
Transaction-Based Acceleration—Strong Ammunition In
Any Verification Arsenal

Chandrasekhar Poorna

Principal Engineer

Broadcom Corp

San Jose, CA USA

Varun Gupta

Sr. Field Applications Engineer

Cadence Design Systems

San Jose, CA USA

Raj Mathur
Sr. Product Marketing Manager

Cadence Design Systems

San Jose, CA USA

ABSTRACT
Register transfer level (RTL) simulation run times are severely
impacted by the verification requirements of today’s complex IC
designs. Due to fierce market demands of increased functionality,
the need to serve multiple applications with the same core design,
and shrinking time-to-market windows, it has become
increasingly challenging to complete the verification plan on time.
Time-critical tests, with requisite scoreboard monitoring, take
days of simulation run time, which can extend the time required to
meet high quality assurance milestones.

Complementing simulation-based verification with in-circuit
emulation (ICE) and/or FPGA-based prototyping can provide
much-needed performance relief for software validation and
enhance the ability to verify with real-world directed stimulus and
response. Both of these verification modes predominantly require
full design synthesizability and the availability of software drivers
to achieve the higher quality modeling. Hardware acceleration of
the existing simulation test bench not only allows the discovery of
deep corner case bugs while maintaining metric-driven
verification methods, but also serves as a unique bridge between
simulation and in-circuit emulation. This early-phase acceleration,
which enables gradual movement of behavioral design blocks into
the synthesizable domain, allows smoother transition into and
faster bring-up of in-circuit emulation, thereby improving overall
productivity and reducing time-to-market.

General Terms
Management, Performance, Design, Economics, Standardization,
Languages, Verification

Keywords
verification, acceleration, emulation, FPGA-based prototyping,
transaction, system-level verification, hardware/software
verification, network switch, Ethernet

1. INTRODUCTION
This paper describes the verification environment of an Ethernet
switch application that was devised for both simulation and
hardware acceleration. Both the challenges and the solutions to
verifying millions of Ethernet packets with long verification runs
embedded with monitors and checkers in the test bench are
described. An example of the use of transaction-based
acceleration (TBA) based on a Standard Co-Emulation Modeling
Interface (SCE-MI) [1] [2] for accelerated communication
between a workstation and the hardware accelerator is provided.

This paper shows how designers can accelerate their
SystemVerilog-based test bench run and achieve results congruent
with register transfer level (RTL) simulation while preserving
select checkers and assertions in the accelerated run. Performance
of hundreds of times better than simulation provides the
opportunity to not only run long sequences, but also perform
diagnostic testing and begin firmware development early. To
achieve this performance within a practical schedule requires the
up-front investment in a test bench architecture/infrastructure that
allows easy transition to acceleration mode, which is a
recommended milestone before performing in-circuit emulation
and/or FPGA-based prototyping.

2. VERIFICATION CHALLENGES
To provide practical insights into the verification challenges that
design and verification engineers face, an Ethernet network
switch application (see Figure 1) is used as a reference.

Figure 1: Ethernet switch chip-level diagram

The application consists of multiple programmable Ethernet ports,
as represented by the INGRESS and EGRESS blocks, and a
custom programming interface that programs the switch before
the packets are sent through.

In general, the challenges of system-level verification of hardware
and software are magnified by the sheer volume of data that must
be processed to achieve a coverage level acceptable for RTL sign-
off. In addition, the hardware verification of the design has
different tradeoffs at different hierarchical levels.

2.1 Hierarchical Partitioning and Tradeoffs
The hardware verification process is further divided into sub-
block, block, chip-level, and system-level categories. For instance,
at the sub-block level for the SystemVerilog-based test bench (see
Figure 2), applying RTL simulation is typically a veritable
solution, providing the necessary visibility into the design for
debugging and observing embedded assertions that fire when
necessary. This is a plausible solution for sub-block sizes that are
smaller than 1 million gates, and if the simulation tests can be run
in minutes to hours. When simulation run times start to get longer
than few hours, however, productivity is adversely impacted, and
simulation alone becomes impractical. Such is the case typically
observed at the block level.

Figure 2: Module/Sub-block-level verification

In addition, at the block level, in which gate counts vary widely
within the range of 5–20 Mgates, the longer debug cycle begins to
hamper the designers’ productivity in running just RTL
simulation. Formal techniques have been applied, but the state-
space explosion also begins to render formal techniques of limited
value. For some, in-circuit emulation(ICE) is an alternative
verification vehicle at the block level, but due to proprietary
interfaces at the internal blocks, in-circuit emulation is impractical
for our block-level verification. ICE, for switching chips in the
group is performed at the chip and system level using off-the-shelf
Speed-Bridges for PCIe and Ethernet.

Figure 3: Block-level verification

To run in-circuit emulation at the chip/system level, almost all
blocks are required to be synthesis-ready, and real software
drivers and firmware are required to interact with the hardware

design. ASIC prototyping leveraging off-the-shelf FPGAs is a
complementary addition to in-circuit emulation, but usually
additional resources with long bring-up time and limited debug
visibility are needed if the design in the FPGA-based prototype is
not preverified in an in-circuit emulator.

Figure 4: Chip/system-level verification

In summary, different verification techniques provide different
values at different levels of design hierarchy. Figure 5 summarizes
the experiences observed during the system-level verification of
the Ethernet network switch (your experience will vary with your
unique design, test, and verification environment).

Figure 5: Summary of verification solutions

At the block level, the need to simulate longer tests requires a
faster performance platform than RTL simulation, one that can
handle proprietary interfaces and leverage the existing test bench
environment defined for simulation while reducing the debug
cycle.

At the chip level, there is a need to run deeper tests requiring a
fast performance engine running earlier in the project cycle.

2.2 Simulate and Debug Phase
Finally, at the project level, the completion of all test plans (sub-
block, block, chip, and system) is dependent on the life cycle that
a test goes through. At a generic level, most tests for the Ethernet
switch application have the following phases in their life cycle:

1. Development. The intent of the test-plan is translated to
executable code.

2. Simulate and Debug

• The executable code is run on a simulator.

• Iterate between simulation and debug to ensure that the
stimulus matches the intent.

• Iterate between the simulation run and debug to ensure
that assertions, checkers, scoreboards, and functional
and code coverage metrics are able to track and capture
the intended behavior correctly and report errors as
necessary.

• Iterate between simulation and debug to cover
variations of a set of parameters defined for the test.

3. Passed and Completed. All variations of the test as defined
by the test plan have been covered and captured as a
quantifiable metric.

The above life cycle of a test is dominated by the iterative
“Simulate and debug” phase and is widely recognized as a
critical path in any verification process. Looking at this phase
further, it is easy to see that “simulation time” is
machine/simulator-dependent, and hence can easily be quantified;
that is, test N takes an average of T seconds to complete on an
XYZ simulator on a workstation running at F GHz frequency with
M GB of swap memory and C number of cores. This phase
usually scales directly as the size of the entity being verified
increases. Therefore, its impact on the block-level and chip-level
test benches mentioned earlier is much higher than on a sub-block
test bench. On the other hand, the “debug time” is highly
qualitative because, although it is directly gated by the ability to
run simulation on the test and detect erroneous behavior
(simulation time), it is also indirectly dependent on a number of
other factors such as the nature of error, design visibility level
needed, availability of the RTL designer, experience of the
verification engineer, and more. When the simulation time
increases, as it does at the block and chip level, it exacerbates the
qualitative factors that affect the debug time. This is so because
when a test takes a long time to run, verification engineers
typically shift their attention to other tasks. Later, when the test is
completed, the verification engineer may not be able to
immediately start debugging failed tests because of the demands
of the other tasks.

2.3 Hardware Acceleration Platform
Given the stated challenges and the fact that the “simulate and
debug” iterative cycle for block-level and chip-level test benches
is the major time constraint that determines the time from test
development to completion, the need to lower the simulation time
is acutely felt. Hardware acceleration platforms are capable of
meeting the need to lower simulation time. But to be truly
effective to a verification team, the hardware acceleration
platform must address the following additional requirements.

• Reuse/leverage the existing test bench environment.

• Preserve the functionality, randomization, controllability, and
testability of the existing environment to the maximum
extent possible.

• Preserve most of the existing metrics for measurement of test
plan completion.

• Mirror the design visibility and debug-ability features of
RTL simulation.

• Support commonly used test bench paradigms and structures
(behavioral coding, error messaging, and mailbox-like
mechanisms to pass transactions).

• Avoid the need for vendor-specific and application-specific
APIs to interact with the hardware.

• Be portable across simulators and hardware platforms with
minimal change.

• Provide the flexibility in making changes to the verification
environment to trade off capacity versus performance.

• Provide the ability to be able to scale from the block level to
the chip level seamlessly, yet have the granularity for
multiple test benches to use the system simultaneously (for
example, both the block-level and chip-level test benches
could be running simultaneously as long as they use different
physical partitions).

To maintain vendor independence and ensure portability of the
methodology, an API defined by the SCE-MI standard from
Accellera is requisite to interact with the hardware platform. Also,
to achieve maximum performance, an acceleration methodology
referred to as Transaction-Based Acceleration was chosen. This
method uses SCE-MI 2.0 transaction pipes extensively.

3. TRANSACTION-BASED
ACCELERATION
The most basic form of simulation acceleration is commonly
referred to as signal-based acceleration (SBA). In this acceleration
mode (see Figure 6), the design under test (DUT) is compiled into
a specialized hardware while the test bench executes in a
workstation driving stimulus into the DUT over a communication
channel. The overall simulation performance is determined by the
formula:

Tsimulation = TTest-bench + TDUT + Tcommunication

As the DUT executes in the specialized hardware, TDUT
practically reduces to an insignificant factor, leaving the overall
simulation time to be determined by the time spent in the test
bench and the time to exchange bit-by-bit signals between the test
bench and the DUT.

Figure 6. Signal-based acceleration (SBA)

Transaction-based acceleration (see Figure 7) is a simulation
acceleration method that improves the performance by further
reducing the two remaining components: Tcommunication and TTest-

bench.

Figure 7. Transaction-based acceleration (TBA)

The first step is to make an informed decision to partition the test-
bench functionality as a generator and driver layer and move as
many of the simple signal-level interactions as possible to the
driver layer. Thus, in this scheme, the generator is responsible for
high-level functions such as randomizing and generating
transactions, whereas the driver is responsible for receiving the
transactions from the generator and performing bus-level
functions. In addition, simple threads such as random data/CRC
generation/checking, watchdog timers, and low-level arbitration
can also be moved to the driver layer. To gain insight into how
this is achieved with the Ethernet switch design, a profile of the
RTL simulation is needed (see Figure 8) to identify how much
acceleration can actually be achieved and to identify the pieces
that are compiled into the hardware.

Figure 8. Profiling for RTL vs. accelerated simulation

Figure 8 shows that the RTL simulation time profile consists of
three main portions: a stimulus generator, a driver, and the DUT.
The test bench itself consists of the two components: Generator
and Driver. With some support for behavioral coding constructs,
the driver layer along with the DUT can be ported to the hardware
accelerator leveraging the multi-parallel processing grid engine in
the accelerator for faster execution. Now, because the information
that is transferred across the communication pipe from the
generator to the driver is minimal (control fields that need
randomization only), the Tcommunication factor is further reduced.
Similarly, as the number of threads that run in the Generator are
far less and infrequent compared to when only the DUT was
accelerated, the TTest-bench time component is also reduced. The
performance can further be improved by optimizing the
generation portion by streamlining the randomization process and
minimizing interrupts from the DUT side, allowing the generator
to stream transactions independent of the DUT side.

3.1 Changes to Test Bench for Hardware
Acceleration
A common set of changes are needed in an existing test bench to
enable it to undergo acceleration. Most of these changes are
enabled via the support for SystemVerilog DPI functions and
SCE-MI 2.0-based transaction pipes. The choice between using a
DPI function or an SCE-MI transaction pipe to interact between
the test bench running on a workstation and the driver layer+DUT
running in the hardware platform, primarily depends on the nature
of the specific interaction. DPI functions are best suited for use in
cases in which the interaction is handshake-based, needing
increased communication between the test bench and the
acceleratable portion. Transaction pipes are best suited for

streaming transactions that need little or no interaction between
the test bench and hardware side.

To achieve maximum performance, it is recommended to move all
logic dependent on timing delays into the driver portion (which
resides on the acceleration platform). Because the #delays are not
synthesizable, all delays in the driver should be specified in terms
of clocks. This rule guides the best partitioning methodology and
is the key to the success of the acceleration effort.

With the time progression happening only on the hardware
platform, the test-bench side uses events (rather than time) to
communicate and synchronize with the hardware side. For the
SCEMI pipes-based communication channel, such events are
SCEMI pipe-full and pipe-empty conditions, which are serviced
by the user-defined callback functions. For the DPI mode of
communication, a DPI synchronization function can be
implemented to generate such events.

Infrequent and asynchronous events such as resets and interrupts,
which require immediate servicing, are best handled using DPI
export functions that are called in the test-bench side, but
implemented in the DUT side.

Clocking specifications are closely tied to the hardware platform,
and, hence need to be specified in the required format.
Additionally, tuning the period and phase relationship between
different clocks in a design can provide large performance
benefits. As a result, it is beneficial to isolate all the clock-
generation logic to a single module or file.

For the Ethernet switch application, the programming interface
programs the switch before the packets are sent through. This
programming interface uses a handshake-based (reg-wr/rd-ack)
protocol. Therefore, DPI functions were found to be suitable and
were implemented for use on the hardware platform.

For regular traffic transactions, which form the bulk of the
interaction between the hardware and software, the test-bench side
needed minimal interaction, and hence was implemented as SCE-
MI transaction pipes for maximum throughput. This
implementation allows transactions to be streamed from the test
bench to the DUT.

A statistics-gathering and reporting block was added, which
periodically (programmable) updates bandwidth and other
statistics to the test-bench side for further processing.

Figure 9. Test-bench TBA hardware acceleration

3.2 Monitors and Checkers
A major consideration while enabling acceleration on the existing
test bench was to preserve the monitoring and checking
functionality of the legacy end-to-end checkers in the
environment. This functionality was achieved by following the
same two-layer approach of moving the bus-level functionality
and data checking to a monitor, and the higher-level functionality
such as scoreboarding, test end checking, and so on to the
checker. Monitors, which are hardware acceleratable and connect
to the RTL interface to be monitored, are responsible for
implementing a simple state machine that can build up a message
with the relevant fields based on monitoring a complete
transaction over multiple cycles. Once a message is complete, it is
passed to the checker level via an SCE-MI transaction pipe for
further processing. The checker receives the message and converts
the message fields to a format that is used internally and continues
with its normal checks agnostic to whether it is accelerated or is
pure simulation.

3.3 Use of SystemVerilog Assertions
Hardware acceleration platforms also support SystemVerilog
concurrent-assertion statements. This allows offloading the
temporal checking in the monitors to assertion modules. Because
assertions are compiled into the hardware domain, there is no
appreciable degradation in performance. SystemVerilog Assertion
modules must be compiled as separate entities during the
synthesis phase and then bound into the design at the hardware
compile stage. Compiled assertions can be turned on or off at run
time to keep track of the assertion count.

4. RESULTS
Hardware acceleration using TBA was applied to two test
benches; one at the block level of an Ethernet switching chip
(Figure 10), and the other at the full chip level for a different chip
(Figure 11). With changes to support acceleration and
performance optimizations in place, the following benchmarks
were recorded.

In the case of the block-level test bench, a performance speedup
of 292× was achieved, good visibility of the design under test and
the test bench to quickly find design issues was maintained, plus a
fast compile time to iterate through the flow when RTL changes
were needed was maintained.

Figure 10. Block-level TBA hardware acceleration

At the chip level (for a different chip), changes to interfaces (to be
acceleration compliant) were made at the full-chip digital level,
which produced the following results:

Figure 11. Full-chip digital-level TBA acceleration

5. INVESTMENTS AND ROI
The following table summarizes the current verification solutions
that are applied at Broadcom.

Figure 12. Summary of Broadcom verification solutions

Transaction-based acceleration has provided much-needed relief
at the block-level and chip-level verification. Benchmark tests that

formerly required about a day or more can now be run within
minutes. And more importantly, it is now possible to run tests that
previously would not have been considered. This capability helps
achieve much more debugging earlier in the project cycle and at
an accelerated pace, which allows a cleaner handoff to the
emulation team who can now focus on running longer tests and
not have to worry about catching simple bugs. Overall, and most
importantly, transaction-based acceleration helps achieve our
time-to-market objectives.

Different hardware-assisted verification products in the
marketplace support transaction-based acceleration with varying
degrees of functionality, usability, reliability, performance, and
support. To maximize the ROI, it is recommended to identify a
hardware acceleration platform that can support both transaction-
based acceleration and in-circuit emulation.

At the outset, newcomers to hardware-assisted verification should
invest sufficient time to learn the methodology and how to use the
tools. Also, they should work with EDA vendors to reduce the
amount of time it takes to acquire such knowledge. Because the
verification environment is reusable, once sound procedures are
established, subsequent designs can be verified with much less
effort than was initially required.

6. CONCLUSION
Based on our experience with transaction-based acceleration, we
find it an essential tool that allows us to compress our verification
process. It also helps verify system-level scenarios that were
initially out of the reach of simulation due to protracted simulation
run time. Using the accelerated simulation platform as a step
before starting emulation helps in the delivery of a cleaner
database to emulation, which enables the emulation team to focus
on chip and inter-chip system-level testing. Of particular value
was the ability to run the same tests in a simulation environment
for debugging, and then to accelerate by running on the hardware
platform. We have extended the test bench to newer chips in
production. The platform is extensible and can scale with the
increased complexity and functionality of our future chips. Later
versions of the hardware platform enable further improvements in
performance with increased visibility and design.

7. REFERENCES
[1] Standard Co-Emulation Modeling Interface

(SCE-MI) Reference Manual 2.1.

[2] Standard Co-Emulation Modeling Interface
(SCE-MI) Reference Manual 2.0.

TBA-ETP100-D4 January 13, 2011

