
Traffic Profiling and Performance Instrumentation For On-Chip Interconnects

Mark Peryer

Mentor Graphics (UK) Ltd

Rivergate, London Road, Newbury,

Berkshire, RG14 2QB, U.K.

Bruce Mathewson

ARM Ltd.

110 Fulbourn Road, Cambridge,

Cambridgeshire, CB1 9NJ, U.K.

Abstract—On-chip bus interconnect fabrics have become critical

sub-systems in SoC platforms. Not only do they need to be

functionally correct, but they also need to deliver the

performance demanded by user applications in end products

such as mobile platforms. The validation process for an

interconnect in a simulation or emulation environment requires

the generation of stimulus corresponding to a realistic use case.

The typical brute force approach to this involves running

applications software on processor cores that interact with the

SoC RTL and checking that the overall design performance is

satisfactory. An alternative approach is to validate the bus fabric

stand-alone before integration with the rest of the SoC design

using a verification environment that uses VIP to model the

behavior of design IP. In order to create realistic traffic

scenarios, the behavior of the different IP bus masters is

described using traffic profiles. The performance of the

interconnect is measured using instrumentation which monitors

the bus activity. This paper describes a proposal for the

specification of bus master traffic profiles and system level traffic

scenarios, together with the definition of performance metrics

that need to be instrumented to ensure that an interconnect is

meeting its performance targets.

Keywords—SoC Interconnect; Validation; Performance;

Bandwidth; Latency; traffic profiles; traffic scenarios; stimulus

abstraction;instrumentation

I. INTRODUCTION AND OVERVIEW

Nearly all Systems on a Chip (SoCs) are implemented

using an internal architecture where at least one CPU core is

connected to a number of hardware resources via an internal

interconnect based on a standard on-chip bus protocol such as

AMBA. Most design IP is designed with one or more on-chip

bus interface sockets so that it can easily be integrated into a

SoC by connecting it to one or more counter-part sockets on

the SoCs interconnect fabric. The success of this approach has

meant that designs that started off as relatively simple

specialized microprocessors, with a CPU core and a few

peripherals, have now evolved into complex flexible

computing platforms. At the same time the software that runs

on the SoC has evolved from closed firmware supporting

limited device functionality to multiple operating systems

capable of running third party applications. The fact that the

SoC has effectively become an open computing platform

means that it is becoming increasingly important to validate

that the platform will be able to support multiple use models.

Each of these scenarios will use different combinations of the

on-chip hardware resources and each will place performance

demands on the interconnect at the core of the SoC. If the

interconnect does not deliver on bandwidth in these different

situations, then the user experience will suffer and ultimately

will cause the end product to fail in the market place.

Figure 1 - Representation of a SoC Verification Environment

A. Validation process

Interconnect performance is something that is considered at

the architectural level and spreadsheets are commonly used to

arrive at a first order approximation to latency and bandwidth

requirements. ESL tools, modeling the interconnect in

SystemC, are also used to analyze system architectures and

performance requirements. However, creating a model of a

sophisticated interconnect with enough timing accuracy to get

realistic results is a complex task and it is usually easier to

work with the actual interconnect RTL.

Typically, the interconnect fabric is generated according to

the specification and performance budgets estimated by the

system architect. Then it is integrated with the rest of the

design IP that makes up the SoC. The functionality of the fabric

can be verified stand alone or as part of the wider device. The

performance of the interconnect is usually checked when the

full SoC, or sub-system, is in place and verified by running

some use case scenarios using the RTL and at least part of the

application code. This is represented by the diagram in Fig.1

where the application software is loaded into memory and then

executed on the CPU cluster causing a series of transfers to

take place across the interconnect. Setting up one of these use

case scenarios relies on having all or most of the SoC in place

and having access to software that is mature enough to support

CPU

Cluster
GPU

Memory

Controller

Peripheral

Sub-system

Interconnect

Apps SW
Memory

Models

Interface

VIP

the test case. Therefore, running the scenario is something that

happens fairly late in the frontend implementation cycle,

arguably too late to be effective. Running the scenario with the

SoC RTL and the application software is very resource

intensive and may take considerable time to execute, exploring

variations around a particular scenario will take even longer.

Experience shows that doing an early stand-alone

functional check of the interconnect structure can quickly

isolate specification and implementation problems which

would be difficult to find within the context of an integrated

SoC design.

B. An abstract validation strategy

An alternative strategy to validating the performance of the

on-chip interconnect is to create an environment where the

fabric is verified stand-alone with bus agents in the place of the

various bus masters and slaves and using abstracted stimulus.

This approach is illustrated by Fig.2. Each bus master agent is

driven by an abstract traffic generator with characteristics

representing the device it replaces and the interactions between

the stimulus streams running on the bus masters are modeled as

scenarios. This approach can be used to check the performance

of the interconnect before it is integrated, making it much

easier to isolate problems and fix them with a shorter turn-

round time. Using traffic generation with bus interface VIP

reduces the verification resources required and means that

performance validation can be carried out much earlier in the

design cycle, without the need to have the full SoC RTL and

application software available.

Figure 2 - Interconnect performance validation environment

C. A bus traffic profile definition

Putting together such a verification environment is

relatively straight-forward since most of the necessary

verification components such as bus agents are already

available. However, finding a way to describe the stimulus so

that it represents realistic bus traffic scenarios is not something

that is well defined and understood. Mentor and ARM have

therefore been exploring a way of defining bus traffic profiles

so that they can be characterized for different classes of on-chip

bus master devices and can be used to measure the

performance of bus interconnects under different scenarios. In

order to confirm that performance goals have been met, we

have also defined some performance metrics which can be

gathered by adding instrumentation to the verification

environment. The proposed definition has been tested with a

number of design IP providers in order to check that it is able

to adequately describe the type of traffic their class of IP is

likely to generate.

II. THE ARM-MENTOR BUS TRAFFIC PROFILE PROPOSAL

As with many other system level activities, SoC on-chip

bus traffic can be represented by a series of abstraction layers.

In the case of describing bus traffic, three layers can be used.

The bottom layer is the physical layer, represented by the

specifics of an on-chip bus protocol such as AXI4. The

different transfers that can take place over the physical layer,

and their bandwidth, are determined by the characteristics of

the masters and the slaves in the system. The next layer up

from the physical layer is the traffic profile which defines the

characteristics of the traffic generated by a bus master. The top

layer is the traffic scenario which describes the way in which

the traffic from different bus masters is coordinated to simulate

use cases.

Traffic Scenario

Traffic Profile

Physical Layer
Describes bus master and slave capabilities in

the context of a specific bus protocol

Describes bus master behaviour

Describes system level scenarios in terms of the

interactions between different traffic profiles

Figure 3 - Proposed traffic description layers

In any given design implementation, the physical layer

performance will be fixed by the characteristics of the bus

masters, the bus slaves and the bus interconnect. The traffic

profile layer will be determined by the capabilities and

characteristics of a particular bus master. If the bus master IP is

configurable, then the traffic profile representing it may also be

configurable, allowing a degree of architectural exploration to

tune performance. The traffic scenario layer needs to be

programmable since it describes how multiple traffic profiles

interact and run on different VIP resources to represent

different use cases.

Bus Master

VIP

Bus Master

VIP

Bus Slave

VIP

Bus Slave

VIP

Interconnect

Traffic Description

A. The physical layer

At the physical layer, bus traffic is shaped primarily by the

capabilities of bus masters and slaves. For instance, when a bus

master transfers data with a slave the actual throughput

between the master and the slave is determined by the

maximum size of the individual transfers that both the master

and the slave can handle. A master with a wide data path will

be slowed down whilst making a transfer to a slave with a

thinner data path, unless the interconnect is able to compensate

for the slave by buffering transfers. Conversely, a master with a

thinner data path than the slave it is communicating with could

cause a slow-down in overall system performance by

preventing other masters from accessing the particular slave.

1) Bus Master Capabilities

A bus master will have certain performance capabilities

based on: the width of its bus fields; the maximum size of

transfer it can handle; its reactivity to slave responses; the

number of outstanding transfer requests it can issue and the

sub-set of the bus protocol it supports. For bus interconnects

that support multiple protocols, the bridge between one bus

protocol and another may also introduce performance

degradation.
Table 1- Physical Layer Capabilities Summary

Characteristic Description

Bus Type Defines which bus protocol the bus master

or slave supports

Field Width Affects performance with the number of

data bits available to service a transfer.

ID Width Affects the number of outstanding

transactions that in turn affects performance

across the interconnect

Burst Length How many burst beats the bus master or

slave can support

Limitations Sub-set of the bus protocol the bus master

or slave does not support, potential to affect

performance.

Primary

Timing

Timing parameters that directly affect

performance

Secondary

Timing

Timing parameters this indirectly affect

performance with set defaults

Percent Error Proportion of error responses returned by a

slave

2) Slave Capabilities

Slaves affect the bandwidth of the system by their response

to master requests. In addition to bus width limitations a slave

will have latency, or a finite delay in responding to requests. A

slow slave will have an adverse effect on the overall system

performance, whilst a fast slave may not have any significant

affect because it responds to a master faster than the master can

generate new requests. In certain circumstances, a slave may

also generate errors which will reduce the number of valid

transfers which will impact the overall system performance.

For the purposes of interconnect performance validation a

bus slave can be modeled as a ‘perfect’ slave, giving immediate

response and maximum data bandwidth. This allows the raw

interconnect performance to be evaluated.

The alternative to using a ‘perfect’ slave model is to use

one that provides realistic response latencies so that overall

system performance can be measured. This requires various

bus protocol specific response delay parameters to be set up for

a slave, usually specified as being within a range of values.

B. Traffic Profile Layer

The purpose of the traffic profile layer is to allow the traffic

generated by a particular type of design IP bus master to be

modeled in an abstract way. The stimulus for the traffic profile

is then generated and executed on a bus master VIP instead of

using the design IP RTL.

A bus master initiates data transfer requests across the bus

interconnect to target slaves. At a first level of approximation,

the size, frequency and locality of those transfers determines

how much data is transferred between a master and its slaves in

a given time period. However, there may be sub-characteristics

of these transfers which mean that the overall traffic is better

described in terms of a series of smaller transfers rather than a

single burst of activity. In turn, those smaller transfers might be

described in terms of another smaller set of transfers and so on.

Underpinning the traffic profile layer is the physical layer. No

matter how many layers of sub-profiles may exist, the bottom

traffic profile layer interacts with the physical layer to

implement the transfers.

Traffic Sub-Profile

(1 pixel every 6.7 nS)

8 Bytes 4 Bytes

20 mS

Top Level Traffic Profile

(1920 x 1080 HD Video Display every 20 mS)

Traffic Sub-Profile

(1 pixel every 6.7 nS)

16 Bytes 16 Bytes

Traffic Sub-Profile

(1 Line of 1920 pixels every 17.78 uS)

Traffic Sub-Profile

(1 pixel every 6.7 nS)

2 Bytes 8 Bytes

Traffic Sub-Profile

(1 pixel every 6.7 nS)

16 Bytes 4 Bytes

Traffic Sub-Profile

(1 Line of 1920 pixels every 17.78 uS)

Figure 4 - Traffic Profile definition for a HD video frame

For example, the traffic for a 1,920×1,080 HD video

display master might consist of a transfer profile that repeats

itself every 20 mS to keep the frame buffer updated. However,

the frame transfer could be broken down into blocks

representing each of the 1080 lines which are fetched within

17.78 uS. In turn, the line transfer could be broken down

further into individual fetches for each of the lines 1920 pixels

which would have to complete within 6.7 nS. Finally, each

pixel access is converted into one or more physical layer bus

accesses. This traffic profile is illustrated by the diagram in

Fig.4.

In order to describe a traffic profile we propose the use of a

profile descriptor which can be used to describe all traffic

profile layers. The parameters for the traffic profile descriptor

are summarized in table 2.

The name parameter of the traffic profile descriptor is a

string which is used to uniquely identify it. Sub-profiles are

identified by their hierarchical path from the top level

descriptor (<top>.<next_level>.<next …>).

The address range is used to limit the traffic generator to

operate within an address range from a start or base address

that is supported by the interconnect. The start address will

vary from SoC to SoC and is therefore an overall stimulus

generation control knob.

Table 2 - Traffic Profile Descriptor Parameters

Traffic profile descriptors

Parameter Purpose

Name Label to identify the descriptor

Address_Range Max address = base + Address_Range

Direction Whether the traffic is read, write or mixed

Size Number of bytes to be transferred

Stride The offset in bytes from the current start

and the next start address. If size == stride,

then the next block continues from the last

address of the previous transfer

Period Time in which the transfer will repeat

Sub-profile(s) Identifies any sub-profiles

Bus master

capabilities

The physical layer capability description of

the design IP

The direction parameter determines whether the traffic

profile generates reads or writes or a mixture of the two. The

mixed option is only valid for a top level profile and its use

implies that there are read and write sub-profiles defined.

The size of each transfer in the traffic profile is defined in

bytes since this is the lower common denominator in bus

transfers. The size of any sub-profiles should be less than the

size of a profile. During traffic generation, a sub-profile will be

repeated until the number of bytes defined in its parent profile

size parameter have been transferred.

The stride determines the start address of the next profile

block transfer. If the stride value equals the size value, then the

traffic profile will move through contiguous addresses, but if

the size is less than the stride then there will a jump in the

address value from the end of one block transfer and the start of

the next.

The period defines the time that the transfer described in

the profile descriptor should take. The period also defines when

the next traffic profile will start. An alarm should be invoked if

the traffic profile does not complete in time.

The sub-profile field is optional and, when present, contains

a list of any sub-profiles to the current profile. The lowest level

traffic sub-profile descriptors do not have any sub-profiles

defined. During traffic generation, the lowest level of the traffic

profile is translated into quanta of physical layer transfers.

A traffic profile can be described in terms of as many layers

of sub-profiles as necessary, but in practical terms the limit is

likely to be around four. If multiple sub-profiles are defined at

a particular layer, then the generation process will make a

random choice between them. For instance, if a top level traffic

profile has its direction parameter set to mixed, then it would

have at least two sub-profiles that describe transfers for the

read and write directions. When the bus traffic is generated for

the top level profile, then read and write transfers will be

chosen at random until the size parameter of the top level

transfer has been met.

Finally, as the traffic profile describes the behavior of a

design IP, it needs to contain information on the physical layer

that describes the bus protocol used and its bus master

capabilities.

C. Traffic Scenarios

A traffic scenario describes the behavior of a system in

terms of interactions between traffic profiles running on

different bus masters. Since traffic profiles represent the

behavior of target design IP, the physical layer of each traffic

profile to be used in the scenario should be matched with a VIP

in the verification environment that supports the target bus

protocol.

A traffic scenario is primarily intended to model real-life

use cases that would occur in the system and therefore a

scenario needs to describe a number of different relationships

between the generated traffic profiles. The relationships that

can be specified are:

 Synchronisation – i.e. one traffic profile, or sub-profile

can wait for one or more other traffic profiles or sub-

profiles to complete before starting.

 Concurrency – Arranging for multiple traffic profiles

to execute in parallel on different masters

 Repeats – How many times a traffic profile executes or

whether it loops forever

 Ordering – Defining the order in which different traffic

profiles execute on a given master

In order to describe traffic scenarios we have adopted a

style of graph notation, whereby a traffic profile is represented

by a hierarchical node containing a graph node for each sub-

profile description. Since the traffic profiles execute on bus

master models, rather than the actual RTL, each traffic profile

needs to be associated with a bus master in the system,

therefore the graph is overlaid on a set of rails which represent

the progress of time for each master. The flow of execution is

from left to right and is described by arcs between traffic

profile nodes contained within a start and finish node. A

dependency relationship is described by a series connection

between nodes – i.e. a node has one predecessor and one

successor. A concurrent relationship is described by a fork –

i.e. a node has one predecessor but multiple successors, the

different concurrent threads will ultimately terminate at the

finish node. A triggering relationship is described by a ‘dotted’

arc which is capable of crossing concurrent threads in order to

allow execution of one thread to be stalled until an execution

node in another thread has completed. The completion of any

traffic profile or sub-profile can be used to trigger the start of

any other traffic profile or sub-profile.

Figure 5 - Traffic Scenario Graph with dependencies and parallelism

The diagram in Fig.5 illustrates how these relationships are

represented. The double circles are traffic profiles (which may

or may not have sub-profiles) which execute on two different

bus masters. At the start of the scenario, traffic profile A

executes on bus master 1.When it finishes, traffic profile B

starts on bus master 1 in parallel with traffic profile C on bus

master 2. When traffic profile C completes, traffic profile D

starts on bus master 2. When profile D completes, traffic

profile E starts on bus master 1. When E completes, the overall

scenario finishes.

More than one traffic profile might execute on a single bus

master, this would correspond to the AXI protocols capability

of being able to handle multiple outstanding transaction

requests. The graph representation for this scenario would be to

show two or more hierarchical profiles straddling the relevant

bus master thread line.

In addition to the relationships between the traffic profiles,

there are also a number of scenario control “knobs” which are

used to define parameters which help fit the selected traffic

profiles to the system characteristics. For instance, the start

address of each of the scenarios has to be set to match the

address map of the system as implemented in the interconnect.

The primary physical level delays come with a defined value,

but these can be tuned if the design IP is has parameterization

options in this area.

1) Sliding Time Window

Running a traffic scenario gives some confidence that a bus

inter-connect will be able to cope to with the performance

requirements of a defined sequence of traffic events. One of the

main objectives of this kind of analysis is to find interactions

between bus masters that cause performance issues. Running

multiple traffic profiles in parallel will have a natural tendency

for them to drift in time relative to each other since they are

likely to have different periods. However, in order pre-empt

situations where masters might clash with bandwidth

requirements each traffic profile thread that runs on each

master can be subjected to a sliding time window. This allows

the activities of different bus masters to move around in time,

relative to each other causing interactions that may show up

performance corner cases where the interconnect becomes

overloaded, or worse still, locks up. The sliding window option

preserves the graph arc relationships, but inserts delays within

random time windows between the execution of each successor

node within the overall time constraints.

D. Performance Measurement Criteria

The purpose of generating bus traffic is to determine

whether the performance of an interconnect is acceptable. It

therefore follows that some performance metrics need to be

established to be able to objectively describe the behavior of

the fabric.

Bandwidth and latency are the two main types of

performance metric that can be measured in an interconnect

system. Both of these can be determined by instrumenting the

verification environment with monitors that capture phase level

transactional information at the different points around the

fabric. Each transaction contains a start and end time, together

with other protocol level information relating to the size and

type of the transfer.

1) Bandwidth Performance Criteria

Bus master bandwidth can be simplistically defined as the

number of bytes transferred per master interface clock. The

problem with this definition is that the master activity may be

intermittent, which means that the on-demand bandwidth

requirement, when the master is active, needs to be high, but

over time this will be averaged out to a low bandwidth as the

inactive periods are taken into account. This leads to a

refinement of the original definition into several sub-definitions

of bandwidth as measured from the perspective of a bus master

or a bus slave:

 Instantaneous bandwidth – measured over a

rolling time window of 100 interface clock periods

 Peak instantaneous bandwidth – The highest

instantaneous bandwidth measured

 Time windowed average bandwidth – measured

over a specified time window of a selectable

number of interface clocks

 Average bandwidth – Overall average measured

over the whole simulation

2) Latency Criteria

Latency is of interest in analyzing interconnect performance

because the occurrence of high latencies usually points to a

design flaw. Different bus protocols have their own phasing

transitions, but in general terms latency metrics boil down to:

 Address/command phase latency – the time for the

master bus request to be accepted by the slave

 Address to data latency – time from a transfer request

being accepted to the start of the data transfer

 Data transfer latency – the overall time that a data

transfer takes to complete – i.e. from the start of the

address phase to the end of the data transfer phase

These generalized latency definitions map onto the AXI on-

chip bus protocol as shown in fig 6. In the case of the AXI

protocol, there are separate read and write channels and so

there are two sets of latency metrics. The latencies shown hold

true for the AXI3, AXI4, ACELite and ACE bus protocols.

Start

 E

 D

B

 C

A

Finish

Master 1 Traffic Thread

Master 2 Traffic Thread

Read Address Phase

Read Data Phase Read Data Phase Read Data Phase

AXI Read Latency Metrics

Address Phase Latency
Address Data Latency

Data Transfer Latency

AXI Write Latency Metrics

Write Address Phase

Write Data Phase Write Data Phase Write Data Phase

Response Phase

Address Phase Latency
Address Data Latency

Data Transfer Latency

Figure 6 - AMBA AXI Bus Protocol Latencies

3) Channel Occupancy

Another useful metric, closely related to bandwidth and

latency, is that of channel occupancy. This describes the

amount of time that a particular channel was active. If the

bandwidth requirements of a system are not being met, then

often this metric gives an indication of whether the data

channel is being swamped or whether a lack of responsiveness

from the request channel is the cause of the problem.

4) System Level Performance Analysis

An on-chip bus interconnect is a sub-system and its

performance can be analyzed from several points of view. A

system level analysis of the traffic flowing between each

master and its target slave ports, together with the associated

latency information can help identify the source of performance

issues.

For instance, with a reasonable amount of transactional

analysis, it is possible to analyze the following for traffic

between each master and slave:

 The number of read and write transfers

 The min, max and average latencies

 The min, max and average bandwidths

 The proportion of overall master traffic flowing to each

slave and the proportion of slave traffic by master

III. IMPLEMENTATION

ARM and Mentor are exploring the practical

implementation of the traffic profile description proposal with

various mutual customers.

The first stage in the process has been to test the profile

description against the anticipated system level behavior of

various classes of design IP as reflected in bus level transfers

and to refine the description as necessary.

The second stage has been to develop a practical

verification environment implemented as a UVM testbench

with bus protocol VIPs.

Fig. 7 shows a conceptual block diagram of the

environment where each port of the interconnect RTL is

connected to a VIP. The bus master VIP stimulus is generated

from a traffic scenario, implemented as a virtual sequence

which launches traffic profile sequences which are configured

from a data structure. The physical layer of the stimulus is

adapted from a generic bus transfer to the specific transaction

type of the target VIP using an adaption layer. The bus slaves

are modeled using slave sequences which mimic memory

behavior with configurable inter-phase latencies.

Figure 7 - UVM implementation of the traffic generation

and performance instrumentation

The performance instrumentation is implemented with a

performance analyzer component that collects transactions

from all the VIP in the environment and analyses the

relationships between them. The modified transactions are then

stored in a database for off-line visualization.

IV. CONCLUSIONS

As the on-chip design IP component count increases in SoCs,

the on-chip bus interconnect becomes one of the most critical

sub-systems in the design. The generation of the interconnect

is a largely automated process, but its validation is left until

after integration and relies all too often on having the

resources of the full SoC available to run application software.

A more effective strategy is to validate the interconnect

standalone, using a verification environment which uses bus

protocol VIP to send realistic bus traffic across the

interconnect. This paper has described a proposal for

describing the behavior of bus masters in terms of traffic

scenarios and traffic profiles. Performance measurement

criteria which can be captured using testbench instrumentation

have also been defined.

REFERENCES

[1] ARM Ltd., AMBA Specification – Rev 2.0, ARM IHI 0011A, 1999

[2] ARM Ltd., AMBA AXI and ACE Protocol Specification, ARM IHI
0022D, 2011

On-Chip Interconnect Sub-System

Bus

Master

VIP

Bus

Master

VIP

Bus

Slave

VIP

Bus

Slave

VIP

Traffic Scenario

P
e

rfo
rm

a
n

c
e

 A
n

a
ly

s
is

 In
s

tru
m

e
n

ta
tio

n
Physical

Layer

Stimulus

Physical

Layer

Stimulus

Slave

Model

Stimulus

Slave

Model

Stimulus

Transaction

Database

Performance

Visualization

