
Towards Provable Protocol Conformance of Serial
Automotive Communication IP

Jens E. Becker∗, Oliver Sander∗, Alexander Klimm∗, Jürgen Becker∗, Katharina Weinberger†, Slava Bulach†
∗Karlsruhe Institute of Technology (KIT), Germany - {jens.becker,sander,klimm,becker}@kit.edu

†Robert Bosch GmbH, Germany - {Kat.Weinberger,Slava.Bulach}@de.bosch.com

Abstract—Serial communication protocols are the backbone
in today’s automotive electric/electronic-architectures. Protocol
conformance is of paramount importance to ensure interop-
erability, error free and reliable communication of electronic
control units. Practice shows that, despite extensive simulation
and conformance testing, there is no guarantee for the absence
of errors in any given state of the communication cycle in
any given combination of communication partners. Therefore
sporadic functional errors can occur in the field. By nature this
class of errors is almost impossible to reconstruct.

Formal verification is considered an approach to cover such
rare corner cases and to prove the absence of functional errors.
Up to now the full verification of deep sequential protocols has
been beyond the reach of formal verification. Also the question
whether the developed assertions cover the full functionality has
been left unanswered. Within the project HERKULES funded
by the german government research teams of six companies and
six research institutions collaborated on these topics.

A formal verification approach was developed that allows to
ensure the absence of functional errors in critical IP in the design
phase already. This verification technology and methodology as
well as formal coverage analysis have been evaluated on the
automotive protocols LIN and FlexRay, thereby assessing the
effectiveness and performance of the new approach.

This paper discusses the results and shows with an exemplary
application on a previously extensively verified and assumably
error free LIN IP, how previously unknown errors were found.
Additionally it shows that the verification effort using the formal
verification approach has been less than that of the previous
simulation-based verification techniques. The results demonstrate
that the developed approach is a powerful, scalable alternative
to extensive testing also under industrial requirements. For the
first time, highest quality of deep serial communication IP can
be achieved.

I. INTRODUCTION

One of the most important basis for electric/electronic-
architectures (E/E-architectures) in modern vehicles is a re-
liable and error free collaboration of electronic control units
(ECU) in a network. Integration of ECUs of different suppliers
is one of the major challenges for the original equipment
manufacturer (OEM). A variety of standardization measures
allows for principle compatibility of different ECUs.

Communication between ECUs is mostly standardized by
the use of bus standards such as LIN [3], CAN [1] and FlexRay
[2]. As automotive applications demand highest quality it is
required that a bus controller is working correctly within the
complete parameter space in order to ensure interoperability
within the system. Today bus controllers are checked using
conformance tests. They consist of a multitude of scenarios

where the controller has to show correct behavior. Within
this approach there is the chance that error cases remain
undiscovered as they have not been tested in the conformance
test. Even if all modules of the system passed the conformance
test, it is possible that, when using a certain set of parameters,
there might be sporadic errors or even no communication is
possible at all. Thus elusive bugs show up only later in the
field. Even with the knowledge of a bug and potential problems
it causes for the whole system, suppliers have to carefully
ponder whether they will fix it or not. The reason is that they
can never be sure, if the bug fix will not introduce new errors
that can not be discovered with the existing test and might
cause even more problems. Therefore these bugs tend to stay
unfixed if a work-around is possible.

To overcome this problem, the goal is to eliminate bugs
directly in the development process. An approach for this is the
usage of formal verification methods. The idea behind this is
to formulate a set of properties that is expected to completely
cover the behavior described in the specification. Then it is
formally proven that a given implementation complies with
these properties. This is denoted as property checking or model
checking.

Nowadays formal verification is an approved method to
prove the conformance of an actual implementation with the
given specification. It is well suitable for modular designs
with blocksizes of 50.000 to 100.000 gates composing to
more complex System-on-Chip (SoC) with up to 100 mio.
gates. Nevertheless existing tools and toolflows are limited
to processor-like designs that consider only time spans of a
few clock cycles per property to be verified as an increasing
time span to be considered also drastically increases the
run time of the tools. Serial protocols imply observation
times that can range from 100 to several 1000 clock cycles.
This leads to unacceptable verification run times. In addition,
communication history also has to be taken into account thus
increasing the complexity of the problem even more. All
these constraints make it practically unfeasible to verify serial
protocols in a reasonable amount of time with existing tools
and methodologies.

In order to overcome this problem six companies and six
research institutions collaborated in the German government
funded project HERKULES to investigate new approaches for
formal verification of serial communication systems. Within
this project, existing tools have been enhanced and new
approaches have been developed to allow for efficient veri-

fication of serial protocols. Special attention has been spend
on coverage analysis in order to be able to conclude whether
an IP block completely fulfills a given specification. To show
the capability of these new approaches they have been applied
to CAN, LIN and FlexRay IPs.

The case study presented here shows the advantages of the
formal verification approach for automotive communication
protocols by the example of the verification of the break be-
havior of an industrial LIN controller. We show that the effort
to prove specification conformance using formal verification
can be much lower then with simulation and that it allows for
stronger declarations on the quality of an IP block as it can
prove correct behavior.

The paper is structured as follows: Section II introduces the
problem tackled in this study using an abstract communication
model. In section III we give some basic information to the
LIN protocol and our implemented methodology that is needed
to understand the performed case study which is then described
in section IV. The results of the study are presented and
discussed in section V. Section VI evaluates the methodology
used in this work while section VII concludes the paper.

II. PROBLEM DESCRIPTION

We assume a communication system with N entities. At
every point in time we have exactly one entity M that is the
master of the system and N−1 entities S that are slaves. Each
transmission is based on frames consisting of transmission
initialization by the master and a subsequent field which is
sent by at least one slave.

Only the master M is allowed to start a new transmission
issuing a dedicated trigger signal or signal pattern T . The
trigger T interrupts all ongoing communication, resets all
communication nodes to the corresponding internal state for
new frame processing and must be detected by every slave in
the system. To enable for a robust reset of all nodes to a new
frame, T has to be recognized in any phase of the transmission.

The characteristics of the serial communication model com-
prises the following:

1) Variation of the length of the message. The length tframe

of any message may contain an arbitrary number of bits
0 < nbit < nmaxBit.

2) Variation of the occurance of the trigger signal. The
trigger signal may occur at any point in time during a
transmission. We refer to this point in time as ttrigger.

3) Variation of the trigger symbol. The trigger may consist
of more then just one single bit, thus forming a fixed
trigger bit pattern.

4) External signals and events that are not part of the
protocol. External input signals to the entities may influ-
ence their communication behavior, even if the external
signals are not directly related to the communication.
An example for such a signal is the reset signal that
sets the entity to its inertial state not taking into account
the bus signals.

5) History of the entity. Any communication or signal vari-
ation (as defined above) over time prior to ttrigger may

have an influence on the communication behavior of the
entity. For example the internal configuration could be
changed in such a way that a correct communication is
not possible any more.

To verify the behavior described above by means of sim-
ulation, a set of testbenches tests the reaction of the system
to a trigger T for each transmission step. This leads to one
testbench for every point in time where T could be issued. In
other words the number of testbenches is basically given by
the length of the frame measured in clock cycles. In addition
several parameters influence the number of simulation runs
needed to get an exhaustive result.

Because of the variety of possible combinations of the
characteristics the state space to be covered by the imple-
mented tests becomes extremely large. When adhering to bit
wise simulation this means that every combination of internal
signals and states of the design under test (DUT) has to be
considered. It is necessary to provide a set of simulation
stimuli to send the DUT into all possible internal states. It has
to be assured that all internal signal and state combinations
that can result from the communication history of the DUT
(that can be of arbitrary length), messages sent or received, and
all external signal variants over time are covered. The more
complex the core gets, the larger the number of test cases gets
in order to reach full coverage. This makes it impossible to
exhaustively test complex designs in a reasonable amount of
time.

Therefore the verification is most commonly restricted to a
selected number of test cases that are found to be meaningful
by some metrics. However the generation of the test cases
itself is error-prone as there are few means to detect erroneous
simulation scenarios. In addition the problem here is to know
whether all relevant test cases are covered in the test bench
since a full test coverage is usually not achievable.

III. BACKGROUND

In this chapter we provide some basic information on the
LIN protocol that should help to understand the presented case
study. We will also shortly introduce the applied verification
methodology.

A. LIN Protocol

The Local Interconnect Network (LIN) is a serial protocol
with deterministic data cycles. It is mostly used for robust,
low frequency communication links in simple actuator sensor
networks for non safety critical applications.

Fig. 1. LIN Communication

LIN is as a single master, multi slave system thus not
requiring complex arbitration schemes. All communication is
controlled by the central master that is polling the slaves

regularly based on a predefined schedule table. Every node
in the LIN network implements a slave task to handle the
communication protocol. The single master node implements
an additional master task that is responsible for controlling
the communication as roughly depicted in figure 1. A header
is issued by the master task, followed by a response of one
single slave task.

Fig. 2. LIN Protocol Frame

Figure 2 gives an overview of the header’s content. The
first field of the header is the SYNC Break Field (from here on
denoted as BREAK). It marks the begin of a new transmission
by sending at least 13 dominant bits followed by one recessive
delimiter bit. As the LIN uses open-collector bus drivers,
the dominant bits override all other transmission. The LIN
specification states that this break condition has to be detected
after 11 bits at any time during operation.

Following the BREAK is the SYNC field, consisting of ten
alternating bits that are used to synchronize the slave to the
master clock. For the clock frequency, the LIN specification
allows for deviations of up to ±15% to the nominal clock
frequency.

Finally the header frame is closed by the Protected Identifier
(PID) field that addresses the slaves and determines their
desired behavior.

The slave response can then consist of up to eight data
bytes and an additional checksum byte. Every data byte of a
transmission is extended by a start bit as well as a stop bit.
The only exception to this rule is the BREAK symbol.

B. Methodology

In this chapter we give a short overview of the formal
verification methodology used in our case study. We are
using the GapFreeVerificationTM [4] technology developed by
OneSpin solutions, one of the partners in the HERKULES
project. This technology ensures that the behavior of the
Design Under Test (DUT) is fully covered by the property set
that is used for verification. One element of the technology is
the so called property graph that links together all properties
of a property set. Thus all properties are linked together having
one or more predecessors and successors. This means that each
individual property describes only part of the behavior of the
DUT usually making them shorter and more comprehensible.
Therefore the verification engineer has to find a suitable way
to split the desired behavior of the DUT into smaller parts that
can then be transformed into properties.

For our study the division into individual properties is
oriented on the parts of a LIN frame as can be seen in figure
3. For example, for each field of the header (BREAK, SYNC

Fig. 3. LIN Slave - Property Graph

and PID field) there are one or more properties assigned to the
individual field that describe the desired behavior for this part
of the protocol. The properties are the linked together to form
the property graph. As we only want to give the idea of the
methodology, all properties that belong to the slave response
are summarized as ”response properties”.

IV. CASE STUDY

To show the benefits of this verification methodology we
here present a case study of a selected property that has
been carried out under industrial constraints. It demonstrates
the power of our approach with its advantages and the good
usability especially under industrial constraints.

As communication entity we used a hardware LIN slave IP
block from Robert Bosch GmbH [5] that can be parametrized
during design-time to be compliant to the LIN specification
version 1.3, 2.0 or 2.1. For our study we have configured it to
version 2.0. The core is a hardware module that implements
the LIN protocol without using additional software running on
a CPU. Internally it uses parallel finite state machines (FSM)
to implement the protocol behavior as well as checking for
possible error conditions. The bus signal is acquired using
16-times oversampling and majority voting. Besides the LIN
bus signals it provides additional API signals that are used to
exchange data to be send or received with externally connected
devices. In addition there are several other input signals that
are used to configure the core and to control its behavior during
run-time. Some configuration can be done via the LIN bus
using diagnostic frames issued by the master.

This core has already been extensively tested during design-
time and has passed all compliance tests required for LIN
approval. It has been used for years in current applications in
the automotive domain. Up to now, no severe errors have been
reported. Thus the actual version has been seen as presumably
error free.

A. Verification of BREAK behavior

One goal of the verification is to prove that the IP core is
able to detect and react on a break symbol (our instance of T ,
see chapter II) at any time and under any condition. Only the
assertion of a reset signal may override this behavior.

The property to verify the break behavior of the core serves
as basis for all other properties that prove correct protocol
behavior of the IP core. A simplified version of the property is
given in listing 1. The property is written in InTerval Language

1 PROPERTY b r e a k IS
2 DEPENDENCIES :
3 n o r e s e t ,
4 c o n f i g u r a t i o n s t a b l e ;
5

6 ASSERTIONS :
7 a l l s t a t e s v a i l d ,
8 a l l r e g i s t e r s v a l i d ;
9

10 FOR TIMEPOINTS :
11 t b r e a k s t a r t = t +4 ,
12 t r x u p = t b r e a k s t a r t +208;
13

14 ASSUME:
15 DURING[t b r e a k s t a r t −4, t b r e a k s t a r t −1]: l i n r x = ’

1 ’ ;
16 DURING[t b r e a k s t a r t , t rx up −1]: l i n r x = ’ 0 ’ ;
17 DURING[t rx up , t r x u p + 4] : l i n r x = ’ 1 ’ ;
18

19 PROVE:
20 AT t r x u p +4:
21 f s m e v a l s y n c f i e l d ,
22 r e g i s t e r s e v a l s y n c f i e l d ;
23

24 DURING[t rx up , t r x u p + 4] : l i n t x = ’ 1 ’ ;
25

26 END PROPERTY ;

Listing 1. Break Property in InTerval Language

1 assume p r o p e r t y (@(posedge c l k) d i s a b l e i f f (r e s e t)
c o n f i g u r a t i o n s t a b l e) ;

2 assume p r o p e r t y (@(posedge c l k) d i s a b l e i f f (r e s e t)
a l l s t a t e s v a l i d) ;

3 assume p r o p e r t y (@(posedge c l k) d i s a b l e i f f (r e s e t)
a l l r e g i s t e r s v a l i d) ;

4

5 s e q u e n c e t b r e a k s t a r t ; n x t (t , 4) ; endsequence
6 s e q u e n c e t r x u p ; n x t (t b r e a k s t a r t , 208) ; endsequence
7

8 p r o p e r t y b reak p ;
9 d u r i n g e x c l (t , t b r e a k s t a r t , l i n r x == 1 ’ b1)

and
10 d u r i n g e x c l (t b r e a k s t a r t , t rx up , l i n r x == 1 ’ b0)

and
11 d u r i n g (t rx up , n x t (t rx up , 4) , l i n r x == 1 ’ b1)
12 i m p l i e s
13 t r x u p ##4 f s m e v a l s y n c f i e l d () &&

r e g i s t e r s e v a l s y n c f i e l d () and
14 d u r i n g (t rx up , n x t (t rx up , 4) , l i n t x == 1 ’ b1) ;
15 e n d p r o p e r t y
16

17 b r e a k : a s s e r t p r o p e r t y (@(posedge c l k) d i s a b l e i f f (
r e s e t) b reak p) ;

Listing 2. Break Property in SystemVerilog

(ITL) developed by OneSpin Solutions. All explanations refer
to this listing. As additional information listing 2 gives the
same property described in SystemVerilog.

The first lines of the property state some environment con-
straints considered for the verification presented in this case
study. One is the exclusion of the reset case (line 3) and the
other is the assumption that the configuration of the core is not
changed via external API signals during normal operation (line
4), meaning that these configuration signals remain stable.
Nevertheless no assumptions on the actual values of these
signals have been made. Arbitrary configuration of the core
using diagnostic messages send over the bus is still possible.

Besides these externally induced constraints we also added
some assertions to the property in order to make sure that
only valid combinations of states for the FSMs as well as
valid assignments for the internal registers are assumed (lines
7 and 8). As they are realized using assertions, they are proven
to be always correct by the verification tool as well.

In lines 11 and 12 some variables are defined that can
be used to refer to certain timepoints more easily. We then
assume a correct break symbol to appear on the bus, meaning
that at t break start the bus signal changes from recessive
level to dominant level and remains there for 208 clock
cycles. After that the bus becomes recessive again (lines 15
to 17). The 208 clock cycles result from the core using 16
times oversampling to determine the values of the bus signal.
Therefore 13 dominant bits match the 208 clock cycles used in
this property. This concludes all of the property’s assumptions
and constraints.

As required by the LIN protocol specification, the prove
part of the property states that after the end of the break
symbol (at t rx up + 4) all internal states and registers of
the core are set to the appropriate values that correspond to
a successful detection of a break symbol (lines 21 and 22).
Line 21 defines the according combination of states in all

state machines. The register values are defined by the macro
in line 22. They may have certain values or have to be in a
certain range. Of course this description requires some internal
knowledge of the IP implementation. However this would be
necessary for simulation as well. Furthermore we prove for
the outgoing bus line that there is no transmission going on
(line 24) as required by the LIN protocol specification.

V. VERIFICATION RESULTS

When running the property described above, a counter
example was generated (see figure 4). It turned out that there
is a situation where a break signal sent on the bus was not
detected properly by the core. As illustrated in figure 4 a break
symbol has been detected by the core in clock cycle 810. It is
signaled by setting breaksymbol_reg to ’1’. This should
result in the core’s FSMs to change to the evalsyncfield
state, but the corresponding state machine remains in the state
prtfsm_idle. In order to understand the reason for this
counter example we have to explain in more detail the timing
behavior of the LIN bus.

A. Counterexample Analysis

The LIN specification allows for a deviation of up to ±15%
of the actual bit time compared to nominal bit time. The
slave has to sync to the actual bit time in order to be able
to correctly interpret the data. Therefore the master task sends
a sync field after the break symbol consisting of alternating
ones and zeros (0x55) (see fig. 2). This sequence is used by the
slave tasks to determine the actual bit time and adapt to it. The
IP core evaluated in this work uses an internal register called
timebase_reg to determine the correct sampling points.
In contrast, to detect the break and sync field fixed sampling
points are used that are independent of timebase_reg and
refer to the nominal bit time.

For the counterexample the scenario is as follows. The slave
is receiving a normal transmission with a slow sync, meaning

Fig. 4. Counterexample

that the actual bit time is longer than the nominal bit time.
Following the stop bit, the slave constantly receives a dominant
signal on the bus. One of the core’s internal state machines
is interpreting this signal as normal data transmission, using
the timebase_reg to separate the signal into individual
bits. An other state machine is constantly monitoring the bus
for the occurrence of a break signal. This FSM is not using
timebase_reg as the receiving FSM but the nominal bit
time to separate the individual bits. This means that both FSMs
count for a different number of bits in the same amount of
time.

Fig. 5. Ambiguous Error Detection

The receiver FSM will interpret the dominant level on the
bus as a sequence of a start bit followed by 8 dominant
data bits. It would then expect the next (tenth) bit to be a
recessive stop bit. This condition is violated as the bus is still
on dominant level, causing the FSM to detect a stop bit error
and assert the internal flag stopbiterr_set that is only
valid for one clock cycle. At the same time, the other state
machine responsible for break detection is interpreting the
actual bus signal as 11 dominant bits in a row, forming a break
symbol. Therefore it asserts the flag breaksymbol_reg for
one single clock cycle (see figure 4).

Due to the actual IP implementation the stop bit error
is evaluated in the following clock cycle and is taking pri-
ority over the break detection. This means that although
a break has been detected the actual transmission is dis-
carded and the core returns to idle state, waiting for a
new break signal to start another transmission. As can be
seen in figure 4 at timepoint 811 all internal state machines
(tbfsm_idle_current, mhfsm_idle_current, and

prtfsm_idle_current) are set back to their idle state.
One timepoint later this causes the serial communication
interface FSM (scifsm_idle_current) to fall into the
idle state as well. The flag that indicated the detection of a
break symbol is deasserted after one clock cycle and can not
be evaluated after timepoint 810. This means that the core
will not recognize the transmission that has been started by
the break signal. Therefore the core does not handle the break
symbol correctly according to [3] and data may be lost..

This error condition is not limited to one single event but
can occur for divers combinations of assumed clock frequency
for the ongoing transmission and clock frequency used to send
the break signal. It is very unlikely that such an error will be
detected by simulation as it requires a very specific scenario
of matching parameters and internal signals in order to occur.
However these parameters may be reached in reality and lead
to elusive errors which may result in indeterministic failures
of the superior system.

B. Design Improvements and Detection of new Counter exam-
ples

After the bug was detected and verified, the design depart-
ment has been contacted in order to fix the bug. As described
above the bug related most likely to a wrong prioritization of
the different error flags that resulted in the loss of the second
flag for the break detection. A fix was made to cope with this
problem and the fixed code of the core was rechecked with
the same break property again.

The result was that the property still did not hold, as a
new counter example was generated. Analysis of this new
counterexample revealed a new error that belongs to the same
class as the error detected before. It results from another
type of protocol error that is detected in parallel to the break
detection. As this error is also prioritized to the break error, the
break is still lost and the subsequent LIN frame is discarded
by the design under test (DUT).

The detection of the second error makes clear that formal
verification never shows all errors of a design at once. It
provides only a single counterexample out of many that all
would have led to a failing property. On the other hand one
can see that formal verification is much more powerful than

simulation as the same property can be used over and over
iteratively, until all errors have be fixed in a given design. For
simulation, individual test scenarios have to be implemented
for each of the two error cases discussed here.

VI. METHODOLOGY EVALUATION

When comparing simulation and formal verification, one
might think that they are very similar at first sight. Both show
that the desired behavior of a DUT, based on assertion of
signals to the system, is identical to the behavior demanded
by a given specification. But this description of the signal
assertions is where both methods differ greatly.

For simulation a two step approach is required. At first the
correct behavior of the design is tested with a test bench that
generates a correct stimulus as described in the specification.
One requirement for simulation is that all input signals are
determined during runtime of the test bench. That is why,
signals that are supposed to have no influence on the tested
system behavior are bound to fixed values.

Doing so, the correct reaction of the design to the correct
stimulus can be shown. In a next step, the designs reaction to
possible error conditions is checked. This means that stimuli
are created that are supposed to lead to incorrect behavior. As
before, all signals have to be described in the test benches. The
problem here is that the verification engineer has to imagine
all possible error scenarios and has to create a test bench for
every case. All error conditions that the verification engineer
can not imagine are not checked.

While for smaller designs with few internal states and input
signals, it can be feasible to check all input combinations,
this is unfeasible for larger designs. Therefore, simulation
normally only covers parts of the complete event space, taking
into account only those scenarios that the verification engineer
considers to be important. Correct behavior of a design under
all conditions can never be guaranteed for these large designs.

With our communication model presented in chapter II A
in mind we can roughly estimate the effort required to verify
the correct reaction to the break symbol using a simulation
environment. Assuming an oversampling factor of 16, 8 data
bytes, and LIN as protocol we already need a set of 6,720
different simulations that differ in the break pattern position.

sim1 = length(header) + length(response) (1)
= (33 + 8 ∗ 10 + 10) ∗ 16 = 6, 720 (2)

By further adding variations as mentioned in chapter II we
get even more simulation scenarios. For example the number
of data bytes gives factor 8, synchronization variation factor
5, resulting in sim2 = 8 ∗ 5 ∗ sim1 = 268, 800 different
simulation runs that are easily covered by one single formal
property. Moreover we have to be aware that this estimation is
extremely conservative as we left out data values, additional
external signals and history based core behavior.

Completely different from that is our formal verification
approach. Here we also describe the actual state of the design
and the input stimulus of the system. But in contrast to
simulation all signals that are supposed to have no influence

to the actual behavior are left undefined. The verification tool
will then use this degree of freedom in order to test whether
the design behaves as described in the prove part for every
possible combination of the input signals and internal states
that have been left open by the verification engineer.

If the property holds, this proves that the design will allways
behave as described and that there are no other undescribed
corner cases left. Using this methodology enables the verifica-
tion engineer to concentrate on the description of the intended
design behavior and is unburdened from the need to imagine
all possible error scenarios that the design might fall into. This
greatly reduces verification effort compared to simulation.

VII. CONCLUSION

This paper shows the advantages of formal verification
methods to realize proven protocol conformance for auto-
motive communication systems. As an example we have
presented the verification of the break behavior of a LIN
controller. We were able to discover an error that never showed
up in conventional conformance tests based on simulations,
although the LIN IP has been extensively tested during the
last couple of years and no erroneous behavior of the LIN IP
has been reported yet.

Using formal verification, it is possible to completely cover
large event spaces for design verification that take into account
all possible history states and input combinations that might
influence the systems behavior. In contrast to simulation
approaches it is even possible to prove that a design is error
free while this is nearly impossible for simulations.

The verification of the break behavior is embedded in a
broader approach to completely verify the correct behavior of a
LIN core as described in [6]. With the methodology developed
in the HERKULES project it is now possible to guarantee
correct functionality of serial protocols. As we have shown,
the effect of applying formal verification under industrial
constraints is not only possible but also achieves much higher
quality of verification, covering even seldom reached corner
cases that are not taken into account in simulation. Correct
protocol behavior of a device compared to a given specification
can now be proven.

ACKNOWLEDGMENT

This work has been founded by the German Federal
Ministry of Education and Research (BMBF) in the project
HERKULES (Förderkennzeichen: 01 M 3082).

REFERENCES

[1] Bosch. CAN Specification Version 2.0, March 1997.
[2] FlexRay Consortium. FlexRay Communications System Protocol Spec-

ification, Ver 2.1, Revision A. Available electronically at http://www.
flexray.com/, 2006-2009.

[3] LIN Consortium. Lin specification package, revision 2.0, 2003.
[4] OneSpin. www.onespin-solutions.com/news GapFree.php, 2008.
[5] Robert Bosch GmbH. C LIN, LIN Module Designers Guide, Revision

1.5.1, 2007.
[6] O. Sander, A. Klimm, A. Hogh-Binder, S. Bulach, and K. Weinberger.

A top-down formal verification approach of lin hardware ip based on
the gapfreeverification(tm) process. EDA Workshop, Dresden, Germany,
2009.

