
Translating and Adapting to the “real” world:
SerDes Mixed Signal Verification using UVM

1

Akhila Madhu Kumar, Karl Herterich
Intel Of Canada

Outline
• Basics of SerDes Physical Media Attachment (PMA) layer
• Analog Behavioral model flow
• PMA Testbench architecture
• Translator module
• Pre-emphasis driver modelling
• Layered UVM adapter sequence
• Results
• Conclusion

2

Basics of SerDes
• SERDES: SERializer - DESerializer
• Used to transmit high speed IO data over a serial link at speeds greater than

2.5Gbps
• Tx: transmits parallel data to high speed receiver serial links by keeping data

integrity
• Rx: receives data from serial link, recovers the clock using clock data

recovery circuits (CDR) and sends the parallel data to the next-stage
• Tx and Rx data paths can have Built-in-Self-Test (BIST) engines to encode

and decode a specific BIST data pattern in the stream and check error
injection capability

• The datapath components make sure that the bit error rate (BER) is within
the tolerance limit

3

SerDes PMA Layer
• PMA: Physical Media Attachment Layer
• Primary application of PMA is to transmit

the data in Tx and Rx data paths by doing
parallel-to-serial and serial-to-parallel
conversions respectively.

• The final Rx parallel data to the Physical
Coding Sublayer (PCS) should meet the
BER(bit-error ratio) requirements, in order
to get a proper eye at the receiver end.

• The data received at the Rx side is
attenuated due to a lossy channel between
transmitter and receiver.

• Continuous Time Linear Equalizer (CTLE)
works as a high pass filter to compensate
for channel attenuation.

PMA DUT

Reference
Clock

Serial
Clock

Rx DataPath

CTLE

Rx CDR &
DFE

Rx De-
serializer

Tx FIFO/Tx
DataPath

Rx CDR &
DFE

Rx De-
serializer

Tx FFE Tx Serializer

Tx IO Driver

Synthesizer/
PLL

Receiver

Transmitter

Digital Design
Blocks (DPMA)

Analog Design
Blocks (APMA)

4

Outline
• Basics of SerDes Physical Media Attachment (PMA) layer
• Analog Behavioral model flow
• PMA Testbench architecture
• Translator module
• Pre-emphasis driver modelling
• Layered UVM adapter sequence
• Results
• Conclusion

5

APMA BMOD Development flow
FAST Behavioral Models

• Netlisted down to major
block level. Sub-blocks
are modelled
behaviorally

• Faster simulation
performance and
supports simulator
flows like Xprop, hence
improving code quality

• Very useful in finding
bugs in APMA<-
>DPMA interface and
quicker PMA simulation
bring-up

• Interface data is of
“logic” type

Accurate Behavioral models

• Netlisted down to leaf cell
level. Transistor blocks
are modelled

• Very close to the actual
schematics from
functionality standpoint

• Used to check schematic
functionality and
connectivity. Helps in
finding schematic bugs

• Interface data is of “logic”
type

AMS “mode” in Behavioral
models

• Based on analog
schematic and system
simulation data to derive
ideal models which
contain voltage and
current information

• Verilog model enhanced
to capture analog mixed
signal behavior using a
combination of “logic”
and “real” signals

• Useful in validating
critical features in PMA
like calibrations, Rx
adaptation and
equalization

6

Outline
• Basics of SerDes Physical Media Attachment (PMA) layer
• Analog Behavioral model flow
• PMA Testbench architecture
• Translator module
• Pre-emphasis driver modelling
• Layered UVM adapter sequence
• Results
• Conclusion

7

PMA Testbench Architecture
(with non-AMS BMOD)

8

Tx Parallel
Data And
ElecIdle

Word/
Control
Clocks

Tx Serial
Data UVC

Rx Parallel
Data UVC

Clock UVC

Rx Serial
Data UVC

Receiver
Serial Data

Rx Parallel
Data

Word/Bit
Clock

Tx Parallel
Data UVC

Clock UVC

Transmitter
Serial Data

S1

S2

D

C
EN
B

Multiplexer

Loopback
Enable

Testbench Blocks

APMA DPMA

DUT

TX

RX

PMA Testbench Architecture
(with AMS BMOD)

Tx Parallel
Data And
ElecIdle

Word/
Control
Clocks

Vin

GND

Vref

D1

D4

SignEN

B

A/D Converter

V+

Vout

C+

GND

C-

Voltage Normalizer

Translator Block

Tx Serial Data
UVC

Rx Parallel
Data UVC

Clock UVC

V+

Vout

C+

GND

C-

Voltage Normalizer

Translator Block

Rx Serial Data
UVC

B1

B4

Vref

GND

Vout

ENB

D/A Converter

Receiver
Serial Data

Rx Parallel
Data

Word/Bit
Clock

Tx Parallel
Data UVC

Clock UVC

Transmitter
Serial Data

S1

S2

D

C ENB

Multiplexer

Loopback
Enable

Pre-
emphasis

Driver

Testbench Blocks Testbench Blocks
focused in the

paper

APMA DPMA

DUT

TX

RX

9

Outline
• Basics of SerDes Physical Media Attachment (PMA) layer
• Analog Behavioral model flow
• PMA Testbench architecture
• Translator Blocks
• Pre-emphasis Driver modelling
• Layered UVM adapter sequence
• Results
• Conclusion

10

Translator Blocks
• Application: Keeps the end-to-end data checkers and pattern generators same across

BMODs, with and without AMS “real” mode
• Functionality: To convert the “real” type data to “logic” type and vice versa, taking Tx

equalization characteristics and the CTLE and DFE tap gain values into account
• Algorithm:

11

Normalize the
Tx p/n data
with Vdiff/2

APMA
Tx data
(“real”
type)

Encoding
type (NRZ/

PAM)

Compare the
normalized values
with Tx IO driver

thresholds

“logic
” data
type

To Tx Serial
Data UVC

TX

0V

0.9V
(Vdd)

-1V

+1V

11

01

11
01

00

1

0

NRZ

PAM

“logic
” data
type

From Rx
serial Data

UVC

0

NRZ

Encoding
type (NRZ/

PAM)

1

Loop back
enabled

To
PMA

Rx
Serial
pins

No

Multiply the data
with the swing for
Rx comparators

based on Rx
attenuation

“real”
data
type

-0.171V

+0.171V(Vrxp)

Yes
Normalize
the Tx p/n
data with
Vdiff/2

Transpose
the Tx

loopback
data as if

AC coupled

0V

0.9V
(Vdd)

-1V

+1V

RX Configurability (using UVM
configuration database):
• The Tx IO driver voltage levels
• ADC threshold based on Rx

CTLE attenuation modelling
• Data encoding type:

NRZ/PAM4
• Loop back mode enable

Real<->Logic Conversion Functions

12

function logic2_t pam4Real2Logic (real p_norm, real
m_norm) ;

logic code[2] ;
real lev_p_1, lev_p_0, lev_n_1, lev_n_0;
begin

if($test$plusargs("PAM_LEV_P_1")) begin
$value$plusargs("PAM_LEV_P_1=%d",lev_p_1);

if($test$plusargs("PAM_LEV_P_0")) begin
$value$plusargs("PAM_LEV_P_0=%d",lev_p_0);

if($test$plusargs("PAM_LEV_N_1")) begin
$value$plusargs("PAM_LEV_N_1=%d",lev_n_1);

if($test$plusargs("PAM_LEV_N_0")) begin
$value$plusargs("PAM_LEV_N_0=%d",lev_n_0);

end
code[0] = (p_norm > lev_p_1) ? 1'b1 :

(p_norm > -lev_p_0) ? 1'b1 : 1'b0;
code[1] = (m_norm > lev_n_1) ? 1'b1 :

(m_norm > -lev_n_0) ? 1'bz : 1'b0;
return code ;

end
endfunction

function logic2_t NRZReal2Logic (real p_norm, real
m_norm, real threshold) ;
logic code[2] ;

begin
code[0] = p_norm >= threshold ? 1'b1 : 1'b0;

code[1] = m_norm >= threshold ? 1'b1 : 1'b0;

return code ;
end
endfunction

function real2_t pam4Logic2Real (logic p, logic n) ;
real vnorm[2];
begin
if (p===1'b1 && n===1'b1) vnorm = '{1.0,1.0} ;
else if (p===1'b0 && n===1'b0) vnorm = '{-1.0,-1.0} ;
else if (p===1'b1 && n===1'b0) vnorm = '{1.0,-1.0} ;
else if (p===1'b1 && n===1'bz) vnorm = '{1.0/3.0,-1.0/3.0} ;
else if (p===1'bz && n===1'b0) vnorm = '{1.0/3.0,-1.0/3.0} ;
else if (p===1'b0 && n===1'bz) vnorm = '{-1.0/3.0,1.0/3.0} ;
else if (p===1'bz && n===1'b1) vnorm = '{-1.0/3.0,1.0/3.0} ;
else if (p===1'b0 && n===1'b1) vnorm = '{-1.0,1.0} ;
else vnorm = '{0,0} ;

return vnorm ;
end
endfunction

Outline
• Basics of SerDes Physical Media Attachment (PMA) layer
• Analog Behavioral model flow
• PMA Testbench architecture
• Translator Blocks
• Pre-emphasis Driver modelling
• Layered UVM adapter sequence
• Results
• Conclusion

13

Emphasis and Equalization
• Data transmission loss can be compensated for at the transmitting and the receiving end. At

the transmitter, it can be compensated either by boosting the higher frequency content (pre-
emphasis) or by decreasing the low frequency content (de-emphasis).

• Pre-emphasis and equalization are techniques to prevent data loss and invert the channel’s
frequency response i.e. invert of a low pass filter.

• Ideally implemented in Tx as Feed Forward Equalizer and in Rx as CTLE and Decision
Feedback Equalizer (DFE))

14

Z^-1 Z^-1

C+1 C0 C-1

Voutp

X[n] X[n-1]

Vinp

3-Tap FIR Filter

Unit gain
path

High
Frequency
gain path

Frequency

Am
pl

itu
de

Channel
Response CTLE filter

Tx Pre-Emphasized output
• Tx output voltage equation without Pre-emphasis:

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜= 𝐶𝐶0 ∗ 𝑥𝑥 𝑛𝑛
– Sample output levels-> 0V to (C0 * Vpp)

• Tx output voltage equation with Pre-emphasis:
𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜= 𝐶𝐶−1 ∗ 𝑥𝑥 𝑛𝑛 − 1 + 𝐶𝐶0 ∗ 𝑥𝑥 𝑛𝑛 + 𝐶𝐶1 ∗ 𝑥𝑥 𝑛𝑛 + 1

– Sample output levels-> 0V, (C0 * Vpp), (C0 + C+1) * Vpp etc.

15

X[n-1],X[n],

X[n+1]

Pre-emphasized

Tx serial output

Normalized Voltage

post translator block

(with pre-emp mid-

threshold)

Final decoded

bit value at

the Tx

transactor

010 C0 C0 * Vpp 1

011 C0 + C+1 (C0 + C+1) * Vpp 1

100 C-1 C-1 * Vpp 0

101 C-1 + C+1 (C-1 + C+1) * Vpp 0

• Thresholds are input to PMA
and hence testbench
configurable

• PCIe spec has set of rules to
determine the values of
coefficients(C-1 C0 C+1).

• C0 is always greater than C+1

and C-1

Pre-emphasis data on Tx handled by Translator block

Pre-Emphasis Driver on Rx path

16

• Rx translator output: For a Tx voltage swing of Vtxswing , pre-emphasized Tx
output voltage value of txp and desired Rx voltage of Vrxp , the translator
module output can be derived as:

𝑟𝑟𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑟𝑟𝑝𝑝 = 𝑡𝑡𝑥𝑥𝑝𝑝−𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉

∗ 𝑉𝑉𝑉𝑉𝑥𝑥𝑝𝑝

• Pre-emphasis driver output: Run a reverse function of scaling and
normalizing done in the Rx translator block(to cancel the translation done)
and output 1 if the results is a factor of C0

𝑟𝑟𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑝𝑝 =
𝑟𝑟𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑟𝑟𝑝𝑝
𝑉𝑉𝑉𝑉𝑥𝑥𝑝𝑝

∗ 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 + 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉

Pre-emphasis data on Rx handled by Pre-emphasis driver

V+

Vout

C+

GND

C-

Voltage NormalizerB1

B4

Vref

GND

Vout

ENB

D/A Converter

Pre-emphasis Driver
To APMA

Pre-emphasis
Levels(C0,C+1,C

-1)
Translator Block

Outline
• Basics of SerDes Physical Media Attachment (PMA) layer
• Analog Behavioral model flow
• PMA Testbench architecture
• Translator Blocks
• Pre-emphasis Driver modelling
• Layered UVM adapter sequence
• Results
• Conclusion

17

UVM Adapter Sequence Architecture

18

“Adapts” base
transaction into
register
/clock/data/lane
packets

PMA Scoreboard
• Data integrity

checks
• Beacon checks
• Loopback mode

checks
• Transaction

integrity

pma_txn

UVM RAL
model

CLK UVC Control UVC

Control Sequencer

text
text

Lane Adapter Sequence

Reg_sqr clk_sqr control_sq
r

Data UVC

JTAG UVC APB UVC

Lane_data_
sqr

Tx

RxLane_data_
sqr

Configuration through
Registers

Configuration
through interface
ports

Features of Adapter Sequence Remarks
Lane specific traffic generation and routing Sending traffic across lanes, wait for CDR lock and checking lane-to-lane interactions (skew,

latency etc.)
Demarcation between control, data and
debug transfers

Setting up beacon, sending burst, checking clocks or bit errors

Centralized coverage sampling across
model types

Coverage packet can be sent to coverage class or can be sampled here directly for control and
data transfers

Passing packet to scoreboard/monitors Each transaction from register or control sequencer comes to lane adapter and hence the
packet contents can be used to add checks in scoreboard or monitor specification adherence

High Level TB Architecture for
PMA

APMA Behavioral Model
(BMOD) Usage Flow

19

APMA
BMODs

Formal
EquivalenceSchematics

DPMA

Pre-Si
simulations

Data
UVC

Control
UVC

Clock
UVC

Translator
block

APMA DPMA
Control

UVC

Clock
UVC

DUT
Data
UVC

Adapter Sequence Layer +
Sub sequencers

Virtual
Sequencer

Tx/Rx
pads

Parallel
Side

Serial
Side

Outline
• Basics of SerDes Physical Media Attachment (PMA) layer
• Analog Behavioral model flow
• PMA Testbench architecture
• Translator Blocks
• Pre-emphasis Driver modelling
• Layered UVM adapter sequence
• Results
• Conclusion

20

Results – Pre-emphasized Data
With Loopback

• The first group is the pre-emphasized output from APMA Tx serial pads
• The second group shows the Tx translated output from transactor which predicts the 0s

and 1s correctly
• Third group shows the Rx translated output which uses the Tx pad data and scales based

on translator Rx path algorithm
• Fourth group shows the final output from pre-emphasis driver which corrects the swing

based on CTLE requirements (0 translated to -0.171 and 1 translated to 0.171 in the
example shown)

21

22

• Seamless
integration and
verification of
various BMOD
types

• Reusable
across
projects due
to high
configurability

• Reduced
bug rate at
subsystem/
SoC level

• Better code
coverage with
emphasis and
equalization
being verified
properly.

Code
coverage Bug rate

Integration
Efficiency

Reuse

Conclusion

22

23

Thank You!

Questions ?

Backup

25

Future Work
• Mixed signal simulations with sub-modules replaced by

schematics
• Extensive use of MSV control knobs present as part of APMA

models
• Bring-in channel models along with pre-emphasis driver and fine

tune the settings accordingly

26

Fast And Accurate BMOD Examples

27

module apma_rx_clkgen_FAST (
output ock_ckd_n,
output ock_ckd_p,
output ock_divck_n,
output ock_divck_p,
input ick_n,
input ick_p,
input pa_vss,
input vdd
);
reg state, stateb;
....
assign ock_divck_n = ck_div1_n;
assign ock_divck_p = ck_div1_p;
assign pd_clk_n = ~pd_clk_p;
...
endmodule

module apma_rx_clkgen (
output ock_ckd_n,
output ock_ckd_p,
output ock_divck_n,
output ock_divck_p,
input ick_n,
input ick_p,
input pa_vss,
input vdd
);
reg state, stateb;
....

bfr I0 (.qn(ock_divck_n), .qp(ock_divck_p),
.dn(ck_div1_n), .dp(ck_div1_p),
.pa_vss(pa_vss), .vdd(vdd));

dff_2x1 I1 (.q(state), .clk(pd_clk_p), .d(stateb),
.pa_vss(pa_vss), .vdd(vdd));

inv2_1x1 I2 (.z(pd_clk_n), .a(pd_clk_p), .pa_vss(pa_vss),
.vdd(vdd));

....
endmodule

UVM Adapter Sequence Snippet

28

class pma_lane_adapter_seq extends uvm_sequence#(pma_transaction);
pma_transaction pma_req;
`uvm_object_utils(pma_lane_adapter_seq)
`uvm_declare_p_sequencer(pma_lane_sequencer)
// All Register Sequence’s object created
pma_init_state_reg_seq init_state_reg_seq;
pma_set_spec_reg_seq set_spec_reg_seq;
pma_configure_lane_reg_seq configure_lane_reg_seq;
virtual task body();

forever begin
p_sequencer.get_next_item(pma_req);
if (pma_req.primitive_layer == pma_transaction::CTRL) begin
drive_ctrl();

end else if (pma_req.primitive_layer == pma_transaction::DATA) begin
drive_data();

end else begin
drive_debug();

end
p_sequencer.item_done();

end
endtask : body

UVM Adapter Sequence Snippet (contd.)

29

task drive_ctrl();
case (pma_req.primitive_name)

pma_transaction::FORCE_PUP :
begin

if (pma_req.pma_cfg.ctrl_path == UVM_BACKDOOR) begin
$cast(req_copy, pma_req.clone());
req_copy.set_item_context(this, p_sequencer.cmn_ctrl_seqr);
start_item(req_copy);
finish_item(req_copy);

return_response = 0;
end else begin

`uvm_do_on_with(force_pup_reg_seq,
p_sequencer.reg_seqr, { block == pma_req.primitive_target; enable ==

pma_req.power_on; });

end
end

endtask

Configuration
through interface
ports

Configuration through
Registers

Translator Voltage Scaling
• Translator on Tx Path scales the APMA output and sends to the transactors

• On Rx path: without loopback
– “logic” data is directly sent from Rx Serial UVC
– This data is scaled before sending to APMA

• Rx Path: with loopback
– Tx data is normalized with Vpp/2
– This output is scaled before sending to APMA

30

Tx NRZ Output from APMA Normalized Output(with Vpp/2) Comparator Output (threshold is 0V)

0.9V (Vpp) 1V 1

0V -1V 0

Rx NRZ Input from Data UVC Scaled output CTLE Comparator Output (threshold is 0V)

1 0.171 1

0 -0.171 0

Tx NRZ Output from APMA Normalized Output(with Vpp/2) Scaled output CTLE Comparator Output (threshold is 0V)

0.9V (Vpp) 1V 0.171 1

0V -1V -0.171 0

Conclusion
• Building a configurable translator module and the UVM layered

structure can help reuse the blocks across IP variants and also
across various analog models

• Using the adapter sequences rendered creating a vast set of
sequence library for each data and lane configurations as per the
specification

• This flow can render build a verification framework which models
critical design features effectively and helps in focused verification
of the same

31

Layered UVM Adapter Sequence

• A central layer for transaction ordering and control; helps in generating effective lane
specific traffic

• Each transaction takes in the direction (Tx or Rx) as well as the lane number as a parameter
which can be set from the test specific virtual sequence

• Lane-to-lane skew and elecidle entry/exit controlled for each lane

32

Features of Adapter Sequence Remarks

Lane specific traffic generation
and routing

Sending traffic across lanes, wait for CDR lock and checking lane-to-lane interactions (skew, latency
etc.)

Demarcation between control,
data and debug transfers

Setting up beacon, sending burst, checking clocks or bit errors

Centralized coverage sampling
across model types

Coverage packet can be sent to coverage class or can be sampled here directly for control and data
transfers

Passing packet to
scoreboard/monitors

Each transaction from register or control sequencer comes to lane adapter and hence the packet
contents can be used to add checks in scoreboard or monitor specification adherence

	Translating and Adapting to the “real” world: SerDes Mixed Signal Verification using UVM�
	Outline
	Basics of SerDes
	SerDes PMA Layer
	Outline
	 APMA BMOD Development flow
	Outline
	PMA Testbench Architecture�(with non-AMS BMOD)
	PMA Testbench Architecture�(with AMS BMOD)
	Outline
	Translator Blocks
	Real<->Logic Conversion Functions
	Outline
	Emphasis and Equalization
	Tx Pre-Emphasized output
	Pre-Emphasis Driver on Rx path
	Outline
	UVM Adapter Sequence Architecture
	Slide Number 19
	Outline
	Results – Pre-emphasized Data �With Loopback
	Conclusion
	Slide Number 23
	Thank You!
	Backup
	Future Work
	Fast And Accurate BMOD Examples
	UVM Adapter Sequence Snippet
	UVM Adapter Sequence Snippet (contd.)
	Translator Voltage Scaling
	Conclusion
	Layered UVM Adapter Sequence

