or removed, or optimized out.

Having a toplevel configuration profile is a useful
approach, as the management of this set of DUT variants can
be difficult. Above all, although there is a big runtime payback
for reducing the DUT footprint, we must preserve the integrity
of our verification; that would be too great a cost.

D. Tradeoff between Compile, Elab and Runtime Control

RTL and HVL have mechanisms in the languages to enable
the chassis approach and configurability thereof, either at
compile time, or elaboration time. What about runtime?

III. USE POWER MANAGEMENT SPEEDUPS

We describe here some techniques to increase the
Verification Power of your simulation farm by simulating your
SoC using its Low Power modes. Some may seem obvious.

If you cannot reduce the simulation footprint by the
"Simulating Less" techniques mentioned in the previous
section, you can still optimize the footprint's impact on SoC
simulation runtime in many ways.

A. Put Unused Peripherals to Sleep

If your SoC has power management configuration logic
built-in that lets you control which functions of the device are
clocked and which are not, then use those features to optimize
runtime.

At the expense of normally just one write to an SoC
configuration register, many gate-transitions of simulation load
can be saved by not clocking whole blocks of synchronous
logic.

Each testcase can start with a minimal configuration for
only essential operations on the chip being clocked, and add
only those peripherals or functions that are involved in the test.
If the testcase involves different functions during different
phases of the test, wake them up and put them to sleep as
required. Normally the 'cost' of that one write, even if repeated
several times during different phases of the simulation, is
repaid by keeping large amounts of DUT gates and flops static
rather than toggling.

If as a result of this runtime configuration, your SoC DUT
is not consuming as many milliwatts of battery power, then
neither is it consuming excess simulation time.

B. Align Clock Frequencies

If there are multiple modules on chip with configurable
clocking frequencies, set them up so that modules do not waste
time waiting on a slow 'partner' module - slow them down to
operate at common speed, or if that does not make sense for
your design, speed them up to a common speed.

Have an overall approach to choices of operating
frequencies of the various subsystems of your SoC to give
benefits for simulation efficiency while preserving the integrity
of your verification requirement for this test.

For example, if one peripheral is unnecessarily slow
compared to the bus or CPU, then simulation cycles for all
gates in the design are wasted on the slow part, while each
CPU bus access to it waits for delay cycles. It is worthwhile to
change the settings to minimize that effect.

Sometimes those operating frequencies are dictated by off-
chip concerns e.g. a standard protocol operating at its normal
frequency. Configure the whole SoC if necessary to match that,
to avoid this disparity that wastes simulation-time-per-gate.

Use this optimizing approach for all tests that do not require
'real world' frequencies.

Ask yourself "What are we verifying?" and optimize accordingly.

If you are verifying 'at-speed' interactions, then setup your SoC

operating frequencies for real world. Likewise, if you are validating

performance at maximum specified load, you need real world

interactions between SoC subsystems and off chip protocols.

For all other verification, i.e. the majority of your functional testing

at SoC level, optimize your SoC configuration for maximum

simulation throughput.

IV. USE DESIGN FOR VERIFICATION SPEEDUPS

Design for Verification techniques can be applied to your
SoC design in order to assist the verification process. We
explore there here. These are techniques which add logic or
structures inside the SoC design, specified in order to benefit
accelerated verification (and in some cases also to benefit
production test efficiency).

The typical approach is to avoid needless operations that
consume large chunks of simulation time when compared to
the cycles spent actually performing the verification objective.
This ratio of Simulator Efficiency depends on many factors and
time taken to initialize or maintain the SoC operation in some
context, is a significant factor.

Examples of SoC operations that consume significant
elapsed simulation time, for good functional reasons, but no
benefit to simulation, are:

 bus delays and timeouts

 hardware or software watchdog timeouts and other
timers

 analog-driven reset initialization sequences, e.g. whole
voltage or clock stabilizes

 analog component bringup or synchronization e.g.
PLLs or PHYs

 calibration of interface delays e.g. DDR3

A. Bus Delays and Timeouts

The bus protocol and transfer mechanism should be verified
separately at the appropriate level of module hierarchy. At SoC
level there is no need for wait states or bus delays - configure
them to the absolute minimum - and also bus timeouts should
be set to the minimum effective value (avoiding false triggers).

B. Watchdog Timeout Features

Any other kind of timeout whether for software error
recovery or in a hardware protocol such as Ethernet, should
have a bypass mode which allows configuration out with the
normal functional range of values, for effective verification.

C. SoC Reset / Bringup Sequences

Typically a power up sequence will await voltage stability,
start any PLL/DLL functions, and then await clock stability,
before releasing the majority of the SoC logic from reset
allowing the main part of the simulation to proceed. Ensure
both those delays can be bypassed for digital verification,
where 'voltage' is instantly stable and clocks are 'instantly'
active, locked and stable.

Another reason to remove any clock stability logic and rely
on an artificially stable clock is if recording waveforms for
debug. Wave databases typically have optimization for periodic
clock signals, but that optimization can break if there is an
artificial injection of 'jitter' on the clock signal. Jitter rarely
adds any value to SoC verification (except perhaps for that one
test which validates the clock control mechanism under load).

D. Protocol-specific Interface Delays

Various protocols in common use today have overheads in
their implementation that are required for electrical
functionality but not for digital functionality. For example, look
at the SDRAM progression from DDR to DDR2 to DDR3 to
DDR4 - not only refresh, but calibration - in some cases initial
one-off calibration, in others, a regular repeat of the calibration
process, in order to train timing-sensitive data line capture.

There is no need to spend time calibrating picosecond delay
offsets for complex off chip memory arrays like DDR3 and
DDR4, for the majority of SoC simulations. If it is possible to
configure a DFV mode which bypasses the training phase, then
do so.

Again, only one simulation test needs to have that function
enabled: the one which is responsible for verifying it.

One caveat is that there may also be a set of 'performance'
simulations for which accuracy may be paramount and some,
not all, of the DFV modes discussed would need to be disabled.

E. Analog / Mixed Signal Components

Mixed signal blocks like PHYs or DLLs may be replaced
with complex digital or behavioral models for SoC simulation -
ensure these have DFV modes to fix clocks and reduce delays
and timer count values of the type described above.

F. Low-Power Design Features

Even if your design does not need to run from batteries in a
portable device, the optimizations described earlier may be one
good reason to design in some low power features.

If your SoC does not have those capabilities - consider
adding them. The environment - and your verification
environment - will benefit.

V. CHOOSE OPTIMAL S/W STIMULUS APPROACH

When a chip design includes one or more processor
elements, they can be used to provide stimulus 'from the
inside'. Processors are typically masters of activity, rather than
being responsive to hardware activity. So in fact it is more true
to say that they MUST provide stimulus from the inside. At
least, they must respond to surrounding activity in such a way
that a verification objective is met.

However, the remainder of the SoC also requires stimulus
(or controlled response) - the pins of the device, all the protocol
interfaces, all the surrounding protocol VIPs, need stimulus to
act in concert with what is happening on the CPU core.
Someone has to plan and implement that overall set of stimulus
and some technique or technology has to orchestrate it,
facilitate its coordination, to meet the objective.

In some cases, the software running on the CPU core is
more than just test case code reading and writing a handful of
registers; it may be real firmware implementing an API, indeed
the verification objective may be to test the firmware layer as
well as the SoC integration. In other cases, it exists only to
facilitate HDL/UVM verification of integration pathways
across the SoC.

Design verification teams have been wrestling with this
perennial problem since the earliest embedded CPU ASICs
which were SoCs before the term SoC was coined. They want
stimulus to the pins and hardware of the SoC, providing
protocol input on its interfaces, and they also want a sequence
of software operations to be run from within, executed code on
the embedded processor core(s).

In particular, they want those two kinds of stimulus to
interact with each other, and assist in testing of both areas: the
CPU and bus, and the peripherals and integration logic, and
sometimes the firmware.

At least three interfacing and synchronization techniques
exist for coordinating software stimulus and HDL stimulus,
each with varying degrees of initial development required:

 the Software Executive API

 the Trickbox interface, and

 the Zero-Overhead Optimized approach

We describe each of these approaches in turn and compare
their advantages and disadvantages, in particular the amount of
overhead they incur in DUT simulation time and the impact
that has on overall productivity and return on upfront
development investment.

A. Option 1 - the S/W Executive Approach

The Executive API is one approach to coordinating
software stimulus running on an embedded CPU core with
discrete HDL stimulus on the pins or hardware of the SoC
DUT.

The Executive approach to coordinating S/W and HVL stimulus

has the HVL Stimulus (e.g. UVM sequences) as 'master' which

invokes 'slave' S/W routines via an I/O interface on the CPU bus.

It consists of an Executive - a software loop like an RTOS
event dispatcher, running forever on the embedded processor
core, which responds to available observed stimulus.

1) How it works - Inputs - Processing - Outputs
The Software loop requires an input mechanism from the

Testbench, to cause Software activity and to specify which
particular Software activity is required. This is typically some
combination of an interrupt mechanism which exists already on
the CPU / SoC integration logic, along with an I/O module
allowing signaling to be read from the testbench.

Figure: S/W Executive Architecture

When the software loop is interrupted, the I/O is read and

decoded in some kind of lookup table or case statement, and a
subroutine or series of software instructions is selected and
executed as a result. When the routine ends, the executive loop
continues, ready for the next interrupt.

2) Advantages
It is difficult to think of many advantages, but there is one:

this is the only approach where HVL is the master and software
is the slave. That may be an advantage in some situations.

3) Simulation Time Overheads
The main overhead is that between each valid S/W stimulus

routine triggered from the master HVL stimulus, there is a
period of CPU cycles which is wasted overhead, either idling
or in the process of responding to interrupt, decoding the
required activity, calling the required routine, eventually
returning from that routine, with all the related stack push/pop
operations that interrupts and subroutines entail.

4) Other Disadvantages
The principal disadvantage, other than performance, is that

the I/O interface needs to exist, consisting normally of some
data I/O signaling (e.g. a GPIO module) plus some event I/O
signaling (e.g. an Interrupt input signal).

This approach necessitates either some modifications to the
SoC architecture/RTL design purely to support SoC-level
verification, or uses some existing peripheral I/O that happens
to exist already in the DUT specification. This may be a
limiting factor or more importantly prevents any verification
that needs that I/O function (e.g. GPIO lines) for other
operation as part of the verification - it becomes dedicated to
the interfacing between HVL stimulus and the S/W executive.

As a result, this approach is often used only with a
temporary SoC integration chassis which augments the
specified function of the SoC with an additional I/O capability.
This complexity is a significant disadvantage and so this
approach may be a niche solution.

B. Option 2 - the Trickbox Approach

A simpler approach to software-driven stimulus is to
implement an adapter within the testbench, which acts as a
memory-mapped device, connected to the DUT processor bus
or bus-to-memory signals. This adapter implements the linkage
needed to transform the specific bus access to the required
testbench stimulus or action.

Figure: Memory-Mapped Trickbox Architecture

The adapter module is often referred to as a Trickbox. The

technique is also referred to as a memory-mapped testbench
interface.

The 'Trickbox' approach to coordinating S/W and HVL stimulus

has the Software stimulus as master, triggering HVL stimulus (e.g.

UVM sequences) via a memory mapped adapter: the Trickbox.

This linkage can be as simple as a predefined address value
or range of values, and determination of which action from the
set of supported testbench actions is to be triggered can be
determined either by decoding some of the address bits within

the decoded range, or by decoding the data value written to that
address.

1) Advantages
The primary advantage is simplicity. Providing a self-

contained adapter written in HVL that recognizes bus activity
and triggers HVL stimulus is the simplest way of implementing
this linkage, even simpler if existing DUT memory-mapped I/O
signals are used'

Simplicity is a considerable advantage, because multiple
team members may need to comprehend the code and the
'magic' at different stages of the project. Also, debug may be a
frequent occurrence, and is ideally a task that requires an
understanding of the code and techniques, comprehensible by
the design team as well as verification/HVL experts.

The simplicity also applies to the implementation task
which can be relatively straightforward, given the inflexible
nature of this approach. A simple implementation can be used
with multiple SW languages (C or assembly) and multiple
testbench languages (SV or Verilog or VHDL) in multiple
DUT/testbench architectures, without major engineering effort.

2) Simulation Time Overheads
The main disadvantage of this approach is the simulation

time required to implement the simple linkage, to enable the
software to convey instructions to the testbench to provide
stimulus or other actions.

Simulation time is spent not only on the bus cycles
operating the linkage, but also on the bus cycles required to
fetch the instructions that are used to create those bus cycles.

[Verification teams often live with this overhead, but it can
be eliminated, as we will describe shortly.]

Interactions which cause HVL activity therefore are pure
overhead - at least one opcode fetch and one bus write per
instance. Interactions which retrieve data from addressable
locations and then do some checking have more cycles of
overhead - in the worst case the cycles taken to read data, apply
a logical bit mask, compare the value with expected, and jump
to a pass or fail endpoint, can be added as pure overhead PLUS
the cycles required to fetch all of those masking and comparing
and jumping instructions from memory.

The ratio of simulation overhead to actual useful interaction
is therefore at best 3:1, often 4:1 or 5:1.

3) Other Disadvantages
The Trickbox approach is inflexible and may be hard to

extend from one project to the next, due to the fixed nature of
the encodings that are passed across the linkage in address
values and data values.

This disadvantage can be minimized by a symbolic
approach, where both software code (C or assembler) and HVL
testbench code use a common set of enumerated identifiers to
designate the functions that can be triggered.

Often, an elaborate hierarchy of linkage sub-fields must be
implemented in order to provide a more programmatic form of
interface, e.g. using address values to select a function and data
values to transmit some variable parameter to that function.

C. Option 3 - Zero-Overhead Optimized Approach

Both the Executive approach and Trickbox approach have
overheads which consume simulation time. It is possible to
eliminate those overheads, with some initial investment.

The principal overhead is the runtime linkage that allows
the software stimulus being executed on the processor to
trigger HVL hardware stimulus or other testbench activity.

The optimization we propose is to remove that runtime
linkage overhead entirely, and replace it with a compile-time
linkage that requires zero simulation time overhead.

Instead of a sequence of software instructions to prepare,
trigger stimulus, measure response, compare and check pass or
fail, running at a particular program counter location within the
runtime software image, we use the program counter directly,
with a debug breakpoint mechanism, to trigger a pre-prepared
sequence of HVL activity.

Further, we enable the specification of the HVL code to be
triggered in line with the remainder of the software stimulus.
This requires the initial investment in customization of the
compiler or assembler, or a wrapper and preprocessor for them.

With this 'ZOO' optimized software-driven verification
approach, a single stimulus file contains both the embedded
software portion and the triggered HVL portion of the test
stimulus, inline in one file with a shared syntax.

Figure: Zero-Overhead Optimized SDV Architecture

1) Implementation: Custom compiler/assembler tool
A modified tool flow is required in order to take a single

combined source language file and split it into the two parts:
software to run on the processor and HVL to run on the
testbench, synchronized by instruction address breakpoints.

The instruction address for any given line of source code is
not known until after compilation/assembly is done, and the

ability to retrieve that information from the output of the
compilation/assembly tool is required to set up the breakpoints.

There are some options here. One is to customize the tool
completely to enable additional syntax to allow HVL
statements or triggers to be embedded in the software at the
appropriate place, and to add a back-end code generator to the
tool to write out the HVL breakpoints and the actions to be
performed when they are hit.

Another option is to create a wrapper around the software
compiler/assembler tool which separates the two kinds of code,
leaving only 'markers' in the S/W code, using existing legal
syntax for pragmas or comments, that can be retrieved later
from an enhanced listing output file that is already available as
an output from the tool. Such an enhanced listing file would
need to retain (1) the address of the instructions generated and
(2) the text of the marker tag (pragma or comment) preserved
in the output in the correct location relative to the addressed
instruction (otherwise some slight tool mods are required here)

The wrapper preprocesses the combined source, runs the
compilation or assembly tool, and then creates a file containing
all the HVL breakpoint activities and linkage to trigger them
retrieved from the instruction addresses in the enhanced listing
output, keyed by the marker tags that passed through the tool.

2) Implementation: Processor Breakpoint Logic
The other half of the implementation of Zero-Overhead

Optimized SDV is the instrumentation of the processor in the
DUT, to interface to the testbench, so that the required HVL
activity in the tool-generated breakpoint file can be triggered
on an instruction-address basis during SW execution.

A processor model, whether RTL, gate-level, behavioral
model, or ISS with a bus wrapper, has a Program Counter that
tracks the location instructions that are fetched, decoded,
executed and retired. This Program Counter (PC) value must be
made available to the testbench to enable stimulus
synchronized to software execution.

High level models will have a debug API to support tracing
which can be used here. Behavioral, RTL, or Gate models will
be successively more complex but the PC value is in there
somewhere, it just has to be brought out.

The complication here is modern pipelined processors,
which have speculative execution, branch prediction,
rewinding. In these cases an algorithm is required to indicate
that the instruction at a particular PC address X has been
committed, not just fetched, or decoded, or speculatively
executed in the ALU. A useful triggering algorithm is to enable
triggering of events to occur AFTER an instruction has been
executed, i.e. when the PC leaves that instruction address and
moves on to the next instruction.

In addition, it is desirable to synchronize after any data
accesses that occur as a result of that instruction, but prior to
any that occur in the following instruction. Also it is necessary
to take into account any effects of branches that are taken vs
branches that are not taken.

If necessary, a NOP can be inserted in the instruction
stream in the case of complex series of operations that are

indistinguishable, but that reduces the benefit of the technique
so should only be used when necessary.

Ensure that interrupts or exceptions (which can by
definition change the flow of control unexpectedly) are
accommodated, also the RTI or RTE statements which return
from those routines.

This requirement is a significant portion of the up-front
one-off development effort. Consider using a standard
behavioral model for your processor core that already has a
committed instruction PC or trace capability.

Once you have this signaling and/or state machine set up,
encapsulate in an API which calls the generated HVL
'breakpoint definition' file at the appropriate time, passing in
the PC value.

3) Example Stimulus Code
Depending on the tools available for your project, and for

the processor core in your DUT, and depending on your design
decision either to customize the tool to allow embedded HVL
constructs, or add a wrapper/preprocessor to extract those and
later synchronize them, there are different ways of delineating
and demarcating the source file. Both assembler and C code
examples could use a similar syntax, and enable both simple
Verilog task calls and UVM-style sequence invocations.

TEST1: MOVI.W $1234,R0
 MOV.W R0,(DMA_CNTRL_REG_1)
 //UVM StartDmaSequence(32'hA0000000,1);
 CLR.W (DMA_COUNT_REG)
 MOV.W (DMA_STATUS),R1
 //UVM CheckDataRead(16'h0001,.mask(16'hAA00));
 JMP.S TEST2

Example 1. HVL Code embedded in Assembler Software comments

4) Pre-canned macros
Named HVL subroutines or macros can be used as

shorthand to trigger common activities in a concise way e.g. a
function to mask and check the next bus read prior to reading a
result from a volatile I/O location, may be wrapped in a task or
macro called 'CheckDataRead(data,mask)' with all the masking
and comparison and jumping to pass or fail being done in zero
'DUT time' in the HVL.

5) Advantages and Disadvantages
The advantage in simulation performance is clear. There is

zero overhead at runtime, saving (N clocks x G,GGG,GGG
switching gates) worth of unnecessary simulation effort.

Requiring a custom compiler / assembler flow requires an
initial investment and maintenance. To minimize this upfront
cost, plan to reuse this investment across multiple projects that
need this kind of SW stimulus approach (a slight disadvantage).

Requiring a runtime state machine tracking the processor
state and in particular the program counter for committed
instruction execution requires initial investment and can be
complex. This complexity can be perceived as a disadvantage.
However, many other desirable benefits of debuggability are
enabled by this approach (enabling a generic trace/disassembly
and breakpoint mechanism for example) diluting the cost. A
slight disadvantage.

Requiring the link between two kinds of stimulus to be
made at compile time rather than run time seems initially
inflexible. However, the stimulus (both SW and HVL) does not
change from one run to the next, and neither does the
synchronization between the two, so there is no 'compile tax' to
pay - the stimulus only needs compiled once, just as with the
other approaches. Also, the Test specification is all in one file.

Having a section of HVL code which is machine-generated
as part of the automation flow rather than written by a user and
checked-in, can be perceived as an added complexity. This
should be minimized by adding clarity so that the file is
comprehensible by the reader, including comments and naming
that help to relate the triggered activity clearly to the source.

VI. CONCLUSIONS

Various standard performance improvements were
described and are possible at the testbench architectural level,
and they can be used and benefitted from in conjunction with
(and independently of) the performance improvements of
specialist EDA vendor tools e.g. CodeLink, MC2 and inFact.

Simulation Time is the most valuable resource in SoC Verification

Providing the foundation of simulation performance
optimizations described here is a good start, and worthy of up
front architectural design, before the inefficient testbench takes
root in the project and is hard to change.

VII. RESOURCES

Other solutions are available for SoC-level software-driven
verification, providing further performance optimizations
and/or abstractions for more powerful verification.

1) Graph-based stimulus and SDV
If a more comprehensive mapping between software and

UVM stimulus is required, graph-based solutions such as
Mentor's UVM Software Package used with Mentor inFact

[3]

can be used.

2) Codelink: Replacing Processor Cores with models
Replacing a processor core with a cycle-accurate model can

result in speedups in software execution up to 10,000x faster,
providing a ratio of overall simulation speedup of 5x to 10x
depending on the ratio of SW execution to logic simulation

[2]
.

The optimizations provided by fast models are essential, but
the speedups described in this paper are independent of them -
they save multiple clock cycles of elapsed DUT time - where
all the gates in the DUT are contributing pure overhead. That
saving scales with the size and complexity of the SoC; it is a
vast improvement and worthy of some upfront investment.

REFERENCES

[1] J. Kenney, "Firmware Driven OVM Testbench," Verification Horizons,

June 2008

[2] P. Luszczak, "Processor Driven Verification - Use it for More Than Just
Sign-off,” Mentor Graphics, October 2008

[3] M. Ballance, "Boost Verification Results by Bridging the Hardware
/Software Testbench Gap", DVCon 2013

