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ABSTRACT  
Register transfer level (RTL) simulation run times are severely 
impacted by the verification requirements of today’s complex IC 
designs. Due to fierce market demands of increased functionality, 
the need to serve multiple applications with the same core design, 
and shrinking time-to-market windows, it has become 
increasingly challenging to complete the verification plan on time. 
Time-critical tests, with requisite scoreboard monitoring, take 
days of simulation run time, which can extend the time required to 
meet high quality assurance milestones. 

Complementing simulation-based verification with in-circuit 
emulation (ICE) and/or FPGA-based prototyping can provide 
much-needed performance relief for software validation and 
enhance the ability to verify with real-world directed stimulus and 
response. Both of these verification modes predominantly require 
full design synthesizability and the availability of software drivers 
to achieve the higher quality modeling. Hardware acceleration of 
the existing simulation test bench not only allows the discovery of 
deep corner case bugs while maintaining metric-driven 
verification methods, but also serves as a unique bridge between 
simulation and in-circuit emulation. This early-phase acceleration, 
which enables gradual movement of behavioral design blocks into 
the synthesizable domain, allows smoother transition into and 
faster bring-up of in-circuit emulation, thereby improving overall 
productivity and reducing time-to-market.  
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1. INTRODUCTION 
This paper describes the verification environment of an Ethernet 
switch application that was devised for both simulation and 
hardware acceleration. Both the challenges and the solutions to 
verifying millions of Ethernet packets with long verification runs 
embedded with monitors and checkers in the test bench are 
described. An example of the use of transaction-based 
acceleration (TBA) based on a Standard Co-Emulation Modeling 
Interface (SCE-MI) [1] [2] for accelerated communication 
between a workstation and the hardware accelerator is provided. 

This paper shows how designers can accelerate their 
SystemVerilog-based test bench run and achieve results congruent 
with register transfer level (RTL) simulation while preserving 
select checkers and assertions in the accelerated run. Performance 
of hundreds of times better than simulation provides the 
opportunity to not only run long sequences, but also perform 
diagnostic testing and begin firmware development early. To 
achieve this performance within a practical schedule requires the 
up-front investment in a test bench architecture/infrastructure that 
allows easy transition to acceleration mode, which is a 
recommended milestone before performing in-circuit emulation 
and/or FPGA-based prototyping.  

2. VERIFICATION CHALLENGES 
To provide practical insights into the verification challenges that 
design and verification engineers  face, an Ethernet network 
switch application (see Figure 1) is used as a reference. 

 
Figure 1: Ethernet switch chip-level diagram 

The application consists of multiple programmable Ethernet ports, 
as represented by the INGRESS and EGRESS blocks, and a 
custom programming interface that programs the switch before 
the packets are sent through.  

 



In general, the challenges of system-level verification of hardware 
and software are magnified by the sheer volume of data that must 
be processed to achieve a coverage level acceptable for RTL sign-
off. In addition, the hardware verification of the design has 
different tradeoffs at different hierarchical levels.  

2.1 Hierarchical Partitioning and Tradeoffs 
The hardware verification process is further divided into sub-
block, block, chip-level, and system-level categories. For instance, 
at the sub-block level for the SystemVerilog-based test bench (see 
Figure 2), applying RTL simulation is typically a veritable 
solution, providing the necessary visibility into the design for 
debugging and observing embedded assertions that fire when 
necessary. This is a plausible solution for sub-block sizes that are 
smaller than 1 million gates, and if the simulation tests can be run 
in minutes to hours. When simulation run times start to get longer 
than few hours, however, productivity is adversely impacted, and 
simulation alone becomes impractical. Such is the case typically 
observed at the block level. 

 
Figure 2: Module/Sub-block-level verification 

In addition, at the block level, in which gate counts vary widely 
within the range of 5–20 Mgates, the longer debug cycle begins to 
hamper the designers’ productivity in running just RTL 
simulation. Formal techniques have been applied, but the state-
space explosion also begins to render formal techniques of limited 
value. For some, in-circuit emulation(ICE) is an alternative 
verification vehicle at the block level, but due to proprietary 
interfaces at the internal blocks, in-circuit emulation is impractical 
for our block-level verification. ICE, for switching chips in the 
group is performed at the chip and system level using off-the-shelf 
Speed-Bridges for PCIe and Ethernet.  

 
Figure 3: Block-level verification 

To run in-circuit emulation at the chip/system level, almost all 
blocks are required to be synthesis-ready, and real software 
drivers and firmware are required to interact with the hardware 

design. ASIC prototyping leveraging off-the-shelf FPGAs is a 
complementary addition to in-circuit emulation, but usually 
additional resources with long bring-up time and limited debug 
visibility are needed if the design in the FPGA-based prototype is 
not preverified in an in-circuit emulator. 

 
Figure 4: Chip/system-level verification 

In summary, different verification techniques provide different 
values at different levels of design hierarchy. Figure 5 summarizes 
the experiences observed during the system-level verification of 
the Ethernet network switch (your experience will vary with your 
unique design, test, and verification environment). 

 
Figure 5: Summary of verification solutions 

At the block level, the need to simulate longer tests requires a 
faster performance platform than RTL simulation, one that can 
handle proprietary interfaces and leverage the existing test bench 
environment defined for simulation while reducing the debug 
cycle. 

At the chip level, there is a need to run deeper tests requiring a 
fast performance engine running earlier in the project cycle. 

2.2 Simulate and Debug Phase  
Finally, at the project level, the completion of all test plans (sub-
block, block, chip, and system) is dependent on the life cycle that 
a test goes through. At a generic level, most tests for the Ethernet 
switch application have the following phases in their life cycle: 

1. Development. The intent of the test-plan is translated to 
executable code. 

2. Simulate and Debug 

• The executable code is run on a simulator. 

• Iterate between simulation and debug to ensure that the  
stimulus matches the intent. 

  



• Iterate between the simulation run and debug to ensure 
that assertions, checkers, scoreboards, and functional 
and code coverage metrics are able to track and capture 
the intended behavior correctly and report errors as 
necessary. 

• Iterate between simulation and debug to cover 
variations of a set of parameters defined for the test. 

3. Passed and Completed. All variations of the test as defined 
by the test plan have been covered and captured as a 
quantifiable metric. 

The above life cycle of a test is dominated by the iterative 
“Simulate and debug” phase and is widely recognized as a 
critical path in any verification process. Looking at this phase 
further, it is easy to see that “simulation time” is 
machine/simulator-dependent, and hence can easily be quantified; 
that is, test N takes an average of T seconds to complete on an 
XYZ simulator on a workstation running at F GHz frequency with 
M GB of swap memory and C number of cores. This phase 
usually scales directly as the size of the entity being verified 
increases. Therefore, its impact on the block-level and chip-level 
test benches mentioned earlier is much higher than on a sub-block 
test bench. On the other hand, the “debug time” is highly 
qualitative because, although it is directly gated by the ability to 
run simulation on the test and detect erroneous behavior 
(simulation time), it is also indirectly dependent on a number of 
other factors such as the nature of error, design visibility level 
needed, availability of the RTL designer, experience of the 
verification engineer, and more. When the simulation time 
increases, as it does at the block and chip level, it exacerbates the 
qualitative factors that affect the debug time. This is so because 
when a test takes a long time to run, verification engineers 
typically shift their attention to other tasks. Later, when the test is 
completed, the verification engineer may not be able to 
immediately start debugging failed tests because of the demands 
of the other tasks. 

2.3 Hardware Acceleration Platform 
Given the stated challenges and the fact that the “simulate and 
debug” iterative cycle for block-level and chip-level test benches 
is the major time constraint that determines the time from test 
development to completion, the need to lower the simulation time  
is acutely felt. Hardware acceleration platforms are capable of 
meeting the need to lower simulation time. But to be truly 
effective to a verification team, the hardware acceleration 
platform must address the following additional requirements.  

• Reuse/leverage the existing test bench environment. 

• Preserve the functionality, randomization, controllability, and 
testability of the existing environment to the maximum 
extent possible. 

• Preserve most of the existing metrics for measurement of test 
plan completion. 

• Mirror the design visibility and debug-ability features of 
RTL simulation. 

• Support commonly used test bench paradigms and structures 
(behavioral coding, error messaging, and mailbox-like 
mechanisms to pass transactions). 

• Avoid the need for vendor-specific and application-specific 
APIs to interact with the hardware. 

• Be portable across simulators and hardware platforms with 
minimal change. 

• Provide the flexibility in making changes to the verification 
environment to trade off capacity versus performance. 

• Provide the ability to be able to scale from the block level to 
the  chip level seamlessly, yet have the granularity for 
multiple test benches to use the system simultaneously (for 
example, both the block-level and chip-level test benches 
could be running simultaneously as long as they use different 
physical partitions). 

To maintain vendor independence and ensure portability of the 
methodology, an API defined by the SCE-MI standard from 
Accellera is requisite to interact with the hardware platform. Also, 
to achieve maximum performance, an acceleration methodology 
referred to as Transaction-Based Acceleration was chosen. This 
method uses SCE-MI 2.0 transaction pipes extensively.  

3. TRANSACTION-BASED 
ACCELERATION 
The most basic form of simulation acceleration is commonly 
referred to as signal-based acceleration (SBA). In this acceleration 
mode (see Figure 6), the design under test (DUT) is compiled into 
a specialized hardware while the test bench executes in a 
workstation driving stimulus into the DUT over a communication 
channel. The overall simulation performance is determined by the 
formula: 

Tsimulation = TTest-bench + TDUT + Tcommunication 

As the DUT executes in the specialized hardware, TDUT 
practically reduces to an insignificant factor, leaving the overall 
simulation time to be determined by the time spent in the test 
bench and the time to exchange bit-by-bit signals between the test 
bench and the DUT.   

 
Figure 6. Signal-based acceleration (SBA)  

Transaction-based acceleration (see Figure 7) is a simulation 
acceleration method that improves the performance by further 
reducing the two remaining components: Tcommunication and TTest-

bench.  

 
Figure 7. Transaction-based acceleration (TBA) 

  



The first step is to make an informed decision to partition the test-
bench functionality as a generator and driver layer and move as 
many of the simple signal-level interactions as possible to the 
driver layer. Thus, in this scheme, the generator is responsible for 
high-level functions such as randomizing and generating 
transactions, whereas the driver is responsible for receiving the 
transactions from the generator and performing bus-level 
functions. In addition, simple threads such as random data/CRC 
generation/checking, watchdog timers, and low-level arbitration 
can also be moved to the driver layer. To gain insight into how 
this is achieved with the Ethernet switch design, a profile of the 
RTL simulation is needed (see Figure 8) to identify how much 
acceleration can actually be achieved and to identify the pieces 
that are compiled into the hardware. 

 

 
Figure 8. Profiling for RTL vs. accelerated simulation 

Figure 8 shows that the RTL simulation time profile consists of 
three main portions: a stimulus generator, a driver, and the DUT. 
The test bench itself consists of the two components: Generator 
and Driver. With some support for behavioral coding constructs, 
the driver layer along with the DUT can be ported to the hardware 
accelerator leveraging the multi-parallel processing grid engine in 
the accelerator for faster execution. Now, because the information 
that is transferred across the communication pipe from the 
generator to the driver is minimal (control fields that need 
randomization only), the Tcommunication factor is further reduced. 
Similarly, as the number of threads that run in the Generator are 
far less and infrequent compared to when only the DUT was 
accelerated, the TTest-bench time component is also reduced. The 
performance can further be improved by optimizing the 
generation portion by streamlining the randomization process and 
minimizing interrupts from the DUT side, allowing the generator 
to stream transactions independent of the DUT side. 

3.1 Changes to Test Bench for Hardware 
Acceleration 
A common set of changes are needed in an existing test bench to 
enable it to undergo acceleration. Most of these changes are 
enabled via the support for SystemVerilog DPI functions and 
SCE-MI 2.0-based transaction pipes. The choice between using a 
DPI function or an SCE-MI transaction pipe to interact between 
the test bench running on a workstation and the driver layer+DUT 
running in the hardware platform, primarily depends on the nature 
of the specific interaction. DPI functions are best suited for use in 
cases in which the interaction is handshake-based, needing  
increased communication between the test bench and the 
acceleratable portion. Transaction pipes are best suited for 

streaming transactions that need little or no interaction between 
the test bench and hardware side. 

To achieve maximum performance, it is recommended to move all 
logic dependent on timing delays into the driver portion (which 
resides on the acceleration platform). Because the #delays are not 
synthesizable, all delays in the driver should be specified in terms 
of clocks. This rule guides the best partitioning methodology and 
is the key to the success of the acceleration effort. 

With the time progression happening only on the hardware 
platform, the test-bench side uses events (rather than time) to 
communicate and synchronize with the hardware side. For the 
SCEMI pipes-based communication channel, such events are 
SCEMI pipe-full and pipe-empty conditions, which are serviced 
by the user-defined callback functions. For the DPI mode of 
communication, a DPI synchronization function can be 
implemented to generate such events. 

Infrequent and asynchronous events such as resets and interrupts, 
which require immediate servicing, are best handled using DPI 
export functions that are called in the test-bench side, but 
implemented in the DUT side. 

Clocking specifications are closely tied to the hardware platform, 
and, hence need to be specified in the required format. 
Additionally, tuning the period and phase relationship between 
different clocks in a design can provide large performance 
benefits. As a result, it is beneficial to isolate all the clock-
generation logic to a single module or file.   

For the Ethernet switch application, the programming interface 
programs the switch before the packets are sent through. This 
programming interface uses a handshake-based (reg-wr/rd-ack) 
protocol. Therefore, DPI functions were found to be suitable and 
were implemented for use on the hardware platform. 

For regular traffic transactions, which form the bulk of the 
interaction between the hardware and software, the test-bench side 
needed minimal interaction, and hence was implemented as SCE-
MI transaction pipes for maximum throughput. This 
implementation allows transactions to be streamed from the test 
bench to the DUT. 

A statistics-gathering and reporting block was added, which 
periodically (programmable) updates bandwidth and other 
statistics to the test-bench side for further processing. 

 

Figure 9. Test-bench TBA hardware acceleration 

  



3.2 Monitors and Checkers 
A major consideration while enabling acceleration on the existing 
test bench was to preserve the monitoring and checking 
functionality of the legacy end-to-end checkers in the 
environment. This functionality was achieved by following the 
same two-layer approach of moving the bus-level functionality 
and data checking to a monitor, and the higher-level functionality 
such as scoreboarding, test end checking, and so on to the 
checker. Monitors, which are hardware acceleratable and connect 
to the RTL interface to be monitored, are responsible for 
implementing a simple state machine that can build up a message 
with the relevant fields based on monitoring a complete 
transaction over multiple cycles. Once a message is complete, it is 
passed to the checker level via an SCE-MI transaction pipe for 
further processing. The checker receives the message and converts 
the message fields to a format that is used internally and continues 
with its normal checks agnostic to whether it is accelerated or is 
pure simulation.     

3.3 Use of SystemVerilog Assertions 
Hardware acceleration platforms also support SystemVerilog 
concurrent-assertion statements. This allows offloading the 
temporal checking in the monitors to assertion modules. Because 
assertions are compiled into the hardware domain, there is no 
appreciable degradation in performance. SystemVerilog Assertion 
modules must be compiled as separate entities during the 
synthesis phase and then bound into the design at the hardware 
compile stage. Compiled assertions can be turned on or off at run 
time to keep track of the assertion count.   

4. RESULTS 
Hardware acceleration using TBA was applied to two test 
benches; one at the block level of an Ethernet switching chip 
(Figure 10), and the other at the full chip level for a different chip 
(Figure 11). With changes to support acceleration and 
performance optimizations in place, the following benchmarks 
were recorded.  

 
In the case of the block-level test bench, a performance speedup 
of 292× was achieved, good visibility of the design under test and 
the test bench to quickly find design issues was maintained, plus a 
fast compile time to iterate through the flow when RTL changes 
were needed was maintained. 

  

Figure 10. Block-level TBA hardware acceleration 

At the chip level (for a different chip), changes to interfaces (to be 
acceleration compliant) were made at the full-chip digital level, 
which produced the following results:  

 

 
Figure 11. Full-chip digital-level TBA acceleration 

5. INVESTMENTS AND ROI 
The following table summarizes the current verification solutions 
that are applied at Broadcom. 

 
Figure 12. Summary of Broadcom verification solutions 

Transaction-based acceleration has provided much-needed relief 
at the block-level and chip-level verification. Benchmark tests that 



formerly required about a day or more can now be run within 
minutes. And more importantly, it is now possible to run tests that 
previously would not have been considered. This capability helps 
achieve much more debugging earlier in the project cycle and at 
an accelerated pace, which allows a cleaner handoff to the 
emulation team who can now focus on running longer tests and 
not have to worry about catching simple bugs. Overall, and most 
importantly, transaction-based acceleration helps achieve our 
time-to-market objectives. 

Different hardware-assisted verification products in the 
marketplace support transaction-based acceleration with varying 
degrees of functionality, usability, reliability, performance, and 
support. To maximize the ROI, it is recommended to identify a 
hardware acceleration platform that can support both transaction-
based acceleration and in-circuit emulation. 

At the outset, newcomers to hardware-assisted verification should 
invest sufficient time to learn the methodology and how to use the 
tools. Also, they should work with EDA vendors to reduce the 
amount of time it takes to acquire such knowledge. Because the 
verification environment is reusable, once sound procedures are 
established, subsequent designs can be verified with much less 
effort than was initially required. 

6. CONCLUSION 
Based on our experience with transaction-based acceleration, we 
find it an essential tool that allows us to compress our verification 
process. It also helps verify system-level scenarios that were 
initially out of the reach of simulation due to protracted simulation 
run time.  Using the accelerated simulation platform as a step 
before starting emulation helps in the delivery of a cleaner 
database to emulation, which enables the emulation team to focus 
on chip and inter-chip system-level testing. Of particular value 
was the ability to run the same tests in a simulation environment 
for debugging, and then to accelerate by running on the hardware 
platform. We have extended the test bench to newer chips in 
production. The platform is extensible and can scale with the 
increased complexity and functionality of our future chips.  Later 
versions of the hardware platform enable further improvements in 
performance with increased visibility and design. 
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