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ABSTRACT  
There are several challenges in verifying a complex SoC (System on 

Chip) on time, like frequent specification changes, which include 

architectural and protocol changes that impact both verification effort 

and the delivery schedules. As an example, a SoC of ~140 M gates 

currently we are working on   consists of large sub-chip components 

having hierarchical interconnects, needs to be comprehensively 

verified. The number of verification environments that need to be 

created and maintained for all the sub-chip designs is another 

challenge. Even if reusable components like VIPs (Verification 

Intellectual Property) are used, there is a considerable amount of 

effort involved in their integration, handling communication with 

other components, verifying the same and so on. To tackle these 

challenges, the need of the hour is to have a generic infrastructure 

which can be reused for various environments corresponding to the 

sub-chip designs. This paper presents such an infrastructure which 

supports different bus protocols with an intuitive interface to the user 

for integrating multiple diverse components. The paper also talks 

about the additional facilities provided by this infrastructure, like the 

built in generic scoreboard for data integrity checks and the 

performance analyzer which can be used to measure the performance 

of the DUT (Design Under Test). To provide such infrastructure for 

variety of sub-chip components, a highly configurable environment 

is built using the powerful features of contemporary verification 

methodologies. 

 

The configurable environment can be used to verify large sub-chip 

designs having interconnects, bridges with any number of master and 

slave interfaces of different protocols. The environment has built-in 

support for standard protocols and provides facilities for the users to 

add their own custom components, with minimum effort. It is built at 

a higher abstraction level but hooks are provided to access any 

component at any hierarchy. The environment has a list of VIPs of 

different standard protocols and each VIP is associated with a 

configuration descriptor. Each configuration descriptor contains 

generic information like its kind, protocol, address map, bus widths, 

supported targets, etc. as well as protocol specific configuration (like 

reordering depth, in case of AXI interface). Based on the 

configurations, appropriate VIPs get activated with the specified 

behavior in the configuration. The corresponding communication 

interface with the other components like scoreboard and a default 

random scenario to the valid slaves are also generated in an 

automated manner and the paper describes how this is done. The 

environment has a performance analyzer too, to measure the 

performance of DUT like traffic and arbitration when it is enabled. 

 

The scoreboard used in the environment is a byte level generic 

scoreboard which verifies the data integrity across interfaces of 

different protocols/bus widths. Also, the scoreboard is made efficient 

in terms of runtime memory, considering the complexity of the 

environments. The paper talks about how these features are 

implemented. Additionally it talks about leveraging standard off-the 

shelf available methodology features to handle various diverse 

requirements such as configurable „end of test‟ detection and 

traversing the environment hierarchy. 
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1. INTRODUCTION  
 Though it is not desired, but inevitably the specification of a product 

keeps changing based on customer requirements, performance, 

timing, etc. This may lead to change in the protocols, change in the 

number of interfaces of the sub-systems, change in the number of 

sub-systems and so on to meet the requirements. A typical complex 

SoC as shown in Figure 1., consists of multiple sub-systems of same 

and different kinds and each of them needs to be verified efficiently. 

It is difficult to develop and maintain a large number of verification 

environments at different levels in a given time. With the usage of 

standard verification methodologies like VMM/OVM/UVM and 

reusable VIPs, verification environments can be developed faster, but 

still there is a  considerable amount of effort involved like 

integration, building scoreboards, maintaining each environment 

separately, to name a few. Again whenever the specification changes, 

accommodating corresponding changes in the environments requires 

considerable effort. This paper describes how verification 

environments can be developed with a very little effort using the 

configurable generic interconnect infrastructure and how they can be 

made almost immune to the specification changes. 

 



 
Figure 1. Typical SoC (System on Chip) example 

 

2. GENERIC INTERCONNECT 

VERIFICATION ENVIRONMENT  
To address the issues discussed above, a highly configurable generic 

verification environment is developed with built-in support for 

standard protocols. The environment is built using VMM 

methodology, but there is no restriction to develop this environment 

with OVM/UVM since almost all features used in this environment 

are available in these methodologies as well. The architecture of the 

environment is as shown in Figure 2. 

 

 
 

Figure 2. Generic Interconnect Verification Environment 

 

 

The Generic Interconnect Verification Environment has a set of 

configuration descriptors to control the behavior of the environment 

and its components. It encapsulates a list of VIPs for each protocol 

and they get initialized based on the configuration. There is a 

protocol independent byte level scoreboard which performs data 

integrity checks. The environment has a performance analyzer also 

for monitoring bus and arbitration performances when enabled. 

Communication between generators and drivers are handled through 

channels and for the rest of the components, callbacks are used. All 

the components of the environment are built hierarchically with 

parent-child relationship so that any component can be accessed 

using vmm_object utility methods and vmm_opts from the test case. 

 
The Generic environment execution flow is same as the vmm_env 

where configuration descriptors are built in the method 

vmm_env::gen_cfg(). Based on the configuration, appropriate VIPs 

get initialized in vmm_env::build() and get registered to the 

consensus mechanism. Then the test execution continues in 

subsequent phases and the end of test is determined by the consensus 

mechanism after all the registered VIPs are done with their 

execution. Finally scoreboard provides a summary of the transactions 

and the result of the test. Additionally, performance analyzer if 

enabled provides summary of the traffic details and an SQL report on 

arbitration and DUT performance. 

 

2.1 Configuration  
Configuration is the core of the Generic Environment through which 

all the components are initialized and controlled. There is an 

environment specific configuration descriptor which has parameters 

to control the environment execution. These parameters use 

vmm_opts and hence they can be set from the test case or command 

line. The environment configuration has a list of component specific 

configurations. Each component configuration controls the kind and 

behavior of the corresponding component/VIP. It contains 

information like the protocol (AXI, AHB, OCP, etc), behavior 

(master or slave, active or passive, etc) and other information such as 

address range. It also contains protocol specific parameters like 

reordering depth in case of AXI and any such parameters can be set 

through vmm_opts. There is a set of predefined methods in the 

environment configuration through which user can easily add 

configuration for all the components. In addition to standard 

protocols, provision is made to add configuration for custom 

components as well. Based on the configuration, appropriate VIPs 

get initialized with the specified behavior.  

 

Another feature in the configuration is that the user can specify a set 

of valid slaves for a master. This information is taken by random 

scenario generator to generate traffic only to those slaves. 
 

2.2 Scoreboard 
The Generic Scoreboard in the environment is protocol independent 

and performs data integrity checks. It has a set of byte level 

scoreboard units, one for each slave as shown in Figure 3. Any 

protocol specific transaction appearing at a master/slave is broken 

down into a list of protocol independent scoreboard data items, each 

of which has byte data and its address. Since the data of any bus 

widths are converted to a set of bytes and used for comparison, 

scoreboard can process transactions of different bus widths. For the 

supported protocols, communication from monitor to scoreboard is 

done using VMM callbacks and converting transactions to 

scoreboard items is taken care automatically in the environment 

itself, i.e., just by providing configuration information, user can 

make use of scoreboard without any additional effort. For adding 

custom component information to the scoreboard, there are intuitive 



methods like write_at_master(), write_at_slave(), read_at_master(), 

read_at_slave() which help the user to call these methods without 

requiring any knowledge about internal details of the scoreboard. 

Also it has methods like final_check() for checking if there are any 

pending transactions and report() for providing a summary of the 

report. 

 

 
Figure 3. Generic Scoreboard structure 

 

Every byte level scoreboard unit handles write data check and read 

data check separately. Whenever a write transaction occurs at the 

master, master transaction is broken into a list of byte level 

scoreboard data (genIc_sb_data) which has address and byte 

information. This list is saved in the expected slave scoreboard with 

the master id. When the transaction reaches the slave, the slave 

transaction is broken into a list of scoreboard data (genIc_sb_data) 

and this list is compared with that of the master. If there are multiple 

master ids present in the expected slave scoreboard, search happens 

in all the lists. In case of read transaction, read request transaction at 

the master is broken into a list of byte level scoreboard data 

(genIc_sb_data). Data in this case are don‟t cares since it is just a 

request. This list is saved in the expected slave scoreboard with the 

master id. When the read happens at the slave, this list is updated 

with the data available at the slave. In the end, when the response 

reaches master, transaction is again broken into a list of scoreboard 

data (genIc_sb_data) and compared with the ones in the expected 

list. Compared items in both write and read transactions are deleted 

immediately from the scoreboard.  

 

For complex sub-system environments, there could be numerous 

scoreboard data items at a time during the simulation. Hence data 

item class for the scoreboard (genIc_sb_data) was made light weight 

by not extending it from vmm_data as vmm_data extends 

vmm_object and also has notification events which are not used by 

the scoreboard data item. 

 

The scoreboard takes information of different components through 

the configuration and provides intuitive messages about the progress 

of simulation as shown in Figure 4. It gives information about which 

master has started transactions, where the transaction is at specific 

simulation time, etc.  

 
Figure 4. Scoreboard output in the simulation log 

 

2.3 Scenario Generation 
When a component is configured as a master, a scenario generation 

mechanism gets enabled with a default random scenario. The default 

random scenario gets target information from the configuration and 

automatically generates random transactions to the valid slave 

ranges. Number and speed of transactions can be controlled from the 

test case or from the command line through vmm_opts. Thus 

multiple masters can concurrently generate random traffic to valid 

slaves including their range boundaries with different speeds. Default 

random scenarios are available for all supported protocols. 

Scenario generation mechanism uses VMM multi-stream scenario 

generator and hence the user can replace default scenario with 

customized scenarios for covering corner cases like accessing the 

same location by multiple masters, etc. This also allows 

synchronization of multiple scenarios of different generators. 

 

2.4 Performance Analyzer 
The generic environment has a performance analyzer to analyze the 

arbitration and bus performance of the DUT. A user can take its 

benefits just by enabling a runtime switch. It uses two instances of 

vmm_perf_analyzer class, one for arbitration performance and 

another for the bus performance. The performance analyzer can be 

enabled during the runtime using vmm_opts. It provides details of 

bus utilization in SQL format. SQL processing tools can be used to 

view the performance analysis as shown in Figure 5. 

 

Figure 5. Bus performance: Average active time of each master 

 

The generated report provides information such as arbitration time, 

bandwidth, average and peak latency for each initiator and so on. 

This will help to find any issues with the performance of the DUT. 

For analyzing the bus performance, amount of bytes transferred 

across the bus is considered and for analyzing arbitration 

performance, request to grant time is considered. Connection 

between the monitors and the performance analyzer is taken care for 



supported standard protocols. If any new master of unsupported 

protocol is added to the environment, then performance analyzer 

methods have to be called explicitly by the user.  

 

3. USING GENERIC INTERCONNECT 

VERIFICATION ENVIRONMENT 
This section describes steps to build a verification environment using 

the Generic Interconnect Verification environment and explains how 

easy it is to incorporate specification changes, taking an example of 

one of the subsystems we are verifying.  

 

The subsystem initially had some master and slave interfaces with 

AHB and APB protocols, some with proprietary standard interfaces 

and few custom interfaces. A simplified version of the DUT for the 

sake of our discussion is shown in Figure 6. Due to performance 

requirements in our project, specification got changed with AXI 

replacing the AHB interfaces besides addition of more interfaces. A 

simplified version of the revised DUT is as shown in Figure 7. 

Below sub-sections describe the steps followed to develop 

verification environment for the initial DUT and the effort taken to 

change the environment for the revised DUT. 

 

 
Figure 6. Initial Subsystem Interconnect with AHB interfaces 

 

 
Figure 7. Revised Subsystem Interconnect with AXI interfaces 

 

3.1 Verification Environment for Initial 

Subsystem 

The verification environment development for the initial version on 

the DUT as shown in Figure 6. was done as follows. 

 

3.1.1 Creating configuration 
The generic interconnect configuration base class was extended and 

all the component specific configurations were added inside the 

method generate_config (). This was done using the predefined 

method add_vip_cfg () as shown in Figure 8. Each component was 

added with unique instance name, its protocol, behavior and other 

required information. All the masters and slaves were configured as 

genIc_vip_cfg::MST_ACTIVE and genIc_vip_cfg::SLV_ACTIVE so 

that appropriate BFMs get initialized. Address range was specified 

for each slave. For adding configuration for any component of 

unsupported protocol, genIc_vip_cfg::CUSTOM was specified for 

protocol argument. For each master, valid slaves were specified 

using the predefined methods add_target_to_master() and 

add_all_targets_to_master(). For overriding any default protocol 

specific configuration parameter for any component, vmm_opts 

methods were used in the constructor. 

 

 
Figure 8. Configuration class 

 

3.1.2 Adding configuration to the Generic 

Environment 

 
Figure 9. Configuration addition to Environment Class 

 

The generic interconnect configuration instance is added to the 

generic environment using a predefined set_config () method as 

shown in Figure 9. 



 
3.1.3 Providing Interface connectivity for the BFMs. 
Connecting the interfaces to appropriate VIPs was done using the 

virtual ports arrays existing in the Generic environment as shown in 

Figure 10. This was simple since virtual ports array was indexed with 

the instance names of the VIPs. 

 

 
 

 

As discussed before, all the scoreboard connections for the supported 

protocols were managed automatically without requiring any 

additional effort. However, for adding custom components to the 

environment and scoreboard, the next set of steps was followed. 

 

3.1.4 Adding Custom components. 
For reaping the benefits of the Generic environment, configuration 

for custom VIPs was added. VIP was instantiated in build () method.  

 

 
 

Figure 11. Scoreboard connectivity for a custom component 

 

For adding the VIP information to the generic scoreboard, following 

steps were followed as shown in Figure 11: 

1. Conversion function which converts protocol specific 

transaction to a set of scoreboard transactions was added 

by extending the base class genIc_sb_port.  

2. Callback class was created extending the callback class 

provided by the custom VIP monitor to call scoreboard 

methods, write_at_slave() and read_at_slave().  

3. Conversion port instance was added to the scoreboard with 

the instance name and callback instance was connected to 

the custom VIP monitor. 

 
3.1.5 Creating test cases and starting verification. 
For creating test cases, the environment is instantiated in a program 

block as per VMM methodology guidelines and vmm_test 

mechanism was used.  

 

3.2 Changes in Verification Environment due to 

Revised Subsystem 

When the sub-system specification changed as in Figure 7., 

addressing the changes in the verification environment was easy 

since only modifications required were in the configuration and the 

interface connection. The changed configuration for the new 

specification is as shown in Figure 12. Also, when actual RTL was 

ready at S0, the slave VIP at S0 had to be replaced with RTL; and a 

monitor VIP had to be connected to capture the traffic information. 

All these modifications were done in the configuration itself just by 

changing the type from AHB to AXI for M0 and M1, changing the 

behavior mode of S0 component from SLV_ACTIVE to 

SLV_PASSIVE and specifying configuration information for M3. 

 

 
Figure 12. Configuration Class for the revised subsystem. 

 

 

4. RESULTS  
The Generic Interconnect Verification environment enabled us to 

quickly build verification environments for different subsystems with 

lesser resources, thus increasing productivity. It took around 6 staff 

weeks to build the Generic environment. Typically it took around 2 

staff days to build a verification environment using the Generic 

Interconnect environment which would have taken around 2-3 staff 

weeks otherwise. It has avoided duplication of efforts both in 

program P; 

dut_env env; 

initial begin 

     env = new; 

     env.ahb_ports[“M0”] = top.ahb_M0_if; 

     env.ahb_ports[“M1”] = top.ahb_M1_if; 

     env.pi_ports[“M2”]    = top.pi_M2_if; 

     env.ahb_ports[“S0”]  = top.ahb_S0_if; 

     env.pi_ports[“S0”]     = top.pi_S0_if; 

end  

endprogram 

 
Figure 10. Connecting VIP ports to DUT interface 

class  custom_port extends genIc_sb_port; 
 

        virtual function void convert_to_sb(vmm_data tr,  
                                                                   output genIc_sb_data sbQ[$]); 

               //Add conversion code 

        endfunction 
 endclass 

 

class custom_callback extends  custom_callbacks; 
      genIc_scoreboard sb; 

       

      virtual function tr_wr_call(custom_mon mon_trans); 
          sb.write_at_slave(inst, mon_trans); 

      endfunction 

 

       virtual function tr_rd_call(custom_mon mon_trans); 

         sb.read_at_slave(inst, mon_trans); 

      endfunction 
endclass 

 

class dut_env extends genIc_matrix_env; 
 

     virtual function void build(); 

            …. 
            custom_port prt = new(); 

            custom_callback cbk = new(“S2”, sb); 

            sb.add_sb_port(“S2”, prt); 

            custom_mon.append_callback(cbk); 

     endfunction 

 
endclass 

 

 
   



developing and maintaining the verification environments for each 

sub-chip. The chip we are currently working on has 5 sub-chips 

(clusters) which are being verified at various locations. By having 

one environment that can be scaled and enhanced to suit specific 

components, significant saving in terms of effort and schedule is 

achieved. The same generic environment can be upgraded to support 

custom protocols, by using the corresponding VIP which anyway 

will have to be developed. We are also planning for enhancements 

like a set of generic scenarios in addition to the currently available 

default scenario. 
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