
Transaction-Level Friending: 

An Open-Source, Standards-Based Library for 

Connecting TLM Models in SystemC and SystemVerilog 

Adam Erickson 

Verification Methodologist 

Mentor Graphics Corporation 

Adam_Erickson@mentor.com 

 
This paper describes the purpose, requirements, development 

challenges, and applications of an open-source library for 

establishing standard TLM-based communication between 

SystemC (SC) and SystemVerilog (SV) models, including 

C/C++ models wrapped in SC or SV. It also describes a 

SystemC-side interface for controlling simulations based on the 

Universal Verification Methodology (UVM) in SystemVerilog. 

The UVM Connect library is available for download and has 

been proven to work on three major EDA vendors’ simulators 

[1]. 

I. INTRODUCTION 

A 2010 Wilson Research Group independent study of 
trends in functional verification confirmed that usage of 
SystemVerilog, SystemC, C, and C++ was growing, as was 
deployment of the Universal Verification Methodology 
(UVM), a SystemVerilog library of testbench building 
blocks and best practices. [2] 

Each of the language and library standards used by the 
verification community possesses strengths suited to its 
intended purpose: 

 C and C++ for software development and untimed 
modeling [3] [4] 

 SystemC for high-speed  architectural modeling of 
hardware and early collaboration with software 
teams [5] 

 TLM 2.0 for interoperable, approximately timed 
(AT) and loosely timed (LT) transaction-level 
communication between independently design 
models [5] 

 SystemVerilog for RTL and gate-level simulation, 
behavioral testbenches, constrained random 
stimulus, functional coverage, and assertions [6] 

 UVM for development of modular, reusable, 
scalable testbenches; sequence-based stimulus, and 
verification methodology [7] [8] 

With all these languages and other standards at play, it 
should be no surprise that use of hybrid or multi-language 
SoC testbenches is growing too. The 2011 merger between 
the Open SystemC Initiative (OSCI), the body responsible 
for the SystemC and TLM 1.0/2.0 standards, and Accellera, 
the body responsible for standardizing the UVM and 
initiating the standardization of SystemVerilog, could be 
viewed as a reflection of this trend. The merger was 
explained thus: 

System, software and semiconductor design activities 

are converging to meet the increasing challenges to 

create complex system-on-chips (SoCs).   

…   

The relationship between OSCI's TLM-2.0 SystemC 

Transaction Level Modeling standard and Accellera's 

Universal Verification Methodology (UVM) standard 

exemplifies the synergy that exists between the two 

organizations. [9]  

 
A direct result of this synergy is UVM Connect, which 

integrates all these standards to enable connections between 
TLM models written in SystemC and SystemVerilog. It also 
includes an API that allows SystemC, C, and C++ code to 
interact with and control the execution of UVM testbenches 
in SystemVerilog.  

II. REQUIREMENTS 

Establishing a communications link between SystemC 
and SystemVerilog is nothing new. There have been plenty 
of implementations, papers, and proposals written describing 
how to interface SystemVerilog with a foreign language [10] 
[11] [12] [13] [14]. 

We believe UVM Connect differentiates itself by virtue 
of the unique requirements that drove its development, 
including: 

 Open-source, to foster broad industry acceptance and 
transparency. 

 Portability across vendors, to protect user investment 
and allow vendors to differentiate with layered 
products. 

 Must work without requiring modifications to 
existing standards, Accellera‟s UVM in particular. 

 Allow models to fully exploit the features of the 
language in which they were written.  

 Does not impose a foreign methodology nor require 
models or transactions to inherit from a base class, 
implement a conversion interface, etc. 

 Supports the connection of existing TLM models in 
both SystemC and SystemVerilog without requiring 
their modification. 

Having met all these requirements, we believe UVM 
Connect provides a natural solution to the mixed-language 
feature being discussed by the Accellera VIP Technical 
Steering Committee (TSC). 



III. APPLICATIONS 

This section describes some of the new and interesting 
use models that are possible when you can combine 
software, architectural modeling, RTL verification, and 
emulation activities. 

Above all, we wanted UVM Connect to make inter-
language communication easy, to allow using the language 
that best fits the application. We wanted to increase available 
SC, C, and C++ IP in UVM testbenches, to increase 
available VIP in SC, C, and C++ verification—including all 
existing IP and VIP.  For example, SystemVerilog provides 
powerful constraint solver and coverage collection 
capabilities, and there are many SystemVerilog-based, TLM-
ready VIP to choose from. Why not use these to verify SC 
models? 

 

Figure 1.  Leveraging SV strengths in SC model verification 

The following are just a sampling of use models enabled 
with UVM Connect. 

A. Use SystemVerilog testbench to verify SystemC, C, and 

C++ models 

To verify a SystemC model (or a C/C++ model that 
you‟ve wrapped with a thin layer of SC), you can leverage 
UVM best practices and SystemVerilog features to develop 
high-level test stimulus, capture functional coverage, etc. 

 

Figure 2.  UVM SV testbench verifying SC/C/C++ model 

If later you have an RTL representation of the abstract 
model, you can reuse the UVM testbench and test suite to 
kick start RTL verification. Because the same tests and 
constraint solver are being used, even randomized stimulus is 
reproducible. Of course, you would still need to augment the 
high-level tests with RTL-level tests to verify timing and 
interactions with other RTL models. 

B. Use SystemC, C, and C++ models in RTL verification 

SC models (and C/C++ models that you‟ve wrapped with 
a thin layer of SC) can be more easily integrated as reference 
models in your UVM testbench. 

 

Figure 3.  Us 

C. Virtual Prototyping 

Some SV VIP can operate in high-speed transactional 
mode. These VIP (and non-TLM VIP that you‟ve adapted to 
work in TLM mode) can be used in a SystemC/C/C++ SoC 
testbench for early software testing, memory map and 
interconnect verification, and other high-level activities. 

 

Figure 4.  SV  SC 

D. Foreign model import 

Sometimes your verification teams are versed in one 
language and would prefer to work exclusively in a single 
language. UVM Connect allows you to implement a local 
proxy model that delegates to a connected model in another 
language. The proxy model registers cross-language 
connections to the foreign model in its constructor, thus 
hiding the cross-language connection details to external 
components (and users). You can then integrate the proxy as 
an ordinary, native component. The resulting testbench 
appears to the user to be a homogenous, single-language 
environment. 

 

Figure 5.  SV  SC 

E. RTL integrated into TLM platform 

In this application, you integrate RTL models in your 
abstract SoC testbench using a component that adapts 
between TLM 2.0 sockets and the RTL interface. Some VIP 

SV stimulus 

(VIP) 

analysis 

export 

seq 

CPU 

ISS 

seq 

SC models 

analysis 

port 

seq 

SC 

IP 

seq 

SV coverage 

target 

socket 

seq 

SV 

VIP 

Master 

Agent 

seq 

Master 

Agent 

Interconnect 

Slave 

Agent 

Master 

Agent 

Slave 

Agent 

Mem 

subsys 

RTL 

Model 

Slave 

Agent 

RTL 

Model 

SV 

VIP 

seq 

Abstract 

Model 

SC/C/C++ 

Score 

board 

I/O 

Slave 

 

Score 

board 

seq 

seq 

SV 

Coverage 

seq 

Score 

board 

SC/C/C++ 

Model 

Virtual 

Seqs 

Predictor 

seq 

SC Ref 

seq 

initiator 

socket 
Key: 

(backward path arrows not shown) 



can be configured to do this for you. This enables you to 
continually validate the hardware software interface as RTL 
becomes available. The same test infrastructure is used 
throughout the process of refinement from early software 
development through RTL verification. 

 

Figure 6.  SV  SC 

F. Other Applications 

UVM Connect has been used and is being evaluated for 
use in several other applications, including: 

 Establishing a TLM link between simulator and 
emulator 

 Being evaluated to facilitate coordination of 
embedded software and the UVM portions of an 
SoC testbench. 

Of course, these are not the only applications possible 
when C, C++, SC, and SV can coexist with relative ease. In 
each case, TLM models are written in the language best 
suited for their initial purpose. When appropriate, such 
models are then reused in different applications, including 
those involving another language. 

UVM Connect is implemented as a SystemVerilog 
package and a SystemC namespace.  They contain functions 
for registering TLM models‟ ports and sockets for cross-
language connection, conversion of transactions between 
languages in support of those connections, and enabling 
SystemC to interact with and control UVM testbenches. 

First, we look at making TLM connections. 

IV. MAKING CONNECTIONS 

The TLM 2.0 standard defines an API for passing 
transactions between models using initiator and target 
sockets. A model‟s initiator socket is bound to another 
model‟s target socket and transaction (objects) are 
transferred between them. UVM Connect allows these 
models to reside in different languages. 

To accomplish this, UVM Connect provides a connect 
function in both languages that serves to register a socket, 
port, or export for cross-language connection: 

SYSTEMVERILOG TLM2: 

uvmc_tlm #(T)::connect(socket_h, “lookup”); 

SYSTEMC TLM2: 

uvmc_connect( socket_ref, “lookup”); 

Language differences affect the syntax of the connect call 
on each side, but the semantic is the same.

1
 Each connect call 

registers the socket, port, or export given in the 1
st
 argument 

with a lookup string given in the 2
nd

 argument. During 
elaboration, the lookup strings are used to determine 
connection pairs. Port directions and interface types are 
checked to help ensure the connections are compatible. 

Example: 

Our first example shows how to use these connect 
functions to connect a SystemVerilog producer model‟s 
initiator socket to a SystemC consumer‟s target socket. Here, 
the producer might be a stimulus generator (agent), and the 
consumer might be a SystemC architectural model. 

 

Figure 7.  SV  SC 

The SystemVerilog and SystemC code needed to create 
these two components and establish their connection is as 
follows: 

2
 

SYSTEMVERILOG: 

import uvm_pkg::*;  

import uvmc_pkg::*; 

`include "producer.sv" 

 

module sv_main; 

  producer prod = new("prod"); 

  initial begin 

    uvmc_tlm #()::connect(prod.out, "foo"); 

    run_test(); 

  end 

endmodule 

 

SYSTEMC: 

#include "uvmc.h" 

using namespace uvmc; 

#include "consumer.h" 

 

int sc_main(int argc, char* argv[]) {   

  consumer cons("cons"); 

  uvmc_connect(cons.in,"foo"); 

  sc_start(); 

  return 0; 

} 

 

The sv_main top-level module creates the SV portion of 
the example. It creates an instance of a producer component, 
then registers the producer‟s out initiator socket with UVMC 
using the lookup string “foo”. It then starts UVM test flow 
with the call to run_test(). 

                                                           
1 UVM Connect methods and classes are prefixed with uvmc_. 
2 For brevity, the example UVM code will invoke new() directly 
instead of using the UVM factory. 

CPU 

ISS 

producer 

SV 

CPU 

L2 

consumer 

SC 

Mstr 

Adapt 

out 

Interconnect 

in 

Mem 

subsys 

initiator socket 

I/O 

subsys 

target socket 

Slave 

agent 

“foo” 
RTL 

Slave 

RTL 

Master 

Emulation 

ready 



The sc_main function creates the SC portion of this 
example. It creates an instance of a consumer sc_module, 
then registers the consumer‟s in target socket with UVMC 
using the lookup string, “foo”. It then starts SC simulation 
with the call to sc_start. 

During elaboration, UVMC will connect the two sockets 
because they were registered with the same lookup string, 
“foo”. We did not specify a transaction type in the connect 
call, so the TLM 2.0 generic payload is implied. 

Except for the producer and consumer models 
themselves, the above code is complete. This is all you need 
to establish a cross-language connection between TLM 
components using the generic payload transaction type. 

The next example adds an SV scoreboard whose expect 
export is connected natively to the producer‟s analysis port 
and whose actual analysis export is connected to the SC 
consumer. 

 

Figure 8.  SV  SC  SV 

SYSTEMVERILOG: 

module sv_main; 

  producer prod = new("prod"); 

  scoreboard sb = new("sb"); 

  initial begin 

    prod.ap.connect(sb.expect); // native conn. 

    uvmc_tlm  #(uvm_tlm_gp)::connect(prod.out, 

                                     "foo"); 

    uvmc_tlm1 #(uvm_tlm_gp)::connect(sb.actual, 

                                     "bar"); 

    run_test(); 

  end 

endmodule 

 

SYSTEMC: 

int sc_main(int argc,char* argv[]) {   

  consumer cons("consumer"); 

  uvmc_connect(cons.in,"foo"); 

  uvmc_connect(cons.ap,"bar"); 

  sc_start(); 

  return 0; 

} 

In this example, we establish another cross language 
connection using a different lookup string, “bar”. Analysis 
ports are part of the TLM1 standard, we use a slightly 
different calling syntax when making this connection. TLM2 
connections in SV are made using the uvmc_tlm class, while 
TLM1 connections in SV use the uvmc_tlm1 class. Function 
template overloading in C++ helps us retain the same syntax 
for both TLM1 and TLM2 connections. 

UVM Connect will produce an error if the same lookup 
string is used to register more than one cross-language 
connection  In practice, most testbenches have few cross-
language connections, so ensuring each connection has a 
unique lookup string is typically not a problem. For large 
testbenches with many connections, centralizing the lookup 
strings in a common side file might help mitigate the 
problem. It is not recommended that the lookup string use a 
port or socket‟s hierarchical name, i.e. using 
get_full_name(), because the other side would have to use 
this context string to make a match. When (not if) the socket 
changes hierarchical location (as during block to system 
reuse), you would have to modify the connect calls on the 
other side. 

The next example shows how to handle stimulus coming 
from the SC side. In UVM SV, time-consuming activity 
occurs during the run_phase. The run_phase will end when 
there are no components that object to it ending. If an SC 
model wants to participate in time-consuming activity during 
UVM‟s run_phase, it must raise an objection to UVM 
ending that phase and hold that objection until it has finished 
with its activity. 

The following example demonstrates an SC model 
driving an SV consumer (say, an RTL bus agent). To avoid 
modifying the existing producer, we use inheritance to define 
a new producer that can control UVM‟s run_phase. 

 
Figure 9.  SC  SV 

The code below extends the SC producer to have a 
background process, objector. This process will use the 
UVM command API to raise an objection to the run_phase, 
even before the run_phase begins. The process then waits 
until the base producer has completed its stimulus, which is 
indicated by a done event. The objection to the run_phase is 
then dropped, which allows the UVM test flow to continue 
onto the next phase. 

SYSTEMC: 

struct prod_uvm : public producer { 

  prod_uvm(sc_module_name nm) : 

           producer(nm) { 

    SC_THREAD(objector); 

  } 

  SC_HAS_PROCESS(prod_uvm) 

  void objector() { 

    uvmc_raise_objection("run"); 

    wait(done); 

    uvmc_drop_objection("run"); 

  } 

}; 

 

Now, all we need to do is use the UVM-aware producer 
model on the SC side, making the TLM connections as we 
did previous examples: 

producer 
SV 

 

producer 

SC 

consumer  

SC 

consumer 

SV 

out 

out 

in 

in 

scoreboard  SV 

“foo” 

expect actual 

ap ap 

“foo” 

“bar” 

native 

SV connection 



SYSTEMC: 

int sc_main(int argc,char* argv[]) {   

  prod_uvm prod("producer"); // UVM-aware version 

  uvmc_connect(prod.out,"42"); 

  sc_start(); 

  return 0; 

} 

SYSTEMVERILOG: 

module sv_main; 

 consumer cons = new("cons"); 

 initial begin 

  uvmc_tlm #()::connect(cons.in,"42"); 

  uvmc_init(); // init cmd API 

  run_test(); 

 end 

endmodule 

 

Note that, on the SV side, we added a call to uvmc_init. 
This function starts up a background process that services 
incoming UVM command requests. 

Our final example demonstrates how you can leverage 
UVM Connect hierarchical connection capability to wrap 
foreign models in a native skin. Doing so allows you to 
present to users what appears as a pure native environment. 
Here, we use the uvmc_connect_hier function to register 
hierarchical connections. Except for the _hier suffix, the 
syntax of uvmc_connect_hier is the same as with connect. 

First, we define a SC producer, but provide no 
implementation. Instead, we use uvmc_connect_hier to 
connect a SV-side producer implementation to our initiator 
socket. 

SYSTEMC: 

class producer: public sc_module { 

  public: 

  tlm_initiator_socket<32> out; 

  SC_CTOR(producer) : out("out") { 

    uvmc_connect_hier(out,"1234"); 

  } 

}; 

 

The SC producer‟s initiator socket will be driven by the 
SV producer, which is instantiated independently in SV as in 
previous examples: 

SYSTEMVERILOG: 

module sv_main; 

 producer prod = new("prod"); 

 initial begin 

  uvmc_tlm #()::connect(prod.out,"1234"); 

  run_test(); 

 end 

endmodule 

 

With the above code compiled in, you can then define 
your environments using only native, SC models:  

 
Figure 10.  Transparent embedding of SV models in SC testbench 

SYSTEMC: 

#include “producer.h” 

#include “consumer.h” 

int sc_main(int argc, char* argv[])  

{ 

  producer prod("producer"); 

  consumer cons("consumer"); 

  prod.out.bind(cons.in); 

  sc_start(); 

  return 0; 

}; 

V. TRANSACTION CONVERSION 

To pass transactions between the two languages, UVM 
Connect converts the content of each transaction into a bit 
stream that is passed via SystemVerilog‟s DPI-C interface. 
The previous examples demonstrated built-in support for the 
TLM 2.0 Generic Payload transaction type, which makes the 
conversion process transparent for the majority of TLM 
model developers. 

When transaction types other than the generic payload 
are needed, conversion routines must be provided. You can 
define a single conversion algorithm for all connections of a 
given transaction type, or you can specify a different 
conversion algorithm for each connection you make. 

A. SystemVerilog Conversion Options 

For SystemVerilog UVM transactions, the standard way 
to define a conversion algorithm is to implement the 
transaction‟s do_pack and do_unpack virtual methods. We 
recommend using the standard `uvm_pack and `uvm_unpack 
convenience macros to do this: 

SYSTEMVERILOG: 

class packet extends uvm_sequence_item; 

 

  `uvm_object_utils(packet) 

 

  rand cmd_t cmd; 

  rand int unsigned addr; 

  rand byte data[$]; 

  ... 

  function void do_pack(uvm_packer packer); 

    `uvm_pack_int(cmd) 

    `uvm_pack_int(addr) 

    `uvm_pack_queue(data) 

  endfunction 

 

  function void do_unpack(uvm_packer packer); 

    `uvm_unpack_int(cmd) 

    `uvm_unpack_int(addr) 

    `uvm_unpack_queue(data) 

  endfunction 

endclass 

producer 

SC 

consumer 

SC out 

in 
producer 

SV 



 

Another alternative is to implement a UVM transaction‟s 
pack and unpack methods indirectly using the `uvm_field 
macros, but their effect on performance can far outweigh 
their convenience [15]. 

You are not confined to using the do_pack/do_unpack 
approach. You can also implement a separate, custom 
converter class for a given type. With this approach, your SV 
transaction type does not need to inherit from uvm_object, 
provide a pack/unpack interface, nor conform to any other 
UVM requirement. For example: 

SYSTEMVERILOG: 

class packet; // no base class! 

  rand cmd_t cmd; 

  rand int unsigned addr; 

  rand byte data[$]; 

endclass 

 

import uvmc_pkg::*; 

class pkt_cvrt extends uvmc_converter #(packet); 

  static function void do_pack(packet t, 

                              uvm_packer packer); 

    `uvm_pack_int(t.cmd) 

    `uvm_pack_int(t.addr) 

    `uvm_pack_queue(t.data) 

  endfunction 

  static function void do_unpack(packet t, 

                              uvm_packer packer); 

    `uvm_unpack_int(t.cmd) 

    `uvm_unpack_int(t.addr) 

    `uvm_unpack_queue(t.data) 

  endfunction 

endclass 

 

To use the custom converter, you specify it in one or 
more connect calls. The following connect call tells UVM 
Connect to use the pkt_cvrt converter for the packet 
transaction objects emitted by p.out. 

uvmc_tlm#(packet,pkt_cvrt)::connect(p.out,"foo"); 

 

B. SystemC Conversion Options 

On the SystemC side, a separate converter class is 
typically defined. Any SC transaction object—preexisting or 
not— can be accommodated because there is no base class or 
interface requirement on the transaction class itself. 

The following code implements a converter for the 
packet transaction class in SC.  Note the use of overloaded 
<< and >> operators for streaming the object‟s members to 
and from the inherited packer object. 

SYSTEMC: 

template <> 

class uvmc_converter<packet> { 

  public: 

  virtual void 

  do_pack(const packet &t, uvmc_packer &packer) { 

    packer << t.cmd << t.addr << t.data; 

  } 

  virtual void 

  do_unpack(packet &t, uvmc_packer &packer) { 

    packer >> t.cmd >> t.addr >> t.data; 

  } 

}; 

 

Using an optional convenience macro, the converter class 
definition for packet can be reduced to one line: 

 

UVMC_UTILS_3 (packet, cmd, addr, data) 

 
The „3‟ suffix in the macro name indicates that 3 

members of the transaction are being packed and unpacked. 
The first macro argument is the transaction type, and the next 
three arguments are the transaction members. UVM Connect 
provides macros that can convert up to 20 members.  

The macro expands into the converter definition shown 
above, i.e. what you would otherwise write on your own. 
The macro also defines an operator <<( ostream&) for your 
transaction so you can print the transaction to standard out.  

cout << “Got transaction: “ << trans << endl; 

 

Although not recommended, another alternative is to 
implement do_pack and do_unpack methods in your SC 
transaction class. Documented examples with source code 
for this and the other conversion approaches can be found in 
the download kit. 

VI. UVM COMMAND API 

The UVM command API gives SystemC users access to 
key UVM features in SystemVerilog. Currently, you can 

 send UVM report messages, and set report verbosity. 

 set and get UVM configuration, including objects. 

 wait for UVM to reach a given simulation phase. 

 raise and drop objections to phases to control UVM 
test flow. 

 set type and instance overrides in the UVM factory 

 print UVM component topology. 

To enable use of the command API, you must call 
uvmc_init() from an initial block on the SystemVerilog side. 
This function starts a background process that services UVM 
command requests from SystemC. 

SYSTEMVERILOG: 

module sv_main; 

  import uvm_pkg::*; 

  import uvmc_pkg::*; 

  ... 

  initial begin 

    uvmc_init(); 

    run_test(); 

  end 

endmodule 

 

All calls will block until SystemVerilog has finished 
elaboration and the uvmc_init function has been called. For 
this reason, such calls must be made from within SC thread 
processes. 



1) Send UVM reports from SystemC 
UVMC provides an API into UVM‟s reporting 

mechanism, allowing you to send reports to UVM‟s report 
server and to set report verbosity at any context within the 
UVM and SC hierarchies. As with natively issued UVM 
reports, all reports you send to UVM from SC are subject to 
filtration by configured verbosity level, actions, and report 
catchers.  

Just as in UVM, UVMC provides convenient macro 
definitions for sending reports efficiently and with automatic 
SystemC-side filename and line number information. 

SYSTEMC: 

UVMC_INFO("SC_TOP/SET_CFG", 

   "Setting cfg for SV producer",UVM_MEDIUM,""); 

 

2) Set and Get Configuration 
UVMC supports setting and getting integral, string, and 

object values from UVM‟s configuration database. This 
configuration can target SV components and SC models 
alike (provided the SC models know where to get their 
configuration). 

Use of configuration objects is strongly recommended 
over one-at-a-time integrals and strings. You can pass 
configuration for an entire component or set of components 
with a single call, and the configuration object is type-safe to 
the components that accept those objects. You can later add 
as many configuration parameters to the config class without 
incurring any more overhead. With integrals and strings, it‟s 
far too easy to get configuration wrong (which can be hard to 
debug), especially with generic field names like “count” and 
“max_len”.  

Before you can pass configuration objects, you will need 
to define an equivalent configuration object type and 
converter on the SystemC side. As shown earlier for 
transactions, this is easily done: 

SYSTEMC: 

#include "uvmc.h" 

#include "uvmc_macros.h" 

using namespace uvmc; 

 

class prod_cfg_sc { 

  public: 

  int min_addr, max_addr; 

  int min_data_len, max_data_len; 

  int min_trans, max_trans; 

}; 

 

UVMC_UTILS_6(prod_cfg_sc, min_addr, max_addr,                  

             min_data_len, max_data_len, 

             min_trans, max_trans) 

 

We can now configure an SV stimulus generator as 
follows: 

SYSTEMC: 

prod_cfg_sc cfg = new(); 

cfg.min_addr = „h0100;  

cfg.max_addr = „h0FFF; 

cfg.max_data_len = 10; 

cfg.max_trans = 100; 

 

uvmc_set_config_object ("prod_cfg", 

                        "e.prod", 

                        "", "config", cfg); 

 

The first argument is the name of the type in SV, which 
is passed to the UVM factory to create the object of that type 
in SV. The remaining arguments are the same as in SV: the 
context, field name, and the object we are setting. On the SV 
side, the object data is unpacked into a new factory-allocated 
instance and set into the UVM configuration database. 

While not shown, the commands for setting integral and 
string configuration are nearly identical. In every case, the 
„set‟ and „get‟ syntax is much the same as in UVM.                     

3) Phase Control 
The uvmc_wait_for_phase command lets a SC program 

wait for a UVM phase to reach a given state, and you can 
raise and drop objections to any phase,  thus controlling 
UVM test flow. 

SYSTEMC: 

uvmc_wait_for_phase(“run”,UVM_PHASE_STARTED); 

 

uvmc_raise_objection("run",“SC producer active”); 

  // produce data...  

uvmc_drop_objection("run", “SC producer done”); 

 

4) Factory Overrides 
You can also set UVM factory type and instance 

overrides from SystemC. Perhaps you are testing a SC-side 
model and want to drive it with a subtype of the SV stimulus 
generator that would normally be used. Once you make your 
overrides, you can then check that they “took” using some 
factory debug commands. 

 SYSTEMC: 

 uvmc_set_factory_type_override( 

          "producer_t",      // old type 

          "new_producer_t",  // new type 

          "env.*");          // context 

 // UVM should report above overrides 

 uvmc_print_factory(); 

 

The above code tells the UVM factory to produce a 
new_producer_t object whenever an object of type 
producer_t is requested by any components hierarchically 
below a component named env. Both classes must be defined 
in SV, and the override type must be some extension of the 
overridden type. 

5) Printing UVM Topology 
You can print UVM testbench topology from SystemC. 

Just be sure you invoke the command after UVM has built 
the testbench! 

SYSTEMC: 

uvmc_wait_for_phase("build",UVM_PHASE_ENDED); 

 

cout << "UVM Topology:" << endl; 

uvmc_print_topology(); 

 



The complete source code and helpful documentation for 
the above connect, converter, and UVM command examples 
can be found in the UVM Connect kit. Again, this is a free 
download and should run on all simulators. 

VII. MIXED-LANGUAGE CHALLENGES 

In this final section we will describe some of the 
challenges we faced (and overcame) during development of 
UVM Connect. 

A. Local connections/binding proxies  

To support vendor independence, the SC and SV engines 
needed to elaborate and start independently. Typically, SC is 
ready to go well before SV and reaches its elaboration phase 
before cross-language ports have a chance to be connected. 
Because all ports and sockets in both SC and SV UVM must 
be bound before end of elaboration, each connect and 
connect_hier call creates and binds a proxy to its cross-
language counterpart. For example, when you call connect 
passing an initiator socket, UVM Connect will create a local 
target socket and bind the initiator to it, thus satisfying the 
connection policy in the local language. During UVM‟s 
elaboration phase, DPI-based communication between this 
proxy and its counterpart proxy in the other language is  
established. 

Figure 2: Local Proxies to Foreign Connections 

 
Figure 11.  Transparent embedding of SV models in SC testbench 

B. Standard DPI-C only  

The requirement for vendor independence meant we 
could not rely on vendor-specific solutions. 

 We could not employ SV-on-top or SC-on-top 
solutions—although similar in each vendor, they are 
non-standard. The two language engines must come 
up independently (while still allowing vendor-
proprietary solutions). 

 We could not employ  DPI-SC or other non-standard 
programming interfaces, nor call DPI export tasks 
from outside a DPI import task context. 

We had to provide TLM blocking semantics between 
SC and SV using only the standard DPI-C. However, 
DPI-C provides no explicit support for blocking calls 
from outside SV, except to allow a DPI-import task 
to call a DPI export task. We did not want to context 
switch when doing non-blocking communication 
between SC and SV. 

 We had to be careful to use only data types 
supported by all three vendors when making DPI-C 
calls. 

To solve this problem, each blocking call makes a non-
blocking request to the other side, then waits on a native 
event. When the other side is ready with the response, the 
data is transferred and the event triggered via another non-
blocking call. Thus, for TLM communication, the need for a 
formal C++ or SystemC-specific calling mechanism (i.e. 
DPI-C++ or DPI-SC) is mitigated. 

C. Multiple boundary crossings 

A transaction can traverse the language boundary several 
times on its path to a final target. When a transaction makes 
its first crossing, we must create a new proxy transaction in 
the receiving language and unpack the contents of the 
original transaction into it. If the path of the transaction 
makes its way back to the originating language, we must not 
create a new transaction; we must use the same originating 
transaction object. If the transaction path makes yet another 
crossing, we must use the same proxy transaction object 
created during the first crossing. 

 

Figure 12.  Transparent embedding of SV models in SC testbench 

To solve this problem, we implemented a cache of 
outstanding transactions on each side of the language 
boundary, associating the original and proxy transactions 
with the same inter-language ID. The first language crossing 
establishes a new cache entry on each side, with both entries 
being associated with the same ID. When making subsequent 
language crossings, this ID is transferred along with the 
transaction data. The receiving language checks if there is a 
cache entry at that ID. If so, it retrieves the existing 
transaction object from the cache rather than allocate a new 
transaction. When the transaction execution is completed 
(according to TLM base protocol), it is removed from the 
cache. 

D. Multiple outstanding transactions and reentrancy 

Multiple threads (SC or SV) may call into a blocking 
task, e.g. b_transport, over the same TLM connection. 
Multiple non-blocking transactions can be outstanding over 
the same connection as long as the request and responses do 
not overlap. This implies at most two outstanding 
transactions. However, temporal decoupling allows any 

initiator 
SV 

SC 
target 

SC 

SV 

out 

SC 

in 

TSV 

target 

proxy 
SV 

TSC 

initiator 
SV 

SV 

target 
SC 

SC 

out 

SV 

in 

TSV 

initiator 

proxy 
SC 

TSC 

DPI-C 

TSV 
actual implementation 

TSC 

logical view 

All TSC must be same 

underlying object 

All TSV must be same 

underlying object 



number of outstanding transactions as long as they aren‟t 
presented to the target in a way that violates the first rule.  

Above all, UVM Connect must act as a transparent 
bridge, reflecting verbatim what it receives on one side to the 
other side. Thus, it cannot, for example, rely on the TLM 
payload event queue (PEQ), because that precludes the user 
application from providing that functionality, perhaps with 
enhancements. 

To solve this problem, every TLM 2.0 blocking interface 
call causes a new thread to handle each request on the 
receiving side. For blocking and non-blocking transactions, 
the caching mechanism used for multiple boundary crossings 
is also used to track multiple concurrent transactions over the 
same socket. 

E. Avoiding Stack Overflow 

When calling another language, the calling thread‟s stack 
is used in the foreign language, which may cause stack 
overflow. When that happens, often there is little to no clue 
as to why the simulator crashed or is behaving erratically. 
Control over stack size for SV threads is vendor dependent, 
but standard in SC using sc_spawn_options. We increased 
the default stack size used for spawned SC threads (to handle 
blocking calls mentioned previously) to avoid stack overflow 
in our test cases. In practice, heavy use of local variables and 
deep function call chains in your TLM method 
implementations may require you increase the stack size. For 
threads originating from UVM Connect, e.g. those spawned 
to handle blocking transport calls, you can specify a different 
default stack size via a global variable. 

VIII. SUMMARY 

 

UVM Connect bridges the SystemC and SystemVerilog 
language boundary to provide seamless TLM1 and TLM2 
connectivity between components residing in those two 
languages. It also provides a means of directly accessing and 
controlling UVM simulation via the UVM Command API. 
These features facilitate convergence of system-level 
activities that might otherwise serve in isolation. It also 
provides another compelling argument for applying the 
principles and purpose of object-oriented programming 
languages and the TLM interface standard. Such models can 
now also be integrated in both native and mixed-language 
environments without modification.  

Since its release in early 2012, UVM Connect has been 
downloaded and used on real-world testbenches by 
companies using any or all three major simulator vendor‟s 
tools. Changes and improvements have been submitted by 
some of these companies and will be incorporated into future 
releases. The changes will make UVM Connect work better 
with others‟ simulators, improve ease-of-use, enhance 
performance, and increase compliance with the TLM 
standard. We encourage more of this collaborative effort to 
better align UVM Connect to real-world usage. 

The latest library is available for download at 
verificationacademy.com [16] and uvmworld.org [17]. It is 
distributed under the Apache license, meaning it is free for 
you to use, modify, and share. If you would like to have  

your improvements included in an update release, feel free to 
contact the author to discuss how to get that done. 

IX. REFERENCES & RESOURCES 

Below is a partial list of sources for information on 
SystemC, SystemVerilog, UVM, and mixed-language 
communication. 

[1] UVM Connect download: See http://uvmworld.org/contributions area 
and https://verificationacademy.com/cookbook/UvmConnect for 
latest release. The latter reference contains video tutorials, online 
examples, and other documentation. 

[2] Foster, H. (2010). The 2010 Wilson Research Group Functional 
Verification Study. See http://tinyurl.com/44nyp5r 

[3] C Standard Programming Language; a good starting point is 
http://en.wikipedia.org/wiki/C_(programming_language) 

[4] C++ programming language; a good starting point is 
http://en.wikipedia.org/wiki/C%2B%2B 

[5] Standard SystemC Language Reference Manual; IEEE 1666-2011; 
See http://standards.ieee.org/getieee/1666/download/1666-2011.pdf 

[6] IEEE Standard for SystemVerilog-Unified Hardware Design, 
Specification, and Verification Language; IEEE 1800-2009; 
December 11, 2009; see http://www.systemverilog.org  

[7] Universal Verification Methodology; reference manual and library 
download: http://www.accellera.org/downloads/standards/uvm/ 

[8] Accellera Verification Intellectual Property (VIP) Technical 
Subcommittee. http://www.accellera.org/activities/committees/vip  

[9] Accellera and Open SystemC Initiative Announce Plans to Unite. 
Accellera. June 22, 2011. See http://tinyurl.com/97bw446  

[10] Edelman, R., Glasser, M., Saha, A., Yin, H. “Inter-language function 
calls between SystemC and SystemVerilog,” DVCon 2007, San Jose, 
CA. See http://dvcon.org/2007/ses5.html  

[11] Aynsley, J. “SystemVerilog Meets C++: Re-use of Existing C/C++ 
Models Just Got Easier” Design & Verification Conference 2010,  
San Jose, CA. See http://www.doulos.com/knowhow/sysverilog/ 
DVCon10_dpi_paper 

[12] Grover, V. “VCS Built-in TLI connectivity for UVM to SystemC TLM 
2.0” Sep. 20, 2012. Search for at http://www.vmmcentral.org . TLI is 
not open-source and believed to run only on VCS at this time. 

[13] Cadence Design Systems.. UVM ML. See contribution at 
http://www.uvmworld.org. The contribution, while open source, is 
not complete. The code needed for cross-language communication is 
not included and is believed to run only on Incisive. 

[14] Kohli, A. et al; Mantis 3087: Improve interaction between SystemC, 
C++ and DPI; http://www.eda.org/svdb/view.php?id=3087  

[15] Erickson, A.”Are OVM/UVM Macros Evil? A Cost-Benefit Analysis” 
Best Paper Award, DVCon 2011, San Jose, CA. See 
http://verificationacademy.com/uvm-ovm/MacroCostBenefit 

[16] Verification Academy. http://verificationacademy.com A free site for 
learning about almost any verification topic. 

[17] UVM World. http://uvmworld.org 

[18] UVM Cookbook - http://verificationacademy.com/uvm-ovm 

http://uvmworld.org/contributions
https://verificationacademy.com/cookbook/UvmConnect
http://tinyurl.com/44nyp5r
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/C%2B%2B
http://standards.ieee.org/getieee/1666/download/1666-2011.pdf
http://www.systemverilog.org/
http://www.accellera.org/downloads/standards/uvm/
http://www.accellera.org/activities/committees/vip
http://tinyurl.com/97bw446
http://dvcon.org/2007/ses5.html
http://www.vmmcentral.org/
http://www.uvmworld.org/
http://www.eda.org/svdb/view.php?id=3087
http://verificationacademy.com/uvm-ovm/MacroCostBenefit
http://verificationacademy.com/
http://uvmworld.org/
http://verificationacademy.com/uvm-ovm

