
Traversing the Interconnect: Automating Configurable
Verification Environment Development

Prashanth Srinivasa
LSI India R&D Pvt. Ltd

GTP, Devarabeesanahalli
Outer Ring Rd, Bangalore, India

(+91)80-41979643
Prashanth.Srinivasa@lsi.com

Mathew Roy
LSI India R&D Pvt. Ltd

GTP, Devarabeesanahalli
Outer Ring Rd, Bangalore, India

(+91)80-41979550
Mathew.Roy@lsi.com

ABSTRACT
There are several challenges in verifying a complex SoC (System on

Chip) on time, like frequent specification changes, which include

architectural and protocol changes that impact both verification effort

and the delivery schedules. As an example, a SoC of ~140 M gates

currently we are working on consists of large sub-chip components

having hierarchical interconnects, needs to be comprehensively

verified. The number of verification environments that need to be

created and maintained for all the sub-chip designs is another

challenge. Even if reusable components like VIPs (Verification

Intellectual Property) are used, there is a considerable amount of

effort involved in their integration, handling communication with

other components, verifying the same and so on. To tackle these

challenges, the need of the hour is to have a generic infrastructure

which can be reused for various environments corresponding to the

sub-chip designs. This paper presents such an infrastructure which

supports different bus protocols with an intuitive interface to the user

for integrating multiple diverse components. The paper also talks

about the additional facilities provided by this infrastructure, like the

built in generic scoreboard for data integrity checks and the

performance analyzer which can be used to measure the performance

of the DUT (Design Under Test). To provide such infrastructure for

variety of sub-chip components, a highly configurable environment

is built using the powerful features of contemporary verification

methodologies.

The configurable environment can be used to verify large sub-chip

designs having interconnects, bridges with any number of master and

slave interfaces of different protocols. The environment has built-in

support for standard protocols and provides facilities for the users to

add their own custom components, with minimum effort. It is built at

a higher abstraction level but hooks are provided to access any

component at any hierarchy. The environment has a list of VIPs of

different standard protocols and each VIP is associated with a

configuration descriptor. Each configuration descriptor contains

generic information like its kind, protocol, address map, bus widths,

supported targets, etc. as well as protocol specific configuration (like

reordering depth, in case of AXI interface). Based on the

configurations, appropriate VIPs get activated with the specified

behavior in the configuration. The corresponding communication

interface with the other components like scoreboard and a default

random scenario to the valid slaves are also generated in an

automated manner and the paper describes how this is done. The

environment has a performance analyzer too, to measure the

performance of DUT like traffic and arbitration when it is enabled.

The scoreboard used in the environment is a byte level generic

scoreboard which verifies the data integrity across interfaces of

different protocols/bus widths. Also, the scoreboard is made efficient

in terms of runtime memory, considering the complexity of the

environments. The paper talks about how these features are

implemented. Additionally it talks about leveraging standard off-the

shelf available methodology features to handle various diverse

requirements such as configurable „end of test‟ detection and

traversing the environment hierarchy.

Categories and Subject Descriptors
 [System on Chip Verification]: Generic Interconnect Verification

Infrastructure – Architecture and flow, methodology constructs

General Terms
Verification.

Keywords
SoC, System Verilog, VMM, Reuse, VIP, Abstraction.

RTL: Register Transfer Language

SoC: System on Chip

VMM: Verification Methodology Manual, by Synopsys

OVM: Open Verification Methodology

UVM: Universal Verification Methodology, by Accellera

VIP: Verification Intellectual Property

1. INTRODUCTION
 Though it is not desired, but inevitably the specification of a product

keeps changing based on customer requirements, performance,

timing, etc. This may lead to change in the protocols, change in the

number of interfaces of the sub-systems, change in the number of

sub-systems and so on to meet the requirements. A typical complex

SoC as shown in Figure 1., consists of multiple sub-systems of same

and different kinds and each of them needs to be verified efficiently.

It is difficult to develop and maintain a large number of verification

environments at different levels in a given time. With the usage of

standard verification methodologies like VMM/OVM/UVM and

reusable VIPs, verification environments can be developed faster, but

still there is a considerable amount of effort involved like

integration, building scoreboards, maintaining each environment

separately, to name a few. Again whenever the specification changes,

accommodating corresponding changes in the environments requires

considerable effort. This paper describes how verification

environments can be developed with a very little effort using the

configurable generic interconnect infrastructure and how they can be

made almost immune to the specification changes.

Figure 1. Typical SoC (System on Chip) example

2. GENERIC INTERCONNECT

VERIFICATION ENVIRONMENT
To address the issues discussed above, a highly configurable generic

verification environment is developed with built-in support for

standard protocols. The environment is built using VMM

methodology, but there is no restriction to develop this environment

with OVM/UVM since almost all features used in this environment

are available in these methodologies as well. The architecture of the

environment is as shown in Figure 2.

Figure 2. Generic Interconnect Verification Environment

The Generic Interconnect Verification Environment has a set of

configuration descriptors to control the behavior of the environment

and its components. It encapsulates a list of VIPs for each protocol

and they get initialized based on the configuration. There is a

protocol independent byte level scoreboard which performs data

integrity checks. The environment has a performance analyzer also

for monitoring bus and arbitration performances when enabled.

Communication between generators and drivers are handled through

channels and for the rest of the components, callbacks are used. All

the components of the environment are built hierarchically with

parent-child relationship so that any component can be accessed

using vmm_object utility methods and vmm_opts from the test case.

The Generic environment execution flow is same as the vmm_env

where configuration descriptors are built in the method

vmm_env::gen_cfg(). Based on the configuration, appropriate VIPs

get initialized in vmm_env::build() and get registered to the

consensus mechanism. Then the test execution continues in

subsequent phases and the end of test is determined by the consensus

mechanism after all the registered VIPs are done with their

execution. Finally scoreboard provides a summary of the transactions

and the result of the test. Additionally, performance analyzer if

enabled provides summary of the traffic details and an SQL report on

arbitration and DUT performance.

2.1 Configuration
Configuration is the core of the Generic Environment through which

all the components are initialized and controlled. There is an

environment specific configuration descriptor which has parameters

to control the environment execution. These parameters use

vmm_opts and hence they can be set from the test case or command

line. The environment configuration has a list of component specific

configurations. Each component configuration controls the kind and

behavior of the corresponding component/VIP. It contains

information like the protocol (AXI, AHB, OCP, etc), behavior

(master or slave, active or passive, etc) and other information such as

address range. It also contains protocol specific parameters like

reordering depth in case of AXI and any such parameters can be set

through vmm_opts. There is a set of predefined methods in the

environment configuration through which user can easily add

configuration for all the components. In addition to standard

protocols, provision is made to add configuration for custom

components as well. Based on the configuration, appropriate VIPs

get initialized with the specified behavior.

Another feature in the configuration is that the user can specify a set

of valid slaves for a master. This information is taken by random

scenario generator to generate traffic only to those slaves.

2.2 Scoreboard
The Generic Scoreboard in the environment is protocol independent

and performs data integrity checks. It has a set of byte level

scoreboard units, one for each slave as shown in Figure 3. Any

protocol specific transaction appearing at a master/slave is broken

down into a list of protocol independent scoreboard data items, each

of which has byte data and its address. Since the data of any bus

widths are converted to a set of bytes and used for comparison,

scoreboard can process transactions of different bus widths. For the

supported protocols, communication from monitor to scoreboard is

done using VMM callbacks and converting transactions to

scoreboard items is taken care automatically in the environment

itself, i.e., just by providing configuration information, user can

make use of scoreboard without any additional effort. For adding

custom component information to the scoreboard, there are intuitive

methods like write_at_master(), write_at_slave(), read_at_master(),

read_at_slave() which help the user to call these methods without

requiring any knowledge about internal details of the scoreboard.

Also it has methods like final_check() for checking if there are any

pending transactions and report() for providing a summary of the

report.

Figure 3. Generic Scoreboard structure

Every byte level scoreboard unit handles write data check and read

data check separately. Whenever a write transaction occurs at the

master, master transaction is broken into a list of byte level

scoreboard data (genIc_sb_data) which has address and byte

information. This list is saved in the expected slave scoreboard with

the master id. When the transaction reaches the slave, the slave

transaction is broken into a list of scoreboard data (genIc_sb_data)

and this list is compared with that of the master. If there are multiple

master ids present in the expected slave scoreboard, search happens

in all the lists. In case of read transaction, read request transaction at

the master is broken into a list of byte level scoreboard data

(genIc_sb_data). Data in this case are don‟t cares since it is just a

request. This list is saved in the expected slave scoreboard with the

master id. When the read happens at the slave, this list is updated

with the data available at the slave. In the end, when the response

reaches master, transaction is again broken into a list of scoreboard

data (genIc_sb_data) and compared with the ones in the expected

list. Compared items in both write and read transactions are deleted

immediately from the scoreboard.

For complex sub-system environments, there could be numerous

scoreboard data items at a time during the simulation. Hence data

item class for the scoreboard (genIc_sb_data) was made light weight

by not extending it from vmm_data as vmm_data extends

vmm_object and also has notification events which are not used by

the scoreboard data item.

The scoreboard takes information of different components through

the configuration and provides intuitive messages about the progress

of simulation as shown in Figure 4. It gives information about which

master has started transactions, where the transaction is at specific

simulation time, etc.

Figure 4. Scoreboard output in the simulation log

2.3 Scenario Generation
When a component is configured as a master, a scenario generation

mechanism gets enabled with a default random scenario. The default

random scenario gets target information from the configuration and

automatically generates random transactions to the valid slave

ranges. Number and speed of transactions can be controlled from the

test case or from the command line through vmm_opts. Thus

multiple masters can concurrently generate random traffic to valid

slaves including their range boundaries with different speeds. Default

random scenarios are available for all supported protocols.

Scenario generation mechanism uses VMM multi-stream scenario

generator and hence the user can replace default scenario with

customized scenarios for covering corner cases like accessing the

same location by multiple masters, etc. This also allows

synchronization of multiple scenarios of different generators.

2.4 Performance Analyzer
The generic environment has a performance analyzer to analyze the

arbitration and bus performance of the DUT. A user can take its

benefits just by enabling a runtime switch. It uses two instances of

vmm_perf_analyzer class, one for arbitration performance and

another for the bus performance. The performance analyzer can be

enabled during the runtime using vmm_opts. It provides details of

bus utilization in SQL format. SQL processing tools can be used to

view the performance analysis as shown in Figure 5.

Figure 5. Bus performance: Average active time of each master

The generated report provides information such as arbitration time,

bandwidth, average and peak latency for each initiator and so on.

This will help to find any issues with the performance of the DUT.

For analyzing the bus performance, amount of bytes transferred

across the bus is considered and for analyzing arbitration

performance, request to grant time is considered. Connection

between the monitors and the performance analyzer is taken care for

supported standard protocols. If any new master of unsupported

protocol is added to the environment, then performance analyzer

methods have to be called explicitly by the user.

3. USING GENERIC INTERCONNECT

VERIFICATION ENVIRONMENT
This section describes steps to build a verification environment using

the Generic Interconnect Verification environment and explains how

easy it is to incorporate specification changes, taking an example of

one of the subsystems we are verifying.

The subsystem initially had some master and slave interfaces with

AHB and APB protocols, some with proprietary standard interfaces

and few custom interfaces. A simplified version of the DUT for the

sake of our discussion is shown in Figure 6. Due to performance

requirements in our project, specification got changed with AXI

replacing the AHB interfaces besides addition of more interfaces. A

simplified version of the revised DUT is as shown in Figure 7.

Below sub-sections describe the steps followed to develop

verification environment for the initial DUT and the effort taken to

change the environment for the revised DUT.

Figure 6. Initial Subsystem Interconnect with AHB interfaces

Figure 7. Revised Subsystem Interconnect with AXI interfaces

3.1 Verification Environment for Initial

Subsystem

The verification environment development for the initial version on

the DUT as shown in Figure 6. was done as follows.

3.1.1 Creating configuration
The generic interconnect configuration base class was extended and

all the component specific configurations were added inside the

method generate_config (). This was done using the predefined

method add_vip_cfg () as shown in Figure 8. Each component was

added with unique instance name, its protocol, behavior and other

required information. All the masters and slaves were configured as

genIc_vip_cfg::MST_ACTIVE and genIc_vip_cfg::SLV_ACTIVE so

that appropriate BFMs get initialized. Address range was specified

for each slave. For adding configuration for any component of

unsupported protocol, genIc_vip_cfg::CUSTOM was specified for

protocol argument. For each master, valid slaves were specified

using the predefined methods add_target_to_master() and

add_all_targets_to_master(). For overriding any default protocol

specific configuration parameter for any component, vmm_opts

methods were used in the constructor.

Figure 8. Configuration class

3.1.2 Adding configuration to the Generic

Environment

Figure 9. Configuration addition to Environment Class

The generic interconnect configuration instance is added to the

generic environment using a predefined set_config () method as

shown in Figure 9.

3.1.3 Providing Interface connectivity for the BFMs.
Connecting the interfaces to appropriate VIPs was done using the

virtual ports arrays existing in the Generic environment as shown in

Figure 10. This was simple since virtual ports array was indexed with

the instance names of the VIPs.

As discussed before, all the scoreboard connections for the supported

protocols were managed automatically without requiring any

additional effort. However, for adding custom components to the

environment and scoreboard, the next set of steps was followed.

3.1.4 Adding Custom components.
For reaping the benefits of the Generic environment, configuration

for custom VIPs was added. VIP was instantiated in build () method.

Figure 11. Scoreboard connectivity for a custom component

For adding the VIP information to the generic scoreboard, following

steps were followed as shown in Figure 11:

1. Conversion function which converts protocol specific

transaction to a set of scoreboard transactions was added

by extending the base class genIc_sb_port.

2. Callback class was created extending the callback class

provided by the custom VIP monitor to call scoreboard

methods, write_at_slave() and read_at_slave().

3. Conversion port instance was added to the scoreboard with

the instance name and callback instance was connected to

the custom VIP monitor.

3.1.5 Creating test cases and starting verification.
For creating test cases, the environment is instantiated in a program

block as per VMM methodology guidelines and vmm_test

mechanism was used.

3.2 Changes in Verification Environment due to

Revised Subsystem

When the sub-system specification changed as in Figure 7.,

addressing the changes in the verification environment was easy

since only modifications required were in the configuration and the

interface connection. The changed configuration for the new

specification is as shown in Figure 12. Also, when actual RTL was

ready at S0, the slave VIP at S0 had to be replaced with RTL; and a

monitor VIP had to be connected to capture the traffic information.

All these modifications were done in the configuration itself just by

changing the type from AHB to AXI for M0 and M1, changing the

behavior mode of S0 component from SLV_ACTIVE to

SLV_PASSIVE and specifying configuration information for M3.

Figure 12. Configuration Class for the revised subsystem.

4. RESULTS
The Generic Interconnect Verification environment enabled us to

quickly build verification environments for different subsystems with

lesser resources, thus increasing productivity. It took around 6 staff

weeks to build the Generic environment. Typically it took around 2

staff days to build a verification environment using the Generic

Interconnect environment which would have taken around 2-3 staff

weeks otherwise. It has avoided duplication of efforts both in

program P;

dut_env env;

initial begin

 env = new;

 env.ahb_ports[“M0”] = top.ahb_M0_if;

 env.ahb_ports[“M1”] = top.ahb_M1_if;

 env.pi_ports[“M2”] = top.pi_M2_if;

 env.ahb_ports[“S0”] = top.ahb_S0_if;

 env.pi_ports[“S0”] = top.pi_S0_if;

end

endprogram

Figure 10. Connecting VIP ports to DUT interface

class custom_port extends genIc_sb_port;

 virtual function void convert_to_sb(vmm_data tr,
 output genIc_sb_data sbQ[$]);

 //Add conversion code

 endfunction
 endclass

class custom_callback extends custom_callbacks;
 genIc_scoreboard sb;

 virtual function tr_wr_call(custom_mon mon_trans);
 sb.write_at_slave(inst, mon_trans);

 endfunction

 virtual function tr_rd_call(custom_mon mon_trans);

 sb.read_at_slave(inst, mon_trans);

 endfunction
endclass

class dut_env extends genIc_matrix_env;

 virtual function void build();

 ….
 custom_port prt = new();

 custom_callback cbk = new(“S2”, sb);

 sb.add_sb_port(“S2”, prt);

 custom_mon.append_callback(cbk);

 endfunction

endclass

developing and maintaining the verification environments for each

sub-chip. The chip we are currently working on has 5 sub-chips

(clusters) which are being verified at various locations. By having

one environment that can be scaled and enhanced to suit specific

components, significant saving in terms of effort and schedule is

achieved. The same generic environment can be upgraded to support

custom protocols, by using the corresponding VIP which anyway

will have to be developed. We are also planning for enhancements

like a set of generic scenarios in addition to the currently available

default scenario.

5. ACKNOWLEDGMENTS
Our thanks to Suresh Bandaru and Jayendra Dwaraka Bhamidipatti

for their guidance and Amit Sharma (Synopsys) for providing us the

support required for this environment.

6. REFERENCES
 [1] Janick Bergeron, Eduard Cerny Alan Hunter and Andrew Nightingale.

2006. Verification Methodology Manual for System Verilog

Columns on Last Page Should Be Made As Close As Possible to Equal Length

