

Transparently Checkpointing Software Test Benches to Improve Productivity of SOC Verification in an Emulation Environment

{Ankit Garg, K. Suresh, Jeff Evans}, Mentor, A Siemens Business, (Gene Cooperman, Rohan Garg), Northeastern University

Emulator as Enterprise Platform

EMULATOR APPS

DFT

Virtual Network

Emulation moved to Virtualization

Efficient Emulator Utilization Desired

- Emulators allow jobs sized as integral multiple of minimum partition size
 - Complexities for job scheduling as jobs can be of varying sizes
- Non-preemptive nature of Virtual Emulation jobs results in inefficiencies and under utilization of resources

Underutilization of expensive resource like Emulator directly affects cost of

ownership

Making Virtual Emulation Jobs Preemptive

Solution:

Checkpoint-Restore can solve problem of non preemption

Challenges:

- Virtual Emulation Jobs requires checkpoint-restore of two parts
 - Hardware Checkpoint-Restore: available for many years
 - Software Testbench Checkpoint-Restore: an elusive problem to solve
 - Virtual testbench environments can be non-deterministic, multithreaded/process
 - Involves multiple languages like C/SystemC, SystemVerilog, etc.

Software Checkpoint-Restore

- Application-level checkpoint-restore
 - Difficult to maintain, complicated with multiple languages involved
 - Requires changes in user code; third-party libraries add more complexities
- Checkpoint-Restore supported by kernel modules
 - Requires root privileges
 - Difficult to maintain: closely coupled with kernel, which has frequent changes
- Replay Software testbench using stimulus from the hardware
 - Time consuming; capturing all stimulus may result in large database size
- Transparent checkpoint-restore without change to user code or kernel

Background - DMTCP

- DMTCP: Distributed MultiThreaded Checkpointing
 - Open source tool: http://dmtcp.sourceforge.net
 - Transparently checkpoint-restores state of running application
 - Operates directly on user binary executable
 - No root privileges needed
 - No loading of kernel modules
 - No application source code change needed
 - No re-linking/re-compilation needed
 - Mature: 11 years in development
 - Robust user base with more than 11 thousand downloads

DMTCP Generic Application Checkpoint/Restart

DMTCP Emulation Application Checkpoint/Restart

Motivating Use Cases (I)

- Skipping repeated initial sequence
 - E.g. hardware reset phase or boot-up
 - Large runtime time after which actual test start

- Can save lot of emulation runtime by taking checkpoint right after this

repeated sequence

Motivating Use Cases (II)

- Better Job Management Policies
 - Enable a Pre-emptive scheduling policy
 - Job migration possible leading to more efficient Emulator utilization
 - Large capacity jobs having low priority will get fair chance to execute

Motivating Use Cases (III)

- Debugging from past simulation time
 - Full system Checkpoint capability let engineers debug just prior to first appearance of issue
 - Save lot of time in case issue occurs only after a run of long duration
 - Users can take periodic checkpoint and restart from the corresponding window

DMTCP Emulation Integrated Checkpoint flow

- Flowchart describing steps taken for checkpointing two parts
 - Hardware checkpoint is done by Emulator
 - Software checkpoint is done by DMTCP

DMTCP Emulation Integrated Restart/Restore flow

- Flowchart describing steps for restoring two part
 - Process tree is restored by DMTCP
 - Hardware State is restored by Emulator

Case Study: Skipping The OS Boot In An OEM Company's SOC Validation Environment

- SOC consists of a CPU, Memory subsystem, switching fabric and peripherals
- Hybrid environment
 - Part of SOC modeled on workstation
 - Part of SOC modeled in emulator
- SOC validation required booting an OS to run applications being validated
 - Boot of the OS takes on the order of hours to days
- DMTCP eliminated OS boot time allowing more applications to run per user per day

Case Study: Skipping The OS Boot In An OEM Company's SOC Validation Environment

- Regression suite consists of 20 jobs
- Each job similar profile around 1 hour OS boot and 1 hour of execution

DMTCP based checkpointing was used to checkpoint just after boot

Restoration takes around 5 minutes

Case Study: Results

Regression suite emulation time comparison

Case Study: Challenges and Solutions

- Large files were getting checkpointed increasing checkpoint time and database size
 - DMTCP emulation plugin created a skip list for read only files
- Checkpoint database was not portable to another site
 - File paths were preserved during checkpointing
 - This was solved using file path virtualization plugin of DMTCP
 - This allowed file paths to be changed at restore time

Next Steps

- Work on developing pre-emptive capabilities for emulation jobs
- Integrate job migration capability to make job scheduling more flexible

- Discover practical challenges in deployment
- Some use cases have a remote process on Windows machine, additional work is required on this front

Questions?