
Transparent SystemC Model Factory for
Scripting Languages

Rolf Meyer, Bastian Farkas, Syed Abbas Ali Shah, Mladen Berekovic
E.I.S., TU Braunschweig, D-38106 Braunschweig, Germany

Email: {farkas, meyer, shar, berekovic}@c3e.cs.tu-bs.de

Abstract

In this work we present a modern way to implement a model factory inside a SystemC simulation framework.
We make use of a scripting language to interact with the simulation framework and dynamically load and instantiate
models from external libraries. We demonstrate our approach with the SoCRocket virtual platform framework, which
already comes with a generous amount of models. These models don’t need to be modified in any way. With our
factory and registry solution it is possible to describe a whole platform configuration in a natural scripting language
syntax, while using existing models.

I. INTRODUCTION

The idea behind electronic system level (ESL) design is to further accelerate the design process. Hence, the trend
for SystemC simulations moves towards runtime configurable and adaptable or even runtime intermateable models.
Technologies for configuration, control and introspection gain more and more importance as they are finding their
way into industry standards allowing better runtime reconfigurability. For the same reasons we have observed an
increasing interest in model registries and factories. We present a solution for intermateability, which can be utilized
from any scripting language, to extend their usability. Any model can be added without recompilation to a virtual
platform. This is especially useful for external interface models like UART or Ethernet since the number of models
needed in the platform may vary with the application. Moreover, the implementation is tested in multiple simulators:
Accellera SystemC, Mentor Graphics QuestaSim, Cadence NCSim.

executable runtime

time saved with factory

linking
modules and top

recompile
top

startup
static create simulation

simulationstartup
dynamic create

Fig. 1: Time comparison to reach the start of the simulation for static creation and dynamic creation. [1]

Other approaches restrict their solutions to be a pure registry with a factory for SystemC models and use it with
their own instantiation language.[1] This approach deminishes the benefit gained from reducing recompilation time
by imposing the designer to learn a new domain specific language. Our solution integrates in an existing scripting
language the designer might already know. We will use Python in this example, but our approach is not limited
to Python. Other implementations are possible as well. We have in fact working prototypes in Python, TCL, Perl
and Ruby. For a full integration in a common scripting language not only a registry and factory is needed. We also
need the ability to do type checking at runtime. This allows the scripting language to fully integrate the factory
with its models to mimic a natural language user experience.

The remainder of the paper is structured in the following way: Other uses of factories will be shown in the
related work section. A short introduction in the foundation of this work follows in the subsequent section. The
implementation is divided in four subsections. First we explain the access of SystemC objects from a scripting
language. Second we explaing in detail the implementation of the factory itself. Then we describe our natural
language interface in Python. Finally we introduce an interface to load dynamic linked libraries in the last subsection.
An application demonstrates the usage of our framework in the application section. Finally we conclude the paper.

II. RELATED WORK

The topic of object factories does not come up often in research. It has been introduced in the famous “Gang
of Four” book about design patterns [2]. Since then it is difficult to evaluate how many projects actually apply the
factory pattern. An obvious application in the recent past have been engines and frameworks for game programming.
Although it is quite difficult to get an insight since most frameworks are closed source.

The market for engines consolidates around a handful of key players and each one wants to offer the developers
an easy interface to realize their visions without the need to be low level programming wizards. The natural way
to do this is to provide the users (in this case game developers) with an application programming interface (API)
which is easily applicable in their favorite language. Another approach is to include scripting capabilities directly in
the engine. This can even be done visually instead of textually [3]. Modern games can be seen as highly complex
simulation systems, much like system level design frameworks. It makes therefore a lot of sense to look into
advances in that domain.

The authors of [1] describe a reconfigurable simulation framework which uses the factory pattern, but the focus
there is clearly on model reconfiguration and not dynamic model loading and instantiation. The authors rely on their
own description language for the platform configuration instead of a common scripting language. This fact makes
the approach unattractive for developers who already have to be profiscient in several languages. Furthermore they
describe a lack of lightweight, open and easy to use solutions for SystemC virtual platforms. We adress all three
of these points with our factory and registry implementations.

A good overview of the related work can be found in section two of [1].
Accellera is still in the process of creating a common configuration control and introspection (CCI) standard [4].

Previous work regarding configuration mechanisms is available from Greensocs [5] which is finding its way into
the configuration, control and inspection (CCI) standard.

III. FOUNDATION

In [6] we have presented our scriptable reporting and logging framework which is the foundation for the
work presented here. Our framework combines the two most powerful reporting and logging approaches for
SystemC/TLM2 applications. The first approach comprises a reporting framework including a scriptable report
processing back end. The default reporting tools of SystemC were extended by a comfortable scripting interface
and support for smart handling of key/value pairs attached to reports. The scripting interface relies on the Python
scripting language and its vast amount of available libraries. With the introduction of efficient black- and whitelisting
mechanisms, the impact on simulation time can be reduced to a minimum while still benefiting from the capable
scripting interface. Further speedup is expected with introduction of multi-threading support, which will be available
in the near future.

The second approach combines introspection and reflection for SystemC/TLM2 applications with a comprehensive
scripting library (called USI, Universal Scripting Interface). We have shown that the presented framework works
well with available base-classes like sc_object and Cadence’s scireg and is compatible with simulators like
OSCI SystemC and MentorGraphic’s Questasim. Furthermore, we have shown that our presented API greatly eases
integrating third-party C++ APIs and therefore is prepared to support future standards as well as proprietary solutions
with minimal efforts.

IV. IMPLEMENTATION

The implementation is based upon our universal scripting interface (USI), which we presented in [7] and [8].
USI enables a scripting language to interact with a SystemC simulation to fulfill sophisticated control and analysis
tasks by abstracting functionality over abstract C++ interfaces. By providing a registry for third party APIs it is
possible to access model internals without recompilation or preparation of the models for this purpose. In addition
to fulfilling the needs of a hierarchical structure, USI is extended by a sc module class allowing the designer to
construct simple container models within the scripting language. It is possible to create a wrapper around this
interface to mimic language natural style and behavior with minimal effort.

A. Universal Scripting Interface (USI)

In the simplest case, a sc_object is dynamically cast to an interface, for example sc_object or AHBDevice
Interfaces. The cast will create a new SWIG proxy object if the interface is implemented for the specific sc_object,
otherwise NULL is returned. The registration process of these simple interfaces is described in the next section.

While this technique is sufficient in most cases, some external utilities require a more complex approach. These
utilities may rely on external data storages which need to be queried. To incorporate such utilities, our solution
allows the integration of a custom generator function (see Listing 2, line 3). It can cope with any kind of function,
creating a proxy object in the scripting language from either a sc_object or a hierarchical path. To demonstrate
the API, the scireg base-class integration is explained below.

1 def __getattr__(self, name):
2 result = None
3 for iface in self.get_if_tuple():
4 result = getattr(iface, name, None)
5 if result: return result
6 super(InterfaceDelegate,
7 self).__getattr__(name)
8

9 def __dir__(self):
10 result = set()
11 for iface in self.get_if_tuple():
12 result.update(dir(iface))
13 return sorted(result)

Listing 1: Python implementation of the interface delegation

1 USI_OBJECT
2 USI_INIT_MODULES()
3 USI_REGISTER_OBJECT_GENERATOR(funct)
4 USI_REGISTER_OBJECT(type)

Listing 2: Plugin API

After construction, USIDelegate can be used as a normal Python object. Function calls are transparently
delegated to the collected proxies as shown in Figure 2. All available SWIG or language proxies for an identified
SystemC object are stored within the USIDelegate object. The functionality provided by the Python part of
the implementation is shown in Listing 1. It simply selects the proxy object implementing the called function via
the __getattr__ method and executes it. The __dir__ method is used to further improve the usability by
enabling command completion in the interactive shell. The method get_if_tuple returns a tuple of valid SWIG
proxy objects for the interfaces from plugins implemented on the corresponding sc_object. This method is
implemented directly in C++, unifying the delegation and the SWIG proxy objects.

Altogether the USI enables access to SystemC models via registered utility APIs. This allows a scripting language
to integrate models like native objects. But it does not introduce differentiated type for the instances or a way to
construct new objects. A factory as described below is the natural extension.

B. Factory for scripting languages

USI provides us with the capability to handle SystemC object through utility APIs like native instances but how
do we get these instances. In our work we created these objects in a C++ main-function and use the usi.find-
function to get a reference into the scripting environment. With a model registry and factory we enable the scripting
language to create these instances as well and make the C++ main-function obsolete. In addition to a registry
for constructor-functions a scripting languages might need other functions. For example emulating native
instance/class-behaviour requires a function to check whether a instance is implementing a class. This way an
implementation can use the function to emulate the type system. Moreover a filename store the registry builds
the foundation to load scripting files stored next to the C++ implementation of the model. Both in conjunction
allow extending virtual classes of the models in the target scripting language with service functions. For example a
structure analysis function can be added to a bus controller. Using the USI AMBA API the bus controller can iterate
over all connected masters and slaves and print an online memory map. To instantiate SystemC models in a scripting
language the first step is to have a simple factory creating models and returning corresponding instances. This can
be easiely archived by extending the USI methology by a single function api.create_object_by_name. It
takes group, class and instance name to create a new SystemC model. But to make this idiom more useful for the
designer it is important that the creation of a model feels like the creation of a native scripting object. This way the
designer uses the API as any other library of the used scripting language and does not need to learn any new details
about the connecting bridge between SystemC and the scripting language. This requires more work in creating the

Si
m
ul
at
io
n

sc_registerPython USIDelegate

ctrl.
basename()

__getattr__()

Query implemented
interface proxies

(SWIG) for basename()

Call basename()

sc_object
C++ PY

basename()
SWIG Proxy

Scripting	environment Plug-in	(Util)	APIsSystemC

Call C++
Function

virtual
basename()

basename()

Fig. 2: The structure of an USI function lookup

bridge but simplifies the usage for the designer so that he needs to only care for the important details. Below we
will explain this in further detail with a Python API as example.

C. Natural Python interface

A model factory is a natural extension to USI, but first of all the factory should feel like a normal Python Module.
It must simply be loaded by import registry. All included modules and categories are dynamically loaded
from SystemC. Which means the import statement needs to return a dynamic module. That dynamic module needs
to return the modules. Secondly we need to return an abstract base class with customized instantiation function to
return not an instance of that class but execute the factory function from SystemC. In Python that means it needs
to return a class for a specific meta class (Listing 4) containing an overloaded __new__-function 3. This meta
class then allows to create SystemC Object like real Python objects when instantiating a object from a class with
this metaclass attached to it class. A metaclass is basically the type of the class and oversees the construction of
its classes. In Python this meta class has also a function to prove if an instance is of a certain class. This function
gets hooked up to the factory is_type-function as in Listing 4.

For a good scripting API it is important to not only implement the functionality itself but also write the
introspection functions. That enables the developer to check at every point in the API what functions are available.
This is enabled in Python by the __dir__-functions as in Listing 5

1 def delegate_new(cls, instance, *args, **kw):
2 obj = api.create_object_by_name(cls.__usi_group__, cls.__usi_class__, instance)
3 if hasattr(obj, ’generics’):
4 generics = getattr(obj, ’generics’)
5 for key, val in kw.items():
6 param = generics
7 path = key.split("__")
8 try:
9 for part in path:

10 param = getattr(param, part)
11 param.cci_write(str(val))
12 except AttributeError as e:
13 ei = sys.exc_info()
14 raise AttributeError("USIDelegate ’%s’, ’%s’ has no generic ’%s’" % (
15 cls.__name__, instance, key)), None, ei[2].tb_next
16 return obj

Listing 3: Constructor function for a new SystemC object instance

1 class USIDelegateMeta(abc.ABCMeta):
2 def __init__(cls, name, bases, nmspc):
3 if cls.__usi_class__ != "":
4 for item_name, item in cls.__dict__.items():
5 if not item_name.startswith("_"):
6 usi.sc_object.attach("{}.{}".format(cls.__usi_group__, cls.

__usi_class__), item_name, item)
7

8 super(USIDelegateMeta, cls).__init__(name, bases, nmspc)
9 cls.__new__ = staticmethod(delegate_new)

10 def __instancecheck__(cls, instance):
11 return api.is_type(cls.__usi_group__, cls.__usi_class__, instance)

Listing 4: Python Abstract Base Meta Class

1 class USIDelegateBase(object):
2 """
3 Abstract Base Class to attach additional Python members to SystemC Classes.
4 """
5 __metaclass__ = USIDelegateMeta
6 __usi_group__ = ""
7 __usi_class__ = ""
8

9 class Module(object):
10 def __init__(self, group):
11 self.group = group
12

13 def __dir__(self):
14 return list(str(name) for name in api.get_module_names(self.group))+self.

__dict__.keys()
15

16 def __getattr__(self, klass):
17 if klass in self.__dict__:
18 return self.__dict__[group]
19 elif klass in list(api.get_module_names(self.group)):
20 if sys.version_info >= (3,3):
21 import types
22 return types.new_class(klass, (), {
23 ’metaclass’: USIDelegateMeta,
24 ’__usi_group__’: self.group,
25 ’__usi_class__’: klass
26 })
27 else:
28 return USIDelegateMeta(klass, (), {
29 ’__usi_group__’: self.group,
30 ’__usi_class__’: klass

31 })
32 else:
33 return None

Listing 5: Module and DelegateBase class

In our factory implementation it is possible to assign constructor arguments through CCI.

D. Loading models from libraries

To further shorten compilation times the registry allows to load dynamicly linked libraries before start of
elaboration. This allows to compile single models into a library and only recompile the needed part. Unfortunately
Linux cannot simply load libraries from anywhere. If the libraries depend on other libraries they will only search for
them in the LD LIBRARY PATH. The environment variable is read by the executable loader and cannot be modified
after starting the application. This makes it hard to load libraries with models depending on each other. To overcome
this shortcomming the scripting language part of the factory implements a mechanism that collects libraries. That
mechanism is displayed in Figure 3. At first start the simulation will collect a list of all libraries which should be
loaded until end of initialisation. For this to work it is only allowed to load models until this phase. Then a temp
directory is created and all libraries are linked symbolicly into that temp directory. The application environemnt is
copied and the LD LIBRARY PATH is extended by the new temp directory. In addition an environemnt variable
is introduced to indicate the temp dir is added. Finally the simulation is replaced by itself with the modified
environment to start from the beginning. This second time the libraries are loaded directly. Through the temporary
directory each library can resolve their dependencies.

Simulation (real Simulation, exec(argv, newenv))

- Run normal Simulation
- Directly lod Libraries via dlopen

Simulation (gather Libraries)

m
ai

n

st
ar

t_
of

_i
ni

tia
lis

at
io

n

in
iti

al
is

at
io

n

en
d_

of
_i

ni
tia

lis
at

io
n

m
ai

n

st
ar

t_
of

_i
ni

tia
lis

at
io

n

in
iti

al
is

at
io

n

en
d_

of
_i

ni
tia

lis
at

io
n

st
ar

t_
of

_e
la

bo
ra

tio
n

el
ab

or
at

io
n

en
d_

of
_e

la
bo

ra
tio

n

st
ar

t_
of

_s
im

ul
at

io
n

si
m

ul
at

io
n

en
d_

of
_s

im
ul

at
io

n

- Collect loaded Libraries
- Create tempdir
- Symlink all libraries into

tempdir
- Inclue tempdir as

LD_LIBRARY_PATH in
environment

- Replace Simulation with
itself and modified
environment

Fig. 3: The phases of the double simulation execution steps

V. APPLICATION

The presented implementation is developed as part of the SoCRocket TLM Framework and used in conjunction
with the models provided by SoCRocket. The models are not build for the use with the factory and scripting
language but integrate with them. All the presented components are available as open source on GitHub [9]. They
are already used in the SoCRocket platform, a virtual platform (VP) framework developed for the European Space
Agency as reference design. This has been tested extensively for Python with the Accellera SystemC simulator. For
other languages and especially for the integration in other simulators the language interpreter has to be wrapped into
a SystemC model. Fortunately this only has to be done once per language and simulator. Leaving the designer at the
end with an easy-to-use workflow in which he only needs to modify a single script defining the top-level as shown
in Listing 6 for Python: A working platform consists of a script importing the USI dependencies and therefore

loading SystemC and the VP models as C++ extensions to the scripting language. Followed by the definition of
the structural classes (Top) to allow organisation in blocks. In the constructors of these classes SystemC models
are instantiated. After this their members can be bound.

1 import usi
2 class Top(usi.Module):
3 def __init__(modulename):
4 super(Top, self).__init__(modulename)
5 self.ahbctrl = usi.registry.AHBCtrl("ahbctrl", rrobin=True)
6 self.ahbctrl.ahbOUT.bind(self.apbctrl.ahb)
7 # ...
8 usi.registry.load(’./build/models/libahbctrl.so’)
9 top = Top(t o p)

10 usi.start()

Listing 6: Top-Level Python script to instantiate a AHBCtrl model inside a top class.

To register a model macros are provided which handle the registration process like the built-in SystmeC macros
already known, see Listing 7. In most cases a simple macro call is enough. To register models with more parameters
than the sc_module_name it is possible to provide a specific constructor function an registere it with the registry.

1 #include <systemc>
2 #include <sr_registry>
3 SR_HAS_MODULE(AHBCtrl);
4

5 class AHBCtrl : public sc_module {
6 // ...

Listing 7: Registration of a simple sc model.

The overall design flow improvements introduced by our solution results in reconfigurability without the need
for recompilation and no impact to the runtime of the simulation. Due to the use of a general purpose scripting
language it is relative simple to extend the system for new use cases for example to load a platform configuration
directly from IP-XACT at runtime.

VI. CONCLUSION

We have presented a straightforward and versatile model factory implementation with configuration registry and
scripting interface support. The application demonstation shows the natural usage in a pythonic environment which
can also be adapted to other scripting languages if needed. Moreover the dynamic library loading support extends
the factory to only recompile and link a minimal subset to further drill down compilation times. It is needed to
further shrink the times of large scale design space explorations through minimization of recompilation times or
completly relinguish the compilation step. Therefore it is in conjunction with other methods like [10].

The underlying mechanisms to abstract SystemC types do heavily rely on datatypes like sc_variant and
therefore show the importance to standardize such a variant type in the future. In conjunction with USI it interfaces
the upcoming CCI standard with scripting languages. By making our implementation available as open-source on
Github, we encourage everyone to consider it for their frameworks and especially for the current standardization
activities within the SystemC working groups.

REFERENCES

[1] C. Sauer and H.-P. Loeb, “A lightweight framework for the dynamic creation and configuration of virtual platforms in systemc,” ACM
Trans. Embed. Comput. Syst., vol. 16, no. 1, pp. 5:1–5:16, Oct. 2016. [Online]. Available: http://doi.acm.org/10.1145/2983626

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable Object-oriented Software. Addison-Wesley
Longman, Boston, MA, 1995.

[3] Epic Games. Blueprints visual scripting. [Online]. Available: https://docs.unrealengine.com/latest/INT/Engine/Blueprints/index.html
[4] Accellera, “Accellera working group for Configuration, Control and Inspection,” Website http://www.accellera.org/activities/committees/systemc-

cci/, 2015.
[5] C. Schröder, W. Klingauf, R. Günzel, M. Burton, and E. Roesler, “Configuration and control of systemc models using tlm middleware,”

in Proceedings of the 7th IEEE/ACM International Conference on Hardware/Software Codesign and System Synthesis, ser. CODES+ISSS
’09. New York, NY, USA: ACM, 2009, pp. 81–88. [Online]. Available: http://doi.acm.org/10.1145/1629435.1629447

[6] R. Meyer, J. Wagner, B. Farkas, S. Horsinka, P. Siegl, R. Buchty, and M. Berekovic, “A scriptable standard-compliant reporting
and logging framework for systemc,” ACM Trans. Embed. Comput. Syst., vol. 16, no. 1, Oct 2016. [Online]. Available:
http://doi.acm.org/10.1145/2983623

[7] R. Meyer, J. Wagner, R. Buchty, and M. Berekovic, “Universal scripting interface for systemc,” in DVCon Europe Conference Proceedings
2015, Nov 2015.

[8] J. Wagner, R. Meyer, R. Buchty, and M. Berekovic, “A scriptable, standards-compliant reporting and logging extension for systemc,”
in Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS), 2015 International Conference on, July 2015, pp.
366–371.

[9] SoCRocket sources. [Online]. Available: https://github.com/socrocket
[10] S. A. A. Shah, B. Farkas, R. Meyer, and M. Berekovic, “Accelerating mpsoc design space exploration within system-level frameworks,”

in The IEEE Nordic Circuits and Systems Conference (NORCAS), 1-2 November 2016 Copenhagen, Denamrk, Nov 2016.

