
Transaction-Level State Charts in UML and
SystemC with Zero-Time Evaluation

Rainer Findenig #1, Thomas Leitner ∗2, Michael Velten †3, Wolfgang Ecker †4

Upper Austrian University of Applied Sciences
Hagenberg, Austria

1 rainer.findenig@fh-hagenberg.at
∗ DICE GmbH & Co KG

Linz, Austria
2 thomas.leitner@infineon.com

† Infineon Technologies AG
Neubiberg, Germany

3 michael.velten@infineon.com
4 wolfgang.ecker@infineon.com

Abstract—UML State Charts provide an effective and intu-
itive means for the design entry of hardware systems. Several
approaches exist to generate executable code in a variety of
languages from UML State Charts, for hardware design most
notably SystemC and Verilog.

Since State Charts are especially interesting for designing
virtual prototypes for early system simulation on the transaction
level, this paper provides a methodology to allow the use of
transactions inside State Charts and automatically generate
executable SystemC code from them. Compared to previous
approaches, our translation minimizes the amount of SystemC
kernel interaction to improve the simulation performance.

Based on a real-life and a best-case example we show that
the speedup of code generated using the proposed approach
compared to a conventional implementation averages around 2
to 30 while the generated code is still compatible with standard
transaction-level models.

I. INTRODUCTION

Today’s virtual prototyping design flow is often based on
a top-down approach that uses transaction-level (TL) models
for early hardware and software evaluation. TL modeling uses
two main concepts to increase the simulation performance:
communication is abstracted using method calls and timing is
modeled only approximatedly. This allows several modeling
styles: for hardware and architecture evaluation, timing is mod-
eled accurately while for software testing, where simulation
speed is crucial, timing may even be completely omitted.

While TL modeling allows a nearly arbitrary modeling style,
the use of a formalism like State Charts it is still favorable for
modeling control flow: they provide an easy and intuitive way
of graphically entering complex designs for both specification
and, given the necessary tool support, implementation, while
still maintaining a high level of abstraction.

We propose a formalism for “transaction-level State Charts”
which allows generating SystemC code from UML State
Charts that can use transactions both inside states and as events
and effects in transitions. Additionally, the proposed approach
is developed with great focus on high simulation performance

of the generated model while still maintaining interoperability
with legacy transaction-level models.

A. Execution Contexts

For this paper, we define the term execution context, or
context as a shorthand, to mean any SystemC construct that
can serve as a vehicle for executing code; in essence, this
covers both SystemC methods (SC_METHODs) and SystemC
threads (SC_THREADs). Note that we do not consider Sys-
temC clocked threads (SC_CTHREADs) here since they need
to be sensitive on a clock [1] which is not sensible for
most TL environments. Additionally, as a simplification, we
use the term State Chart not only for the graphical UML
representation but also for its implementation in SystemC.

In a most basic system containing a State Chart, at least
two different execution contexts are present (see Fig. 1): one
for the system’s controller (e. g. an instruction set simulator)
and one for the State Chart1. As we will present in section II,
traditional approaches mostly use SystemC events to trigger
the State Chart whenever a transition should be executed. The
notification of the event causes the SystemC kernel to schedule
the State Chart’s context which can then react according to the
event that was generated. While this allows a straightforward
implementation of the State Chart in SystemC, it causes a
context switch and therefore significant overhead every time
the State Chart is triggered.

B. Blocking and Non-Blocking Behavior

In this paper, we will use the term behavior to denote
an arbitrary piece of program code that may contain calls
to transactions as well as e. g. calculations. Analogously to
transactions, we define a given behavior to be either non-
blocking or blocking:

1Note that, while some translation algorithms for state charts define more
than one execution context for a State Chart (e. g. [2], [3]), our approach
always uses exactly one.

Caller CtxSC

nb

b

Fig. 1. A basic system consisting of a system controller and a State
Chart contains at least two execution contexts. The caller (e. g. the system’s
controller) can use non-blocking (“nb”) or blocking (“b”) transactions to
trigger behavior in the State Chart’s context (“CtxSC”).

• Non-blocking behavior subsumes all calculations and
calls to transactions that guarantee to complete without
directly or indirectly calling wait(). This means that
non-blocking behavior must not contain calls to blocking
transactions.

• Blocking behavior, on the other hand, may call wait(),
either directly, e. g. to approximate a calculation’s timing,
or indirectly, e. g. by calling a blocking transaction.

Note that this abstract definition allows our approach to be
applied to all abstraction levels commonly subsumed under
the term transaction level. However, the best speedup can be
achieved in programmer’s view implementations since they
conventionally use less blocking behavior.

To increase the execution speed of the simulation model,
our approach aims to reduce the number of context switches
needed by executing parts of the State Chart’s behavior directly
in the caller’s context. Since both contexts have their own
notion of elapsed time, though, this is only possible for non-
blocking behavior: blocking behavior would otherwise block
the wrong context, i. e. the caller’s instead of the State Chart’s.
Therefore, all non-blocking behavior can safely be executed
in an arbitrary context, i. e. without a context, while blocking
behavior needs to be executed in the State Chart’s context and
this possibly requires a context switch.

C. Scheduling Layer

To allow the caller to directly execute the State Chart, our
approach provides an additional “scheduling layer” (desig-
nated doFSM() in Fig 2). This layer allows the State Chart
to be executed both from its own context and from a foreign
one while maintaining the integrity of its execution; this most
notably includes the fact that while the State Chart’s context
is blocked, it must also not be executed in a foreign context.

II. RELATED WORK

Since State Charts were first proposed by Harel [4] and
several approaches to formalize their semantics were made
(see, for example, [5], [6], [7]), much effort was dedicated to
automatic generation of executable models from them or simi-
lar representations, which lead to several commercial products
such as MATLAB Stateflow and IBM Rational Statemate.
Other approaches are available that generate models for formal

CtxSC

doFSM()

Fig. 2. Implementation of a State Chart: doFSM() is a simple “scheduling
layer” that maintains the State Chart’s execution consistency while allowing
it to be called from more than one execution context. Again, “CtxSC” denotes
the State Chart’s context.

verification [8], [9], in hardware description languages [10],
[11] and, most related to our approach, SystemC [12], [2],
[3], [13], though not necessarily directly targeting transaction-
level models.

Compared to the approach presented by Mura et al. [2], our
approach mainly focuses on higher simulation performance:
they model events as sc_events() and map each state
to either a single SystemC thread or two SystemC methods,
while our approach uses callbacks and a single SystemC thread
per State Chart to significantly reduce the amount of context
switches and therefore the computational overhead introduced
by the scheduler. Also, they observe that SystemC threads are
more computationally intensive than SystemC methods.

In further work, Mura et al. present an approach that signif-
icantly reduces the amount of concurrent execution contexts
required to implement a State Chart [3]. Moreover, they limit
the code generation to SystemC methods because of their
previous findings regarding their performance. This, however,
is not possible for our approach since standard transaction-
level models rely on the SystemC statement wait(), which
is only supported in SystemC threads, to model blocking
transactions.

Apart from efforts to generate code from State Charts, the
approaches presented in [14], [15] motivate the use of State
Charts with the easier verification of the refinement from
transaction-level to register-transfer-level code.

III. TRANSACTION-LEVEL STATE CHARTS

This section first outlines the basics of UML State
Charts [16] and then discusses our main contribution: a
translation for UML State Charts to SystemC which supports
the use of transactions inside the State Chart and, at the same
time, minimizes the required SystemC kernel interaction to
increase the model’s simulation performance.

A. UML State Charts

UML State Charts are a superset of finite automata, that,
amongst other features, supports attaching behavior (function
code instead of simple output symbols) both to states and
transitions, making them a mixture of Mealy and Moore
automata.

A State Chart2 consists of states that can (but are not
required to) specify behavior in the form of

• an entry action that is executed every time the state is
entered,

• a do activity that is executed after the entry action and
while the State Chart is in the state, and

• an exit action that is executed every time the state is
left [16].

The behavior upon entering a state is split into the entry
action and the do activity because of their different semantics:
actions always run to completion while activities are interrupt-
ible: an activity runs until it either finishes by itself or the state
is exited, whichever comes first.

States can be connected by transitions that can (but are not
required to) have

• a trigger that fires the transition,
• a guard that disables the transition if it evaluates to false

when the trigger occurs, and
• an effect specifying behavior that is executed every time

the transition is taken [16].

Let entry(s), do(s), and exit(s), denote the entry action, do
activity, and exit action of a state s, respectively. If a transition
s

e[guard]/behavior−−−−−−−−−−→ s′ is executed because the event e is received
while guard is true, the following sequence occurs:

1) do(s) is aborted (if it is still running), and then
2) exit(s),
3) behavior,
4) entry(s′), and
5) do(s′) are executed in this order.

Fig. 3 shows a very basic UML Start Chart with the states
State1, State2, and State3. State1 defines a do ac-
tivity called do_state1 and an exit action exit_state1.
Analogously, State2 defines an entry action, a do activity,
and an exit action while State3 does not define any behavior.

The following presents a possible execution of the State
Chart. After each step, the State Chart is in a stable state, i. e.
it does not change the state until some event occurs.

1) State1 is entered after startup and do_state1 is
executed.

2) As soon as trigger1 occurs while guard1 is true,
State1 is left, possibly aborting the execution of
do_state1. Since State1 is left, exit_state1
is executed. Then, while the transition is executed, its
effect effect1 is run. When the State Chart enters
State2, it begins executing entry_state2. As soon
as this action is finished, do_state2 is executed.

3) When the state State2 is left because of an oc-
currence of trigger2, exit_state2 is executed
before State3 is entered. Since it does not define
an entry action or a do activity, no additional code is
executed.

2Note that, for this paper, we do not consider advanced features of State
Charts such as history or parallel states.

State1

+ do / do_state1

<behavior>

+ exit / exit_state1

<behavior>

Initial

State2

+ entry / entry_state2

<behavior>

+ do / do_state2

<behavior>

+ exit / exit_state2

<behavior>

State3

trigger3
trigger2

trigger1 [guard1] /effect1

Fig. 3. A basic UML State Chart.

4) Finally, as soon as trigger3 is received, State2
is entered again, hence entry_state2 and then
do_state2 are run again, and so on.

B. UML State Charts for TLM

SystemC transaction-level code generated from a UML
State Chart consists of exactly one module containing a single
execution context, the State Chart’s implementation, and ports
and exports that the State Chart can use to communicate
with its surroundings via transactions. This basic structure is
outlined in Fig. 4.

put/get
b/nb

put/get
b/nb

exports ports

d
o
F
S
M
(
)

Module

CtxSC

Fig. 4. A SystemC module containing a State Chart (see Fig. 2) that
uses transactions to communicate with its environment. Again, “CtxSC” and
doFSM() denote the State Chart’s execution context and its scheduling layer,
respectively.

For this paper, we will categorize the transactions supported

by the module by two distinctions:

• Blocking or non-blocking: Blocking transactions (des-
ignated “b” in Fig. 4) can block the caller (i. e., call
wait()) while non-blocking transactions (“nb”) always
complete in zero time.

• Inside a port or an export: Transactions in exports can
be used by the module’s environment to trigger the State
Chart and therefore intuitively correspond to its inputs.
Transactions in ports, on the other hand, can only be
called by the module itself and therefore correspond to
the State Chart’s outputs.

C. Transactions in Exports (Inputs)

Generally speaking, a State Chart’s inputs are the set of
all events that can trigger one of its transitions. With respect
to the usage of transactions inside exports to trigger the State
Chart, it is therefore necessary to derive such events from those
transactions. The proposed approach uses a simple callback-
based method to define timing points during a transaction, as
shown in Fig. 5: a callback function is executed whenever
the transaction reaches one of its defined timing points. Every
callback function is executed in the caller’s context and may
directly call the the State Chart’s implementation through the
scheduling layer, as shown in Fig. 4, and therefore possibly
cause state transitions and their associated actions without
switching to the State Chart’s context.

Since arbitrary timing points are supported, this approach
also supports the phases as used in TLM 2.0.

void write (...) {
cb write (begin); // define timing point ‘begin’
data = input ;
cb write (end); // define timing point ‘end’

}

begin

end

...

Caller

tr
an

sa
ct

io
n

︷
︸︸

︷

Fig. 5. To define timing points, callbacks are inserted at arbitrary locations
inside a transaction. These timing points can be used as triggers inside the
State Chart.

D. Transactions in Ports (Outputs)

As mentioned before, a State Chart can call only transac-
tions defined it its ports. Also, those transactions correspond to
its outputs, or, more accurately, to its behavior. There are four
possibilities to add behavior to a State Chart [16], all of which

are supported in our approach: entry actions, do activities, exit
actions, and transitions’ effects.

Note that Crane et al. observe that the UML standard does
not require a transition to complete in zero time [7]. While
UML does not define the interruptibility on a transition’s
effect, intuitively an effect runs to completion: while the State
Chart is executing a transition, other inputs are ignored and
therefore cannot interrupt the transition’s effect.

1) Actions: To be able to reduce the context switches
needed for the execution, we impose an additional requirement
on actions: since entry and exit actions always run to comple-
tion, our approach additionally requires them to complete in
zero time. This effectively restricts them to only contain non-
blocking behavior but allows executing them in an arbitrary
context: if an event e (which, as mentioned before, corresponds
to the call of a callback function) triggers a transition s e−→ s′,
then the sequence exit(s), entry(s’) can be executed without
switching to the State Chart’s context. Therefore, no context
switches are necessary to do state transitions between states
that only contain entry and/or exit actions.

The given restriction does not limit the State Chart’s expres-
siveness for entry actions: blocking behavior is supported in
a state’s do activity, which, as mentioned before, is started as
soon as its entry action is completed. Therefore, the blocking
behavior can be moved to the state’s do activity. However,
note that, as mentioned above, UML defines entry actions to
always run to completion and do activities to be interruptible.
To ensure the semantic consistency, for this special case it
is therefore necessary to support non-interruptible behavior
inside a do activity. To this end, we add a special code
construct that allows to temporarily disable the scheduling
layer from interrupting the activity.

For exit actions, on the other hand, a syntactic transfor-
mation which adds an additional state is needed to support
blocking behavior. Analogously to the transformation of the
blocking entry action, this transformation also needs to ensure
that the converted exit activity is not interruptible.

2) Activities: Since activities can, as mentioned before,
contain blocking behavior, it is not possible to execute them
in an arbitrary context. Rather, as soon as a do activity
is encountered during the execution of the State Chart, the
current context is checked. If the State Chart is executed inside
its own context, the execution can continue. If, on the other
hand, the State Chart is executed in the caller’s context, a
context switch is necessary since the execution needs to switch
to the State Chart’s context to avoid blocking the caller. To this
end, a conventional SystemC event is used to trigger the State
Chart’s own context, which then continues the execution.

In other words, if a transition s
e−→ s′ is executed, while

the sequence exit(s), entry(s′) can be executed in the caller’s
context, if s′ contains a do activity, it must be executed inside
the State Chart’s context. Therefore, after the State Chart
finishes executing entry(s), it encounters do(s) and uses a
SystemC event to switch to its own context and resumes the
execution there.

Note that the scheduling layer needs to mark the State

Chart as being blocked while the State Chart’s own context is
executing blocking behavior to avoid the State Chart’s function
being executed from inside any other context.

As an optimization, the do activity can be statically an-
alyzed: If it can be proven to be non-blocking, it can be
appended to the entry action to avoid the otherwise necessary
context switch.

3) Effects: Similarly to entry actions, non-blocking behav-
ior inside a transition’s effect can be executed inside the
caller’s context: for a transition s

e/behavior−−−−−−→ s′, the sequence
exit(s), behavior, entry(s′) can be executed without switching
to the State Chart’s context if behavior is non-blocking.

Blocking behavior, on the other hand, needs special care:
as with activities, a context switch to the State Chart’s context
is necessary. We propose using a syntactic transformation
to blocking behavior, as outlined in Fig. 6. The transition’s
effect is moved into the do activity of an additional state:
Every transition s

e/behavior−−−−−−→ s′, where behavior is blocking, is
modified to two transitions s e−→ s′′ and s′′ → s′ and behavior
is added as the do activity of s′′. Therefore, the sequence of
execution is as follows: exit(s), do(s′′) = behavior, entry(s′),
but because of the do activity in s′′, a context switch is inserted
right before it. Note that, for the transition s′′ → s′, this
transformation relies on the support of completion transitions
as described in the following section.

do / behavior
e

e / behavior

. . .

.

. . .

s s′

s′′s s′

Fig. 6. Any transition containing blocking behavior inside its effect is
syntactically converted to two transitions with an additional state containing
the behavior as its do activity.

This also solves the following problem: If a transition’s
effect contains blocking behavior, the transition obviously does
not complete in an indefinitely short amount of time, which
entails the question of the State Chart’s current state during the
transition. Intuitively, the transition’s source state was already
left but the transition’s target is not yet reached: The additional
state contains neither the transitions of the source state nor
those of the target state. Therefore, the State Chart does not
react on any triggers of those transitions, which corresponds
to the intuitive behavior while executing a transition that
consumes time.

E. Support for Completion Transitions
If a transition does not define a trigger, it is called a

completion transition (which corresponds to an ε-transition

in a finite automaton). Completion transitions are implicitly
triggered by completion events that are emitted by a state as
soon as its entry action and do activity are finished. If a state
does not specify an entry action or do activity, the completion
event is emitted as soon as the state is entered [16].

Conventionally, such a transition introduces the need for a
context switch. To avoid that, the state machine is immediately
reevaluated until it is in a stable state, i.e. all possible next
transitions depend on external events.

This, in essence, allows more than one transition to be done
in a single step, without switching to the State Chart’s context.
Consider the transitions s0

e/behavior0−−−−−−→ s1
behavior1−−−−−→ s2 . . .

where no state si and no behavior behaviori contains blocking
behavior: the sequence exit(s0), behavior0, entry(s1), exit(s1),
behavior1, entry(s2), . . . can be executed without ever switch-
ing to the State Chart’s context. Note that the sequence of
states may obviously also contain cycles.

IV. CASE STUDIES

This section provides three case studies to quantify the
speedup that is achieved by the proposed approach.

A. AES Core

The performance of our approach was investigated using a
transaction-level AES core (see Fig. 7). The core provides a
simple interface that allows both decrypting and encrypting
data with a configurable AES key. A simple path through the
State Chart is as follows: Beginning in the state Idle, the
State Chart waits for the completion of a write transaction
(denoted write’end) where the address is set to either
KEY or DATA. Setting the address to KEY allows changing
the key, the state Idle is not left. If the address is set to
DATA, the State Chart changes its state to either Decrypt or
Encrypt according to the additional parameter cmd of the
write transaction. In the entry action of both states, the data
is processed, and the state is automatically left as soon as the
entry action is finished. Finally, the end of a read transaction
causes the State Chart to enter the state Idle again.

While the State Chart is in the states Decrypt or
Encrypt, the begin of a write transaction would cause the
state to be left. In this case, this is not possible, since the entry
action of the states always runs to completion and, because
of the ε-transitions to DataRdy, the state is left as soon
as all its actions are completed. If the encryption/decryption
was done inside a do activity, it could include a call to
wait() to approximate its timing. The transitions triggered
by write’begin could then be used to abort the calculation.

It is noteworthy that apart from the State Chart given in
Fig. 7, only the definition of the transactions has to be provided
to generate a fully functional SystemC model of the core.

1) Results with Entry Actions: As a comparison, the same
AES core was implemented using a conventional approach that
relies on SystemC events to trigger the State Chart that is only
executed in its own context. Note that this implementation still,
in contrast to [2] and [3], only uses a single execution context
for the State Chart. Both cores were used to repeatedly encrypt

Initial

Idle

Encrypt

+ entry / entry

cout << "beginning encryption" << endl;
AES_KEY aeskey;
unsigned char iv[]={...};

AES_set_encrypt_key(aes_key, 32*8, &aeskey);
AES_cbc_encrypt(decbuf, encbuf, 16, &aeskey, iv, AES_ENCRYPT);

+ exit / exit

cout << "encryption done" << endl;

Decrypt

+ entry / entry

cout << "beginning decryption" << endl;
AES_KEY aeskey;
unsigned char iv[]={...};

AES_set_decrypt_key(aes_key, 32*8, &aeskey);
AES_cbc_encrypt(encbuf, decbuf, 16, &aeskey, iv, AES_DECRYPT);

+ exit / exit

cout << "decryption done" << endl;

DataRdy

write'end

[write_args->addr==DATA

&&

write_args->cmd==DEC]

write'end

[write_args->addr==DATA

&&

write_args->cmd==ENC]
write'begin write'begin

read'end

write'end

[write_args->addr==KEY]

/set_key(write_args->buf)

Fig. 7. A State Chart implementing a transaction-level AES core.

TABLE I
AES CORE: SIMULATION TIME OF BOTH THE CONVENTIONAL AND THE

PROPOSED APPROACH WHEN USING ENTRY ACTIONS FOR THE
ENCRYPTION.

Run Time [s]
Iterations Proposed (entry) Conventional Speedup
1000000 2.90 6.44 2.22
2000000 5.67 12.72 2.24
5000000 14.38 31.52 2.19

10000000 28.91 62.96 2.18
Average Speedup 2.21

and decrypt data. Tbl. I and Fig. 8 show that the speedup
averaged around 2.2.

2) Results with Do Activities: Since the State Chart as
given in Fig. 7 does not contain blocking behavior, no con-
text switches at all are performed during the simulation. To
determine the impact of blocking behavior with our approach,
the State Chart was modified to use do activities instead of
entry actions. As stated before, the proposed approach inserts
a context switch before the do activity to ensure that the
State Chart’s context is blocked. This means that less context
switches can be omitted and therefore the average speedup
decreases, as shown in Tbl. II and Fig. 8, to around 1.4.

B. Best-Case Example

The speedup of our proposed approach is obviously highly
dependent on the application. In the AES core example, most
of the simulation time is consumed by the AES encryption and
decryption, thereby reducing the relative impact of the context
switches’ overhead. To quantify the maximum speedup, a
simple State Chart without complex computations, as shown

 0

 10

 20

 30

 40

 50

 60

 70

 0 2 4 6 8 10

R
un

 T
im

e
[s

]

Million Iterations

Proposed Approach (entry)
Proposed Approach (do)
Conventional Approach

Fig. 8. AES core: the proposed approach improves the simulation perfor-
mance by a factor of approx. 2.2 when using entry actions and 1.4 when using
do activities.

TABLE II
AES CORE: SIMULATION TIME OF BOTH THE CONVENTIONAL AND THE

PROPOSED APPROACH WHEN USING DO ACTIVITIES FOR THE ENCRYPTION.

Run Time [s]
Iterations Proposed (do) Conventional Speedup
1000000 4.47 6.44 1.44
2000000 8.88 12.72 1.43
5000000 22.53 31.52 1.40

10000000 44.79 62.96 1.41
Average Speedup 1.42

in Fig. 9, was implemented in both the proposed and a
conventional approach.

The State Chart models a very simple counter that changes

its state on every occurrence of write’begin and incre-
ments a variable cnt every time State3 is entered. This
simple computation was chosen to maximize the impact of
the overhead introduced by the context switches.

Since this State Chart does not contain any elements re-
quiring a context switch, the proposed approach allows the
implementation to run without any SystemC kernel interaction.
As presented in Tbl. III, in this case the speedup averages
around 31, indicating that the overhead introduced by the
context switches is considerable.

Initial

State1

State2

State3

+ entry / entry

cnt++;

write'begin

write'begin

write'begin

/cnt = 0;

Fig. 9. A “best-case” State Chart for measuring the maximal speedup of the
proposed approach.

TABLE III
“BEST-CASE” STATE CHART: SIMULATION TIME OF BOTH THE PROPOSED

AND A CONVENTIONAL APPROACH.

Run Time [s]
Iterations Proposed Conventional Speedup
10000000 0.092 2.704 29.39
50000000 0.429 13.428 31.30

100000000 0.843 27.024 32.06
500000000 4.205 136.567 32.48
Average Speedup 31.31

V. CONCLUSION

In this paper we presented an approach to translate UML
State Charts to transaction-level State Charts. As a new contri-
bution, we identified which constructs require a context switch
between the caller and the State Chart’s module and showed
that all non-blocking behavior can be executed in the caller’s
context without SystemC kernel interaction.

Finally, we showed that the speedup achieved by the pro-
posed approach is highly dependent on the application as well
as the implementation: In a real-life example, the speedup
averages around 2.2 for a State Chart that can be executed
completely in the caller’s context and decreases to 1.4 if the
State Chart contains blocking behavior that requires a context
switch.

To quantify the overhead introduced by the context switches,
we presented a simple best-case example in which the simula-
tion time is nearly only spent on transitions that can be done
inside the caller’s context when using the proposed approach.
In this case, a speedup of more than 30 was achieved.

Future work will include further improving the simulation
time by optimizing the code generator. Additional focus will
be on supporting additional State Charts elements such as
history, parallel states, and compound states that allow instan-
tiating a State Chart inside a state.

Moreover, we we will investigate applying temporal decou-
pling to our approach. Instead of really executing wait()
statements, the times can be accumulated and then accounted
for in using a single wait() statement. Since this, in ef-
fect, reduces the number of blocking behaviors, it allows to
decrease the amount of context switches even in applications
with a high amount of blocking behavior.

Finally, a future topic will be a transformation that addresses
the limitation that exit actions cannot contain blocking behav-
ior, as outlined before.

REFERENCES

[1] D. C. Black and J. Donovan, SystemC: from the ground up. Springer
Science+Business Media, LLC, 2004.

[2] M. Mura, M. Paolieri, L. Negri, and M. G. Sami, “StateCharts to
systemc: a high level hardware simulation approach,” Proceedings of
the 17th ACM Great Lakes symposium, pp. 505–508, 2007.

[3] M. Mura and M. Paolieri, “SC2 StateCharts to SystemC: Automatic
Executable Models Generation,” in Embedded Systems Specification and
Design Languages, 2008, pp. 227–239.

[4] D. Harel, “Statecharts: a Visual Formalism for Complex Systems,”
Science of Computer Programming, vol. 8, pp. 231–274, 1987.

[5] D. Harel and A. Naamad, “The STATEMATE semantics of statecharts,”
ACM transactions on software engineering and, vol. 5, pp. 293–333,
1996.

[6] M. Von Der Beeck, “A comparison of statecharts variants,” Lecture
Notes in Computer Science, pp. 1–25, 1994.

[7] M. L. Crane and J. Dingel, “UML vs. classical vs. rhapsody statecharts:
not all models are created equal,” Software & Systems Modeling, vol. 6,
pp. 415–435, January 2007.

[8] E. Mikk, Y. Lakhnech, M. Siegel, and G. J. Holzmann, “Implementing
statecharts in PROMELA/SPIN,” pp. 90–101, 1998.

[9] D. Latella, I. Majzik, and M. Massink, “Automatic Verification of
a Behavioural Subset of UML Statechart Diagrams Using the SPIN
Model-checker,” Formal Aspects of Computing, vol. 11, pp. 637–664,
December 1999.

[10] S. Qin and W.-N. Chin, Mapping Statecharts to Verilog for Hardware/-
Software Co-specification, 2003, pp. 282–300.

[11] V.-A. V. Tran, S. Qin, and W. N. Chin, “An Automatic Mapping from
Statecharts to Verilog,” Theoretical Aspects of Computing - ICTAC 2004,
pp. 187–203, 2005.

[12] K. D. Nguyen, “Model-Driven SoC Design via Executable UML to
SystemC,” 25th IEEE International Real-Time Systems Symposium, pp.
459–468, 2004.

[13] E. Riccobene, P. Scandurra, A. Rosti, and S. Bocchio, “A model-driven
design environment for embedded systems.” San Francisco, CA, USA:
ACM, 2006, Conference proceedings (article), pp. 915–918.

[14] R. Findenig, M. Velten, V. Esen, W. Ecker, and R. Schwencker, “Ap-
plying transaction-level modeling on different abstraction levels,” IEEE
International High Level Design Validation and Test Workshop, Nov.
2009.

[15] R. Findenig and W. Ecker, “A systemc design pattern for the cosimula-
tion of transaction-level and refined cycle-callable models,” in Proceed-
ings Austrochip 2009, Graz, Austria, October 2009, pp. 123–128.

[16] OMG Unified Modeling Language: Superstructure, Version 2.2. Object
Management Group, 2009.

