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ABSTRACT

Register transfer level (RTL) simulation run timae severely
impacted by the verification requirements of todagomplex IC
designs. Due to fierce market demands of increasattionality,

the need to serve multiple applications with thmea&ore design,
and shrinking time-to-market windows, it has become
increasingly challenging to complete the verifioatplan on time.
Time-critical tests, with requisite scoreboard ntoring, take
days of simulation run time, which can extend thetrequired to
meet high quality assurance milestones.

Complementing simulation-based verification with-circuit
emulation (ICE) and/or FPGA-based prototyping caovige
much-needed performance relief for software valiaatand
enhance the ability to verify with real-world dited stimulus and
response. Both of these verification modes predantin require
full design synthesizability and the availabilityswftware drivers
to achieve the higher quality modeling. Hardwareetgration of
the existing simulation test bench not only alldtws discovery of
deep corner case bugs while maintaining metricedriv
verification methods, but also serves as a uniqidgé between
simulation and in-circuit emulation. This early-ghaacceleration,
which enables gradual movement of behavioral desigcks into
the synthesizable domain, allows smoother tramsitido and
faster bringup of in-circuit emulation, thereby improving ovitra
productivity and reducing time-to-market.

General Terms
Management, Performance, Design, Economics, Stdizdsion,
Languages, Verification

Keywords
verification, acceleration, emulation, FPGA-basewtqtyping,
transaction,  system-level verification, hardwartsare

verification, network switch, Ethernet

Varun Gupta
Sr. Field Applications Engineer
Cadence Design Systems
San Jose, CA USA

Raj Mathur
Sr. Product Marketing Manager
Cadence Design Systems
San Jose, CA USA

1. INTRODUCTION

This paper describes the verification environmenaro Ethernet
switch application that was devised for both sirtiata and
hardware acceleration. Both the challenges andstiigtions to
verifying millions of Ethernet packets with longrifecation runs
embedded with monitors and checkers in the testtbeare
described. An example of the use of transactioedbas
acceleration (TBA) based on a Standard Co-Emuldiodeling
Interface (SCE-MI) [1] [2] for accelerated commuation
between a workstation and the hardware acceleisapovided.

This paper shows how designers can accelerate their
SystemVerilog-based test bench run and achievdtsesangruent
with register transfer level (RTL) simulation whifgreserving
select checkers and assertions in the acceleratedPerformance
of hundreds of times better than simulation prosidthe
opportunity to not only run long sequences, bub gigrform
diagnostic testing and begin firmware developmeatlye To
achieve this performance within a practical schedebuires the
up-front investment in a test bench architectufistructure that
allows easy transition to acceleration mode, whish a
recommended milestone before performing in-cir@riulation
and/or FPGA-based prototyping.

2. VERIFICATION CHALLENGES

To provide practical insights into the verificatichallenges that
design and verification engineers face, an Ethienmework
switch application (see Figure 1) is used as aente.
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Figure 1: Ethernet switch chip-level diagram

The application consists of multiple programmaltleeEnet ports,
as represented by the INGRESS and EGRESS blockk,aan
custom programming interface that programs thecéwitefore
the packets are sent through.



In general, the challenges of system-level vettiiicaof hardware
and software are magnified by the sheer volumeatd that must
be processed to achieve a coverage level acceffitat®R L sign-

off. In addition, the hardware verification of thdesign has
different tradeoffs at different hierarchical level

2.1 Hierarchical Partitioning and Tradeoffs

The hardware verification process is further dididato sub-
block, block, chip-level, and system-level categeriFor instance,
at the sub-block level for the SystemVerilog-batesi bench (see
Figure 2), applying RTL simulation is typically aentable
solution, providing the necessary visibility intbet design for
debugging and observing embedded assertions tretwien
necessary. This is a plausible solution for sulzlblsizes that are
smaller than 1 million gates, and if the simulatiests can be run
in minutes to hours. When simulation run timestdtaget longer
than few hours, however, productivity is adversetpacted, and
simulation alone becomes impractical. Such is #medypically
observed at the block level.
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Figure 2: Module/Sub-block-level verification

In addition, at the block level, in which gate ctaimary widely
within the range of 5-20 Mgates, the longer debyaecbegins to
hamper the designers’ productivity in running juRTL

simulation. Formal techniques have been applied,the state-
space explosion also begins to render formal techas of limited
value. For some, in-circuit emulation(ICE) is arteaiative
verification vehicle at the block level, but due pooprietary
interfaces at the internal blocks, in-circuit entigla is impractical
for our block-level verification. ICE, for switchinchips in the
group is performed at the chip and system levelgisif-the-shelf
Speed-Bridges for PCle and Ethernet.

E— SCOREBOARD
Design size <5-20 Mgates
Simulation run- Minutes >>Hours a .
times >=Day e
W’ = R
- Vel :
o) " E &
Strategy: Simulation N i v
» Long debug cycles hampers . g i
= v
productivity L o o [> o
D
= Many tests impractical to run on large R g . :
1
blocks v '-Paj! _ I
——
Strategy: Formal s Lo Z
 Many blocks too large for formal ' ﬂ -

Strategy: ICE
* Proprietary interfaces rule out ICE

Figure 3: Block-level verification

To run in-circuit emulation at the chip/system levamost all
blocks are required to be synthesis-ready, and seétare
drivers and firmware are required to interact wtite hardware

design. ASIC prototyping leveraging off-the-sheP@As is a
complementary addition to in-circuit emulation, busually
additional resources with long bring-up time andited debug
visibility are needed if the design in the FPGAdzhprototype is
not preverified in an in-circuit emulator.
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Figure 4: Chip/system-level verification

In summary, different verification techniques puawidifferent
values at different levels of design hierarchy.uFégg5 summarizes
the experiences observed during the system-levdication of
the Ethernet network switch (your experience waiywwith your
unique design, test, and verification environment).
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Figure 5: Summary of verification solutions

At the block level, the need to simulate longertse®quires a
faster performance platform than RTL simulationg dhat can
handle proprietary interfaces and leverage thetiegigest bench
environment defined for simulation while reducinge tdebug
cycle.

At the chip level, there is a need to run deepststeequiring a
fast performance engine running earlier in thegugycle.

2.2 Simulate and Debug Phase

Finally, at the project level, the completion off st plans (sub-
block, block, chip, and system) is dependent oritéeycle that
a test goes through. At a generic level, most fiestthe Ethernet
switch application have the following phases inrthife cycle:

1. Development. The intent of the test-plan is traeslato
executable code.

2. Simulate and Debug
*  The executable code is run on a simulator.

e lterate between simulation and debug to ensuretligat
stimulus matches the intent.



e |terate between the simulation run and debug tarrens
that assertions, checkers, scoreboards, and fuattio
and code coverage metrics are able to track antireap
the intended behavior correctly and report errass a
necessary.

e lterate between simulation and debug to cover
variations of a set of parameters defined for &sé t

3. Passed and Completed. All variations of the tesiedmed
by the test plan have been covered and capture@ as
quantifiable metric.

The above life cycle of a test is dominated by ttezative
“Simulate and debudg phase and is widely recognized as a
critical path in any verification process. Lookimg this phase
further, it is easy to see that “simulation time’s i
machine/simulator-dependent, and hence can easityubntified;
that is, testN takes an average df seconds to complete on an
XYZ simulator on a workstation running RtGHz frequency with
M GB of swap memory an€ number of cores. This phase
usually scales directly as the size of the entigndy verified
increases. Therefore, its impact on the block-lewel chip-level
test benches mentioned earlier is much higher ¢imaa sub-block
test bench. On the other hand, the “debug timehighly
qualitative because, although it is directly gabgdthe ability to
run simulation on the test and detect erroneousawieh
(simulation time), it is also indirectly dependemt a number of
other factors such as the nature of error, desigibilty level
needed, availability of the RTL designer, experenaf the
verification engineer, and more. When the simufatibme
increases, as it does at the block and chip lévekacerbates the
qualitative factors that affect the debug time.sTisi so because
when a test takes a long time to run, verificatiemgineers
typically shift their attention to other tasks. &€gtwhen the test is
completed, the verification engineer may not beealtd
immediately start debugging failed tests becausth@fdemands
of the other tasks.

2.3 Hardware Acceleration Platform

Given the stated challenges and the fact that'smeulate and

debug” iterative cycle for block-level and chip-level té®nches
is the major time constraint that determines tineetifrom test
development to completion, the need to lower thaukition time
is acutely felt. Hardware acceleration platforme aapable of
meeting the need to lower simulation time. But te touly

effective to a verification team, the hardware &edion

platform must address the following additional rieguments.

» Reuse/leverage the existing test bench environment.

» Preserve the functionality, randomization, congdoility, and
testability of the existing environment to the nmaxim
extent possible.

* Preserve most of the existing metrics for measunéimietest
plan completion.

* Mirror the design visibility and debug-ability fesmes of
RTL simulation.

« Support commonly used test bench paradigms andtstes
(behavioral coding, error messaging, and mailble-li
mechanisms to pass transactions).

« Avoid the need for vendor-specific and applicatspecific
APIs to interact with the hardware.

* Be portable across simulators and hardware plafonith
minimal change.

« Provide the flexibility in making changes to theifieation
environment to trade off capacity versus perforreanc

« Provide the ability to be able to scale from theckllevel to
the chip level seamlessly, yet have the granylaiair
multiple test benches to use the system simultastedtor
example, both the block-level and chip-level teshdhes
could be running simultaneously as long as theydifferent
physical partitions).

To maintain vendor independence and ensure padtyabil the
methodology, an API defined by the SCE-MI standé&am
Accellera is requisite to interact with the hardevatatform. Also,
to achieve maximum performance, an acceleratiorhodeiogy
referred to a§ransaction-Based Accelerationwas chosen. This
method uses SCE-MI 2.0 transaction pipes extensivel

3. TRANSACTION-BASED
ACCELERATION

The most basic form of simulation acceleration @gnmonly
referred to as signal-based acceleration (SBAthimacceleration
mode (see Figure 6), the design under test (DU@ispiled into
a specialized hardware while the test bench exscite a
workstation driving stimulus into the DUT over anomunication
channel. The overall simulation performance is mheiteed by the
formula:

Tsimulation: TTest-bench+ TDUT + Tcommunication

As the DUT executes in the specialized hardwargyr T
practically reduces to an insignificant factor,Viea the overall
simulation time to be determined by the time spenthe test
bench and the time to exchange bit-by-bit signatsvben the test
bench and the DUT.
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Figure 6. Signal-based acceleration (SBA)

Transaction-based acceleration (see Figure 7) mralation
acceleration method that improves the performangefubther
reducing the two remaining component$ymhunication@Nd Trest.
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Figure 7. Transaction-based acceleration (TBA)



The first step is to make an informed decisionadifpion the test-
bench functionality as a generator and driver lsgredt move as
many of the simple signal-level interactions asspae to the
driver layer. Thus, in this scheme, the generataesponsible for
high-level functions such as randomizing and gdiega
transactions, whereas the driver is responsiblerdoeiving the
transactions from the generator and performing lbust
functions. In addition, simple threads such as oamdiata/CRC
generation/checking, watchdog timers, and low-leadditration
can also be moved to the driver layer. To gaingimsinto how
this is achieved with the Ethernet switch desigiprdile of the
RTL simulation is needed (see Figure 8) to identibv much
acceleration can actually be achieved and to ifjettie pieces
that are compiled into the hardware.
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Figure 8. Profiling for RTL vs. accelerated simulaion

Figure 8 shows that the RTL simulation time profilensists of
three main portions: a stimulus generator, a drigad the DUT.
The test bench itself consists of the two companeGenerator
and Driver. With some support for behavioral codaugstructs,
the driver layer along with the DUT can be portedhte hardware
accelerator leveraging the multi-parallel proceggrid engine in
the accelerator for faster execution. Now, bec#lusénformation
that is transferred across the communication pipenfthe
generator to the driver is minimal (control fieldsat need
randomization only), the Jmmunication factor is further reduced.
Similarly, as the number of threads that run in @enerator are
far less and infrequent compared to when only théT Dvas

streaming transactions that need little or no adgon between
the test bench and hardware side.

To achieve maximum performance, it is recommendeddve all
logic dependent on timing delays into the drivertipo (which
resides on the acceleration platform). Becauséetdetays are not
synthesizable, all delays in the driver should jpecgied in terms
of clocks. This rule guides the best partitioningtinodology and
is the key to the success of the accelerationteffor

With the time progression happening only on thedare
platform, the test-bench side uses events (ratm@n time) to
communicate and synchronize with the hardware diae. the
SCEMI pipes-based communication channel, such sven¢
SCEMI pipe-full and pipe-empty conditions, whicte aerviced
by the user-defined callback functions. For the DRdde of
communication, a DPIl synchronization function care b
implemented to generate such events.

Infrequent and asynchronous events such as resetmi@rrupts
which require immediate servicing, are best handisithg DPI
export functions that are called in the test-bersitte, but
implemented in the DUT side.

Clocking specifications are closely tied to thedveare platform,
and, hence need to be specified in the requiredndbr
Additionally, tuning the period and phase relatlipsbetween
different clocks in a design can provide large @eniance
benefits. As a result, it is beneficial to isola# the clock-
generation logic to a single module or file.

For the Ethernet switch application, the prograngminterface
programs the switch before the packets are seoughr This
programming interface uses a handshake-based (/edrack)
protocol. Therefore, DPI functions were found tosboétable and
were implemented for use on the hardware platform.

For regular traffic transactions, which form thelkbwf the
interaction between the hardware and softwaretettebench side
needed minimal interaction, and hence was impleatkas SCE-
MI transaction pipes for maximum throughput. This
implementation allows transactions to be streamerh fthe test
bench to the DUT.

A statistics-gathering and reporting block was akdehich
periodically (programmable) updates bandwidth antheio

accelerated, the {Ty.encntime component is also reduced. The statistics to the test-bench side for further psstre.

performance can further be improved by optimizinge t
generation portion by streamlining the randomizatioocess and
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Figure 9. Test-bench TBA hardware acceleration



3.2 Monitors and Checkers

A major consideration while enabling accelerationtioe existing
test bench was to preserve the monitoring and dahgck
functionality of the Ilegacy end-to-end checkers the
environment. This functionality was achieved byldeling the
same two-layer approach of moving the bus-levettionality
and data checking to a monitor, and the highertifarectionality
such as scoreboarding, test end checking, and sdo othe
checker. Monitors, which are hardware acceleratabte connect
to the RTL interface to be monitored, are respdasifor
implementing a simple state machine that can hupléh message
with the relevant fields based on monitoring a chatgp
transaction over multiple cycles. Once a messagenylete, it is
passed to the checker level via an SCE-MI transaqgtipe for
further processing. The checker receives the messad) converts
the message fields to a format that is used inllgraad continues
with its normal checks agnostic to whether it isederated or is
pure simulation.

3.3 Use of SystemVerilog Assertions

Hardware acceleration platforms also support Syggitog

concurrent-assertion statements. This allows dfftog the

temporal checking in the monitors to assertion nesluBecause
assertions are compiled into the hardware domdieretis no
appreciable degradation in performance. SystemMgAissertion
modules must be compiled as separate entities glutire

synthesis phase and then bound into the desigheahdrdware
compile stage. Compiled assertions can be turnear @ff at run

time to keep track of the assertion count.

4. RESULTS

Hardware acceleration using TBA was applied to ttest
benches; one at the block level of an Ethernetckirigy chip
(Figure 10), and the other at the full chip leval & different chip
(Figure 11). With changes to support accelerationd a
performance optimizations in place, the followingnbhmarks
were recorded.

Block-level Results (different chip)

Design Size ~20 MGates

Test 1.2 Million packets
VCS simulation

VCS acceleration with Palladium

1.04 packets per second
304 packets per second
292x

1.5 hr with 1 workstation

Simulation Speedup
Compile time (RTL-to-debug)

In the case of the block-level test bench, a peréorce speedup
of 292x was achieved, good visibility of the design unist and

the test bench to quickly find design issues waimtaaed, plus a
fast compile time to iterate through the flow wHemL changes

were needed was maintained.
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Figure 10. Block-level TBA hardware acceleration

At the chip level (for a different chip), changesriterfaces (to be
acceleration compliant) were made at the full-cthigital level,
which produced the following results:

Chip-level Results

Design Size ~32 Mgates
Test 1600 packets
VCS simulation 16 hrs

250 seconds
230x
1.5 hr with 1 workstation

VCS acceleration with Palladium
Simulation Speedup
Compile time (RTL-to-debug)

SCOREBOARD

. Palladium .
‘ gz p_ -
" G
<] : . R o
E E v B M
D L e
N s [}
= R s qa& s c ﬁ
R (sceml :'_ B m— a B E scem) |
A off 2 uf = 1 T
T E R 1 v o
R i | 8 E
(] o [ [ R
R H R
-_ PROGRAMING INTERFACE —
DRIVER
_lIL=ﬂ‘T"

Figure 11. Full-chip digital-level TBA acceleration
5. INVESTMENTS AND ROI

The following table summarizes the current verifima solutions
that are applied at Broadcom.

Single platform

Transaction- et
Formal Based é"’c'l‘;':?‘“ F;:Go‘::"‘d
Acceleration masEn fetotype
Sub-block

Block

Chip/System

Diagnostics/
Firmware

Application [R——

Figure 12. Summary of Broadcom verification solutios

Transaction-based acceleration has provided mueteatt relief
at the block-level and chip-level verification. B&imark tests that



formerly required about a day or more can now hbe within

minutes. And more importantly, it is now possildertin tests that
previously would not have been considered. Thisbdipy helps

achieve much more debugging earlier in the prajgcte and at
an accelerated pace, which allows a cleaner hanuofthe

emulation team who can now focus on running lortgets and
not have to worry about catching simple bugs. Qiyemad most
importantly, transaction-based acceleration helphieze our
time-to-market objectives.

Different hardware-assisted verification product® ithe

marketplace support transaction-based acceleratitn varying

degrees of functionality, usability, reliabilityegormance, and
support. To maximize the ROI, it is recommendeddentify a

hardware acceleration platform that can suppott b@insaction-
based acceleration and in-circuit emulation.

At the outset, newcomers to hardware-assistedicaidn should
invest sufficient time to learn the methodology dwdv to use the
tools. Also, they should work with EDA vendors tduce the
amount of time it takes to acquire such knowled@gcause the
verification environment is reusable, once sounocedures are
established, subsequent designs can be verifidd mitch less
effort than was initially required.

6. CONCLUSION

Based on our experience with transaction-basedeaaatien, we
find it an essential tool that allows us to compresr verification
process. It also helps verify system-level scesatiwat were
initially out of the reach of simulation due to paxted simulation
run time. Using the accelerated simulation platfcas a step
before starting emulation helps in the delivery afcleaner
database to emulation, which enables the emul&timm to focus
on chip and inter-chip system-level testing. Oftipatar value
was the ability to run the same tests in a simutagnvironment
for debugging, and then to accelerate by runningherhardware
platform. We have extended the test bench to neshé@rs in

production. The platform is extensible and can esaaith the

increased complexity and functionality of our fugwhips. Later
versions of the hardware platform enable furthgsromements in
performance with increased visibility and design.
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