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Basics of SerDes
• SERDES: SERializer - DESerializer
• Used to transmit high speed IO data over a serial link at speeds greater than 

2.5Gbps
• Tx: transmits parallel data to high speed receiver serial links by keeping data 

integrity
• Rx: receives data from serial link, recovers the clock using clock data 

recovery circuits (CDR) and sends the parallel data to the next-stage
• Tx and Rx data paths can have Built-in-Self-Test (BIST) engines to encode 

and decode a specific BIST data pattern in the stream and check error 
injection capability

• The datapath components make sure that the bit error rate (BER) is within 
the tolerance limit 
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SerDes PMA Layer
• PMA: Physical Media Attachment Layer
• Primary application of PMA is to transmit 

the data in Tx and Rx data paths by doing 
parallel-to-serial and serial-to-parallel 
conversions respectively. 

• The final Rx parallel data to the Physical 
Coding Sublayer (PCS) should meet the 
BER(bit-error ratio) requirements, in order 
to get a proper eye at the receiver end.

• The data received at the Rx side is 
attenuated due to a lossy channel between 
transmitter and receiver. 

• Continuous Time Linear Equalizer (CTLE) 
works as a high pass filter to compensate 
for channel attenuation.
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APMA BMOD Development flow
FAST Behavioral Models

• Netlisted down to major 
block level. Sub-blocks 
are modelled 
behaviorally

• Faster simulation 
performance and 
supports simulator 
flows like Xprop, hence 
improving code quality

• Very useful in finding 
bugs in APMA<-
>DPMA interface and 
quicker PMA simulation 
bring-up 

• Interface data is of 
“logic” type

Accurate Behavioral models

• Netlisted down to leaf cell 
level. Transistor blocks 
are modelled

• Very close to the actual 
schematics from 
functionality standpoint

• Used to check schematic 
functionality and 
connectivity. Helps in 
finding schematic bugs

• Interface data is of “logic” 
type

AMS “mode” in Behavioral 
models

• Based on analog 
schematic and system 
simulation data to derive 
ideal models which 
contain voltage and 
current information

• Verilog model enhanced 
to capture analog mixed 
signal behavior using a 
combination of “logic” 
and “real” signals

• Useful in validating 
critical features in PMA 
like calibrations, Rx 
adaptation and 
equalization
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PMA Testbench Architecture
(with non-AMS BMOD)
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PMA Testbench Architecture
(with AMS BMOD)
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Translator Blocks
• Application: Keeps the end-to-end data checkers and pattern generators same across 

BMODs, with and without AMS “real” mode
• Functionality: To convert the “real” type data to “logic” type and vice versa, taking Tx

equalization characteristics and the CTLE and DFE tap gain values into account
• Algorithm:
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Real<->Logic Conversion Functions

12

function logic2_t pam4Real2Logic (real p_norm, real
m_norm) ; 

logic code[2] ;
real lev_p_1, lev_p_0, lev_n_1, lev_n_0;
begin    

if($test$plusargs("PAM_LEV_P_1")) begin
$value$plusargs("PAM_LEV_P_1=%d",lev_p_1);

if($test$plusargs("PAM_LEV_P_0")) begin
$value$plusargs("PAM_LEV_P_0=%d",lev_p_0);

if($test$plusargs("PAM_LEV_N_1")) begin
$value$plusargs("PAM_LEV_N_1=%d",lev_n_1);

if($test$plusargs("PAM_LEV_N_0")) begin
$value$plusargs("PAM_LEV_N_0=%d",lev_n_0);

end
code[0] = (p_norm >  lev_p_1) ? 1'b1 : 

(p_norm > -lev_p_0) ? 1'b1 : 1'b0;
code[1] = (m_norm >  lev_n_1) ? 1'b1 : 

(m_norm > -lev_n_0) ? 1'bz : 1'b0;
return code ;   

end
endfunction

function logic2_t NRZReal2Logic (real p_norm, real
m_norm, real threshold) ; 
logic code[2] ;

begin    
code[0] = p_norm >= threshold ? 1'b1 : 1'b0; 

code[1] = m_norm >= threshold ? 1'b1 : 1'b0;

return code ;   
end
endfunction

function real2_t pam4Logic2Real (logic p, logic n) ; 
real vnorm[2];
begin  
if (p===1'b1 && n===1'b1) vnorm = '{1.0,1.0} ;
else if (p===1'b0 && n===1'b0) vnorm = '{-1.0,-1.0} ; 
else if (p===1'b1 && n===1'b0) vnorm = '{1.0,-1.0} ;     
else if (p===1'b1 && n===1'bz) vnorm = '{1.0/3.0,-1.0/3.0} ;
else if (p===1'bz && n===1'b0) vnorm = '{1.0/3.0,-1.0/3.0} ;
else if (p===1'b0 && n===1'bz) vnorm = '{-1.0/3.0,1.0/3.0} ;
else if (p===1'bz && n===1'b1) vnorm = '{-1.0/3.0,1.0/3.0} ;
else if (p===1'b0 && n===1'b1) vnorm = '{-1.0,1.0} ;
else                           vnorm = '{0,0} ;

return vnorm ;   
end
endfunction
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Emphasis and Equalization
• Data transmission loss can be compensated for at the transmitting and the receiving end. At 

the transmitter, it can be compensated either by boosting the higher frequency content (pre-
emphasis) or by decreasing the low frequency content (de-emphasis).

• Pre-emphasis and equalization are techniques to prevent data loss and invert the channel’s 
frequency response i.e. invert of a low pass filter.

• Ideally implemented in Tx as Feed Forward Equalizer and in Rx as CTLE and Decision 
Feedback Equalizer (DFE))
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Tx Pre-Emphasized output
• Tx output voltage equation without Pre-emphasis:

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜= 𝐶𝐶0 ∗ 𝑥𝑥 𝑛𝑛
– Sample output levels-> 0V to (C0 * Vpp)

• Tx output voltage equation with Pre-emphasis:
𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜= 𝐶𝐶−1 ∗ 𝑥𝑥 𝑛𝑛 − 1 + 𝐶𝐶0 ∗ 𝑥𝑥 𝑛𝑛 + 𝐶𝐶1 ∗ 𝑥𝑥 𝑛𝑛 + 1

– Sample output levels-> 0V, (C0 *  Vpp), (C0 + C+1 ) * Vpp etc.
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X[n-1],X[n],

X[n+1]

Pre-emphasized

Tx serial output

Normalized Voltage

post translator block

(with pre-emp mid-

threshold)

Final decoded

bit value at

the Tx

transactor

010 C0 C0 * Vpp 1

011 C0 + C+1 (C0 + C+1 ) * Vpp 1

100 C-1 C-1 * Vpp 0

101 C-1 + C+1 (C-1 + C+1 ) * Vpp 0

• Thresholds are input to PMA 
and hence testbench 
configurable

• PCIe spec has set of rules to 
determine the values of 
coefficients(C-1 C0 C+1).

• C0  is always greater than C+1

and C-1

Pre-emphasis data on Tx handled by Translator block



Pre-Emphasis Driver on Rx path
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• Rx translator output: For a Tx voltage swing of Vtxswing , pre-emphasized Tx
output voltage value of txp and desired Rx voltage of Vrxp , the translator 
module output can be derived as:

𝑟𝑟𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑟𝑟𝑝𝑝 = 𝑡𝑡𝑥𝑥𝑝𝑝−𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉

∗ 𝑉𝑉𝑉𝑉𝑥𝑥𝑝𝑝

• Pre-emphasis driver output: Run a reverse function of scaling and 
normalizing done in the Rx translator block(to cancel the translation done) 
and output 1 if the results is a factor of C0 

𝑟𝑟𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑝𝑝 =
𝑟𝑟𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑟𝑟𝑝𝑝
𝑉𝑉𝑉𝑉𝑥𝑥𝑝𝑝

∗ 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 + 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉
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UVM Adapter Sequence Architecture
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Features of Adapter Sequence Remarks
Lane specific traffic generation and routing Sending traffic across lanes, wait for CDR lock and checking lane-to-lane interactions (skew, 

latency etc.)
Demarcation between control, data and 
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Setting up beacon, sending burst, checking clocks or bit errors

Centralized coverage sampling across 
model types

Coverage packet can be sent to coverage class or can be sampled here directly for control and 
data transfers

Passing packet to scoreboard/monitors Each transaction from register or control sequencer comes to lane adapter and hence the 
packet contents can be used to add checks in scoreboard or monitor specification adherence



High Level TB Architecture for 
PMA

APMA Behavioral Model 
(BMOD) Usage Flow
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Results – Pre-emphasized Data 
With Loopback

• The first group is the pre-emphasized output from APMA Tx serial pads 
• The second group shows the Tx translated output from transactor which predicts the 0s 

and 1s correctly 
• Third group shows the Rx translated output which uses the Tx pad data and scales based 

on translator Rx path algorithm
• Fourth group shows the final output from pre-emphasis driver which corrects the swing 

based on CTLE requirements (0 translated to -0.171 and 1 translated to 0.171 in the 
example shown)
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• Seamless 
integration and
verification of 
various BMOD 
types

• Reusable 
across 
projects due
to high 
configurability

• Reduced 
bug rate at 
subsystem/
SoC level

• Better code 
coverage with 
emphasis and 
equalization 
being verified 
properly.

Code 
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Integration
Efficiency

Reuse

Conclusion
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Thank You!

Questions ?



Backup
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Future Work
• Mixed signal simulations with sub-modules replaced by 

schematics
• Extensive use of MSV control knobs present as part of APMA 

models
• Bring-in channel models along with pre-emphasis driver and fine 

tune the settings accordingly
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Fast And Accurate BMOD Examples
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module apma_rx_clkgen_FAST (
output ock_ckd_n,
output ock_ckd_p,
output ock_divck_n,
output ock_divck_p,
input ick_n,
input ick_p,
input pa_vss,
input vdd
);
reg state, stateb;
....
assign ock_divck_n = ck_div1_n;
assign ock_divck_p = ck_div1_p;
assign pd_clk_n = ~pd_clk_p;
...
endmodule

module apma_rx_clkgen (
output ock_ckd_n,
output ock_ckd_p,
output ock_divck_n,
output ock_divck_p,
input ick_n,
input ick_p,
input pa_vss,
input vdd
);
reg state, stateb;
....

bfr I0 ( .qn(ock_divck_n), .qp(ock_divck_p),
.dn(ck_div1_n), .dp(ck_div1_p),
.pa_vss(pa_vss), .vdd(vdd));

dff_2x1 I1 ( .q(state), .clk(pd_clk_p), .d(stateb),
.pa_vss(pa_vss), .vdd(vdd));

inv2_1x1 I2 ( .z(pd_clk_n), .a(pd_clk_p), .pa_vss(pa_vss),
.vdd(vdd));

....
endmodule



UVM Adapter Sequence Snippet
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class pma_lane_adapter_seq extends uvm_sequence#(pma_transaction);
pma_transaction pma_req;
`uvm_object_utils(pma_lane_adapter_seq)
`uvm_declare_p_sequencer(pma_lane_sequencer)
// All Register Sequence’s object created
pma_init_state_reg_seq init_state_reg_seq;
pma_set_spec_reg_seq set_spec_reg_seq;
pma_configure_lane_reg_seq configure_lane_reg_seq;
virtual task body();

forever begin
p_sequencer.get_next_item(pma_req);
if (pma_req.primitive_layer == pma_transaction::CTRL) begin
drive_ctrl();

end else if (pma_req.primitive_layer == pma_transaction::DATA) begin
drive_data();

end else begin
drive_debug();

end
p_sequencer.item_done();

end
endtask : body



UVM Adapter Sequence Snippet (contd.)
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task drive_ctrl();
case (pma_req.primitive_name)

pma_transaction::FORCE_PUP :
begin

if (pma_req.pma_cfg.ctrl_path == UVM_BACKDOOR) begin
$cast(req_copy, pma_req.clone());
req_copy.set_item_context(this, p_sequencer.cmn_ctrl_seqr);
start_item(req_copy);
finish_item(req_copy);

return_response = 0;
end else begin            

`uvm_do_on_with(force_pup_reg_seq,
p_sequencer.reg_seqr, { block == pma_req.primitive_target; enable == 

pma_req.power_on; }); 

end
end

endtask

Configuration 
through interface 
ports

Configuration through 
Registers



Translator Voltage Scaling
• Translator on Tx Path scales the APMA output and sends to the transactors

• On Rx path: without loopback
– “logic” data is directly sent from Rx Serial UVC
– This data is scaled before sending to APMA

• Rx Path: with loopback
– Tx data is normalized with Vpp/2 
– This output is scaled before sending to APMA 
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Tx NRZ Output from APMA Normalized Output(with Vpp/2) Comparator Output (threshold is 0V)

0.9V (Vpp) 1V 1

0V -1V 0

Rx NRZ Input from Data UVC Scaled output CTLE Comparator Output (threshold is 0V)

1 0.171 1

0 -0.171 0

Tx NRZ Output from APMA Normalized Output(with Vpp/2) Scaled output CTLE Comparator Output (threshold is 0V)

0.9V (Vpp) 1V 0.171 1

0V -1V -0.171 0



Conclusion
• Building a configurable translator module and the UVM layered 

structure can help reuse the blocks across IP variants and also 
across various analog models

• Using the adapter sequences rendered creating a vast set of 
sequence library for each data and lane configurations as per the 
specification

• This flow can render build a verification framework which models 
critical design features effectively and helps in focused verification 
of the same
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Layered UVM Adapter Sequence

• A central layer for transaction ordering and control; helps in generating effective lane 
specific traffic

• Each transaction takes in the direction (Tx or Rx) as well as the lane number as a parameter 
which can be set from the test specific virtual sequence

• Lane-to-lane skew and elecidle entry/exit controlled for each lane

32

Features of Adapter Sequence Remarks

Lane specific traffic generation 
and routing

Sending traffic across lanes, wait for CDR lock and checking lane-to-lane interactions (skew, latency 
etc.)

Demarcation between control, 
data and debug transfers

Setting up beacon, sending burst, checking clocks or bit errors

Centralized coverage sampling 
across model types

Coverage packet can be sent to coverage class or can be sampled here directly for control and data 
transfers

Passing packet to 
scoreboard/monitors

Each transaction from register or control sequencer comes to lane adapter and hence the packet 
contents can be used to add checks in scoreboard or monitor specification adherence
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