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Abstract—On-chip bus interconnect fabrics have become critical 

sub-systems in SoC platforms. Not only do they need to be 

functionally correct, but they also need to deliver the 

performance demanded by user applications in end products 

such as mobile platforms. The validation process for an 

interconnect in a simulation or emulation environment requires 

the generation of stimulus corresponding to a realistic use case. 

The typical brute force approach to this involves running 

applications software on processor cores that interact with the 

SoC RTL and checking that the overall design performance is 

satisfactory. An alternative approach is to validate the bus fabric 

stand-alone before integration with the rest of the SoC design 

using a verification environment that uses VIP to model the 

behavior of design IP. In order to create realistic traffic 

scenarios, the behavior of the different IP bus masters is 

described using traffic profiles. The performance of the 

interconnect is measured using instrumentation which monitors 

the bus activity. This paper describes a proposal for the 

specification of bus master traffic profiles and system level traffic 

scenarios, together with the definition of performance metrics 

that need to be instrumented to ensure that an interconnect is 

meeting its performance targets.  
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Bandwidth; Latency; traffic profiles; traffic scenarios; stimulus 
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I.  INTRODUCTION AND OVERVIEW 

Nearly all Systems on a Chip (SoCs) are implemented 

using an internal architecture where at least one CPU core is 

connected to a number of hardware resources via an internal 

interconnect based on a standard on-chip bus protocol such as 

AMBA. Most design IP is designed with one or more on-chip 

bus interface sockets so that it can easily be integrated into a 

SoC by connecting it to one or more counter-part sockets on 

the SoCs interconnect fabric. The success of this approach has 

meant that designs that started off as relatively simple 

specialized microprocessors, with a CPU core and a few 

peripherals, have now evolved into complex flexible 

computing platforms. At the same time the software that runs 

on the SoC has evolved from closed firmware supporting 

limited device functionality to multiple operating systems 

capable of running third party applications. The fact that the 

SoC has effectively become an open computing platform 

means that it is becoming increasingly important to validate 

that the platform will be able to support multiple use models. 

Each of these scenarios will use different combinations of the 

on-chip hardware resources and each will place performance 

demands on the interconnect at the core of the SoC. If the 

interconnect does not deliver on bandwidth in these different 

situations, then the user experience will suffer and ultimately 

will cause the end product to fail in the market place. 

Figure 1 - Representation of a SoC Verification Environment 

 

A. Validation process 

Interconnect performance is something that is considered at 

the architectural level and spreadsheets are commonly used to 

arrive at a first order approximation to latency and bandwidth 

requirements. ESL tools, modeling the interconnect in 

SystemC, are also used to analyze system architectures and 

performance requirements. However, creating a model of a 

sophisticated interconnect with enough timing accuracy to get 

realistic results is a complex task and it is usually easier to 

work with the actual interconnect RTL.  

Typically, the interconnect fabric is generated according to 

the specification and performance budgets estimated by the 

system architect. Then it is integrated with the rest of the 

design IP that makes up the SoC. The functionality of the fabric 

can be verified stand alone or as part of the wider device. The 

performance of the interconnect is usually checked when the 

full SoC, or sub-system, is in place and verified by running 

some use case scenarios using the RTL and at least part of the 

application code. This is represented by the diagram in Fig.1 

where the application software is loaded into memory and then 

executed on the CPU cluster causing a series of transfers to 

take place across the interconnect. Setting up one of these use 

case scenarios relies on having all or most of the SoC in place 

and having access to software that is mature enough to support 
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the test case. Therefore, running the scenario is something that 

happens fairly late in the frontend implementation cycle, 

arguably too late to be effective. Running the scenario with the 

SoC RTL and the application software is very resource 

intensive and may take considerable time to execute, exploring 

variations around a particular scenario will take even longer. 

Experience shows that doing an early stand-alone 

functional check of the interconnect structure can quickly 

isolate specification and implementation problems which 

would be difficult to find within the context of an integrated 

SoC design.   

B. An abstract validation strategy 

An alternative strategy to validating the performance of the 

on-chip interconnect is to create an environment where the 

fabric is verified stand-alone with bus agents in the place of the 

various bus masters and slaves and using abstracted stimulus. 

This approach is illustrated by Fig.2. Each bus master agent is 

driven by an abstract traffic generator with characteristics 

representing the device it replaces and the interactions between 

the stimulus streams running on the bus masters are modeled as 

scenarios.  This approach can be used to check the performance 

of the interconnect before it is integrated, making it much 

easier to isolate problems and fix them with a shorter turn-

round time. Using traffic generation with bus interface VIP 

reduces the verification resources required and means that 

performance validation can be carried out much earlier in the 

design cycle, without the need to have the full SoC RTL and 

application software available. 

Figure 2 - Interconnect performance validation environment 
 

 

C. A bus traffic profile definition 

Putting together such a verification environment is 

relatively straight-forward since most of the necessary 

verification components such as bus agents are already 

available. However, finding a way to describe the stimulus so 

that it represents realistic bus traffic scenarios is not something 

that is well defined and understood. Mentor and ARM have 

therefore been exploring a way of defining bus traffic profiles 

so that they can be characterized for different classes of on-chip 

bus master devices and can be used to measure the 

performance of bus interconnects under different scenarios. In 

order to confirm that performance goals have been met, we 

have also defined some performance metrics which can be 

gathered by adding instrumentation to the verification 

environment. The proposed definition has been tested with a 

number of design IP providers in order to check that it is able 

to adequately describe the type of traffic their class of IP is 

likely to generate. 

II. THE ARM-MENTOR BUS TRAFFIC PROFILE PROPOSAL 

As with many other system level activities, SoC on-chip 

bus traffic can be represented by a series of abstraction layers. 

In the case of describing bus traffic, three layers can be used.  

The bottom layer is the physical layer, represented by the 

specifics of an on-chip bus protocol such as AXI4. The 

different transfers that can take place over the physical layer, 

and their bandwidth, are determined by the characteristics of 

the masters and the slaves in the system. The next layer up 

from the physical layer is the traffic profile which defines the 

characteristics of the traffic generated by a bus master. The top 

layer is the traffic scenario which describes the way in which 

the traffic from different bus masters is coordinated to simulate 

use cases. 

Traffic Scenario 

Traffic Profile

Physical Layer
Describes bus master and slave capabilities in 

the context of a specific bus protocol

Describes bus master behaviour

Describes system level scenarios in terms of the 

interactions between different traffic profiles

 
Figure 3 - Proposed traffic description layers 

 

In any given design implementation, the physical layer 

performance will be fixed by the characteristics of the bus 

masters, the bus slaves and the bus interconnect. The traffic 

profile layer will be determined by the capabilities and 

characteristics of a particular bus master. If the bus master IP is 

configurable, then the traffic profile representing it may also be 

configurable, allowing a degree of architectural exploration to 

tune performance. The traffic scenario layer needs to be 

programmable since it describes how multiple traffic profiles 

interact and run on different VIP resources to represent 

different use cases. 
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A. The physical layer 

At the physical layer, bus traffic is shaped primarily by the 

capabilities of bus masters and slaves. For instance, when a bus 

master transfers data with a slave the actual throughput 

between the master and the slave is determined by the 

maximum size of the individual transfers that both the master 

and the slave can handle. A master with a wide data path will 

be slowed down whilst making a transfer to a slave with a 

thinner data path, unless the interconnect is able to compensate 

for the slave by buffering transfers. Conversely, a master with a 

thinner data path than the slave it is communicating with could 

cause a slow-down in overall system performance by 

preventing other masters from accessing the particular slave. 

1) Bus Master Capabilities 

A bus master will have certain performance capabilities 

based on: the width of its bus fields; the maximum size of 

transfer it can handle; its reactivity to slave responses; the 

number of outstanding transfer requests it can issue and the 

sub-set of the bus protocol it supports. For bus interconnects 

that support multiple protocols, the bridge between one bus 

protocol and another may also introduce performance 

degradation. 
Table 1- Physical Layer Capabilities Summary 

Characteristic Description 

Bus Type Defines which bus protocol the bus master 

or slave supports 

Field Width Affects performance with the number of 

data bits available to service a transfer. 

ID Width Affects the number of outstanding 

transactions that in turn affects performance 

across the interconnect 

Burst Length How many burst beats the bus master or 

slave can support 

Limitations Sub-set of the bus protocol the bus master 

or slave does not support, potential to affect 

performance. 

Primary 

Timing 

Timing parameters that directly affect 

performance 

Secondary 

Timing 

Timing parameters this indirectly affect 

performance with set defaults 

Percent Error Proportion of error responses returned by a 

slave 

2) Slave Capabilities 

Slaves affect the bandwidth of the system by their response 

to master requests. In addition to bus width limitations a slave 

will have latency, or a finite delay in responding to requests. A 

slow slave will have an adverse effect on the overall system 

performance, whilst a fast slave may not have any significant 

affect because it responds to a master faster than the master can 

generate new requests. In certain circumstances, a slave may 

also generate errors which will reduce the number of valid 

transfers which will impact the overall system performance. 

For the purposes of interconnect performance validation a 

bus slave can be modeled as a ‘perfect’ slave, giving immediate 

response and maximum data bandwidth. This allows the raw 

interconnect performance to be evaluated.  

The alternative to using a ‘perfect’ slave model is to use 

one that provides realistic response latencies so that overall 

system performance can be measured. This requires various 

bus protocol specific response delay parameters to be set up for 

a slave, usually specified as being within a range of values. 
 

B. Traffic Profile Layer 

The purpose of the traffic profile layer is to allow the traffic 

generated by a particular type of design IP bus master to be 

modeled in an abstract way. The stimulus for the traffic profile 

is then generated and executed on a bus master VIP instead of 

using the design IP RTL.  

A bus master initiates data transfer requests across the bus 

interconnect to target slaves. At a first level of approximation, 

the size, frequency and locality of those transfers determines 

how much data is transferred between a master and its slaves in 

a given time period. However, there may be sub-characteristics 

of these transfers which mean that the overall traffic is better 

described in terms of a series of smaller transfers rather than a 

single burst of activity. In turn, those smaller transfers might be 

described in terms of another smaller set of transfers and so on. 

Underpinning the traffic profile layer is the physical layer. No 

matter how many layers of sub-profiles may exist, the bottom 

traffic profile layer interacts with the physical layer to 

implement the transfers. 
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Figure 4 - Traffic Profile definition for a HD video frame 

 

For example, the traffic for a 1,920×1,080 HD video 

display master might consist of a transfer profile that repeats 

itself every 20 mS to keep the frame buffer updated. However, 

the frame transfer could be broken down into blocks 

representing each of the 1080 lines which are fetched within 

17.78 uS. In turn, the line transfer could be broken down 

further into individual fetches for each of the lines 1920 pixels 

which would have to complete within 6.7 nS. Finally, each 

pixel access is converted into one or more physical layer bus 

accesses. This traffic profile is illustrated by the diagram in 

Fig.4. 

In order to describe a traffic profile we propose the use of a 

profile descriptor which can be used to describe all traffic 

profile layers. The parameters for the traffic profile descriptor 

are summarized in table 2. 

The name parameter of the traffic profile descriptor is a 

string which is used to uniquely identify it. Sub-profiles are 

identified by their hierarchical path from the top level 

descriptor (<top>.<next_level>.<next …>).  



The address range is used to limit the traffic generator to 

operate within an address range from a start or base address 

that is supported by the interconnect. The start address will 

vary from SoC to SoC and is therefore an overall stimulus 

generation control knob.  

 
Table 2 - Traffic Profile Descriptor Parameters 

Traffic profile descriptors 

Parameter Purpose 

Name Label to identify the descriptor 

Address_Range Max address = base + Address_Range 

Direction Whether the traffic is read, write or mixed 

Size Number of bytes to be transferred 

Stride The offset in bytes from the current start 

and the next start address. If size == stride, 

then the next block continues from the last 

address of the previous transfer 

Period Time in which the transfer will repeat 

Sub-profile(s) Identifies any sub-profiles 

Bus master 

capabilities 

The physical layer capability description of 

the design IP 

The direction parameter determines whether the traffic 

profile generates reads or writes or a mixture of the two. The 

mixed option is only valid for a top level profile and its use 

implies that there are read and write sub-profiles defined. 

The size of each transfer in the traffic profile is defined in 

bytes since this is the lower common denominator in bus 

transfers. The size of any sub-profiles should be less than the 

size of a profile. During traffic generation, a sub-profile will be 

repeated until the number of bytes defined in its parent profile 

size parameter have been transferred.  

The stride determines the start address of the next profile 

block transfer. If the stride value equals the size value, then the 

traffic profile will move through contiguous addresses, but if 

the size is less than the stride then there will a jump in the 

address value from the end of one block transfer and the start of 

the next.  

The period defines the time that the transfer described in 

the profile descriptor should take. The period also defines when 

the next traffic profile will start. An alarm should be invoked if 

the traffic profile does not complete in time.  

The sub-profile field is optional and, when present, contains 

a list of any sub-profiles to the current profile. The lowest level 

traffic sub-profile descriptors do not have any sub-profiles 

defined. During traffic generation, the lowest level of the traffic 

profile is translated into quanta of physical layer transfers. 

A traffic profile can be described in terms of as many layers 

of sub-profiles as necessary, but in practical terms the limit is 

likely to be around four. If multiple sub-profiles are defined at 

a particular layer, then the generation process will make a 

random choice between them. For instance, if a top level traffic 

profile has its direction parameter set to mixed, then it would 

have at least two sub-profiles that describe transfers for the 

read and write directions. When the bus traffic is generated for 

the top level profile, then read and write transfers will be 

chosen at random until the size parameter of the top level 

transfer has been met. 

Finally, as the traffic profile describes the behavior of a 

design IP, it needs to contain information on the physical layer 

that describes the bus protocol used and its bus master 

capabilities. 

 

C. Traffic Scenarios 

A traffic scenario describes the behavior of a system in 

terms of interactions between traffic profiles running on 

different bus masters. Since traffic profiles represent the 

behavior of target design IP, the physical layer of each traffic 

profile to be used in the scenario should be matched with a VIP 

in the verification environment that supports the target bus 

protocol.  

A traffic scenario is primarily intended to model real-life 

use cases that would occur in the system and therefore a 

scenario needs to describe a number of different relationships 

between the generated traffic profiles. The relationships that 

can be specified are: 

 Synchronisation – i.e. one traffic profile, or sub-profile 

can wait for one or more other traffic profiles or sub-

profiles to complete before starting. 

 Concurrency – Arranging for multiple traffic profiles 

to execute in parallel on different masters 

 Repeats – How many times a traffic profile executes or 

whether it loops forever 

 Ordering – Defining the order in which different traffic 

profiles execute on a given master 

 

In order to describe traffic scenarios we have adopted a 

style of graph notation, whereby a traffic profile is represented 

by a hierarchical node containing a graph node for each sub-

profile description. Since the traffic profiles execute on bus 

master models, rather than the actual RTL, each traffic profile 

needs to be associated with a bus master in the system, 

therefore the graph is overlaid on a set of rails which represent 

the progress of time for each master. The flow of execution is 

from left to right and is described by arcs between traffic 

profile nodes contained within a start and finish node. A 

dependency relationship is described by a series connection 

between nodes – i.e. a node has one predecessor and one 

successor. A concurrent relationship is described by a fork – 

i.e. a node has one predecessor but multiple successors, the 

different concurrent threads will ultimately terminate at the 

finish node. A triggering relationship is described by a ‘dotted’ 

arc which is capable of crossing concurrent threads in order to 

allow execution of one thread to be stalled until an execution 

node in another thread has completed. The completion of any 

traffic profile or sub-profile can be used to trigger the start of 

any other traffic profile or sub-profile. 

 



 
Figure 5 - Traffic Scenario Graph with dependencies and parallelism 

 

The diagram in Fig.5 illustrates how these relationships are 

represented. The double circles are traffic profiles (which may 

or may not have sub-profiles) which execute on two different 

bus masters. At the start of the scenario, traffic profile A 

executes on bus master 1.When it finishes, traffic profile B 

starts on bus master 1 in parallel with traffic profile C on bus 

master 2. When traffic profile C completes, traffic profile D 

starts on bus master 2. When profile D completes, traffic 

profile E starts on bus master 1. When E completes, the overall 

scenario finishes.  

More than one traffic profile might execute on a single bus 

master, this would correspond to the AXI protocols capability 

of being able to handle multiple outstanding transaction 

requests. The graph representation for this scenario would be to 

show two or more hierarchical profiles straddling the relevant 

bus master thread line. 

In addition to the relationships between the traffic profiles, 

there are also a number of scenario control “knobs” which are 

used to define parameters which help fit the selected traffic 

profiles to the system characteristics. For instance, the start 

address of each of the scenarios has to be set to match the 

address map of the system as implemented in the interconnect. 

The primary physical level delays come with a defined value, 

but these can be tuned if the design IP is has parameterization 

options in this area. 

 

1) Sliding Time Window 

Running a traffic scenario gives some confidence that a bus 

inter-connect will be able to cope to with the performance 

requirements of a defined sequence of traffic events. One of the 

main objectives of this kind of analysis is to find interactions 

between bus masters that cause performance issues. Running 

multiple traffic profiles in parallel will have a natural tendency 

for them to drift in time relative to each other since they are 

likely to have different periods. However, in order pre-empt 

situations where masters might clash with bandwidth 

requirements each traffic profile thread that runs on each 

master can be subjected to a sliding time window. This allows 

the activities of different bus masters to move around in time, 

relative to each other causing interactions that may show up 

performance corner cases where the interconnect becomes 

overloaded, or worse still, locks up. The sliding window option 

preserves the graph arc relationships, but inserts delays within 

random time windows between the execution of each successor 

node within the overall time constraints. 

D. Performance Measurement Criteria 

The purpose of generating bus traffic is to determine 

whether the performance of an interconnect is acceptable. It 

therefore follows that some performance metrics need to be 

established to be able to objectively describe the behavior of 

the fabric. 

Bandwidth and latency are the two main types of 

performance metric that can be measured in an interconnect 

system. Both of these can be determined by instrumenting the 

verification environment with monitors that capture phase level 

transactional information at the different points around the 

fabric. Each transaction contains a start and end time, together 

with other protocol level information relating to the size and 

type of the transfer. 

1) Bandwidth Performance Criteria 

Bus master bandwidth can be simplistically defined as the 

number of bytes transferred per master interface clock. The 

problem with this definition is that the master activity may be 

intermittent, which means that the on-demand bandwidth 

requirement, when the master is active, needs to be high, but 

over time this will be averaged out to a low bandwidth as the 

inactive periods are taken into account. This leads to a 

refinement of the original definition into several sub-definitions 

of bandwidth as measured from the perspective of a bus master 

or a bus slave: 

 Instantaneous bandwidth – measured over a 

rolling time window of 100 interface clock periods 

 

 Peak instantaneous bandwidth – The highest 

instantaneous bandwidth measured 

 

 Time windowed average bandwidth – measured 

over a specified time window of a selectable 

number of  interface clocks 

 

 Average bandwidth – Overall average measured 

over the whole simulation 

 

2) Latency Criteria 

Latency is of interest in analyzing interconnect performance 

because the occurrence of high latencies usually points to a 

design flaw. Different bus protocols have their own phasing 

transitions, but in general terms latency metrics boil down to: 

 Address/command phase latency – the time for the 

master bus request to be accepted by the slave 

 Address to data latency – time from a transfer request  

being accepted to the start of the data transfer 

 Data transfer latency – the overall time that a data 

transfer takes to complete – i.e. from the start of the 

address phase to the end of the data transfer phase 

These generalized latency definitions map onto the AXI on-

chip bus protocol as shown in fig 6. In the case of the AXI 

protocol, there are separate read and write channels and so 

there are two sets of latency metrics. The latencies shown hold 

true for the AXI3, AXI4, ACELite and ACE bus protocols. 
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Figure 6 - AMBA AXI Bus Protocol Latencies 

 

3) Channel Occupancy 

Another useful metric, closely related to bandwidth and 

latency, is that of channel occupancy. This describes the 

amount of time that a particular channel was active. If the 

bandwidth requirements of a system are not being met, then 

often this metric gives an indication of whether the data 

channel is being swamped or whether a lack of responsiveness 

from the request channel is the cause of the problem. 

4) System Level Performance Analysis 

An on-chip bus interconnect is a sub-system and its 

performance can be analyzed from several points of view. A 

system level analysis of the traffic flowing between each 

master and its target slave ports, together with the associated 

latency information can help identify the source of performance 

issues. 

For instance, with a reasonable amount of transactional 

analysis, it is possible to analyze the following for traffic 

between each master and slave: 

 The number of read and write transfers 

 The min, max and average latencies 

 The min, max and average bandwidths 

 The proportion of overall master traffic flowing to each 

slave and the proportion of slave traffic by master 

III. IMPLEMENTATION 

ARM and Mentor are exploring the practical 

implementation of the traffic profile description proposal with 

various mutual customers.  

The first stage in the process has been to test the profile 

description against the anticipated system level behavior of 

various classes of design IP as reflected in bus level transfers 

and to refine the description as necessary. 

The second stage has been to develop a practical 

verification environment implemented as a UVM testbench 

with bus protocol VIPs.  

Fig. 7 shows a conceptual block diagram of the 

environment where each port of the interconnect RTL is 

connected to a VIP. The bus master VIP stimulus is generated 

from a traffic scenario, implemented as a virtual sequence 

which launches traffic profile sequences which are configured 

from a data structure. The physical layer of the stimulus is 

adapted from a generic bus transfer to the specific transaction 

type of the target VIP using an adaption layer. The bus slaves 

are modeled using slave sequences which mimic memory 

behavior with configurable inter-phase latencies. 

 

Figure 7 - UVM implementation of the traffic generation 

and performance instrumentation 

 

The performance instrumentation is implemented with a 

performance analyzer component that collects transactions 

from all the VIP in the environment and analyses the 

relationships between them. The modified transactions are then 

stored in a database for off-line visualization. 

IV. CONCLUSIONS 

As the on-chip design IP component count increases in SoCs, 

the on-chip bus interconnect becomes one of the most critical 

sub-systems in the design. The generation of the interconnect 

is a largely automated process, but its validation is left until 

after integration and relies all too often on having the 

resources of the full SoC available to run application software. 

A more effective strategy is to validate the interconnect 

standalone, using a verification environment which uses bus 

protocol VIP to send realistic bus traffic across the 

interconnect. This paper has described a proposal for 

describing the behavior of bus masters in terms of traffic 

scenarios and traffic profiles. Performance measurement 

criteria which can be captured using testbench instrumentation 

have also been defined. 
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