Towards a UVM-based Solution for Mixed-signal Verification

Alexander W. Rath, Sebastian Simon, Volkan Esen, Wolfgang Ecker

Infineon Technologies AG

- Introduction
- Idea of Analog Transactions
- Constraint Random Analog Stimulus
- Monitoring Analog Behavior
- Checking Analog Transactions
- Example
- Summary and Outlook

- Introduction
- Idea of Analog Transactions
- Constraint Random Analog Stimulus
- Monitoring Analog Behavior
- Checking Analog Transactions
- Example
- Summary and Outlook

Introduction

- In today's chip design, analog parts shifted to digital design, because digital circuits scale better with new technologies
- This leads to mixed signal designs
- Historically, digital and analog parts are verified using totally different strategies
 - Analog parts are verified using network simulators
 - Digital parts are verified using event driven simulators

Introduction

- Digital Verification has become highly sophisticated
 - Constraint random stimulus
 - Self-checking testbenches
 - Functional coverage
 - Unified Verification Methodology (UVM)
- Analog Verification has not gone through the same evolution
 - Testbenches use directed stimulus and checking
 - Waveforms are checked using "eye-balling"

Introduction

- In our research, we target to leverage this discrepancy
- We show, how the aforementioned techniques from the digital verification can be mapped to and used in analog verification

- Introduction
- Idea of Analog Transactions
- Constraint Random Analog Stimulus
- Monitoring Analog Behavior
- Checking Analog Transactions
- Example
- Summary and Outlook

Idea of Analog Transactions

- Transactions are data structures
 - Containing potentially randomized fields
 - Providing abstraction from the protocol's details
- The protocol is implemented separately in a driver

Idea of Analog Transactions

- How to transfer this approach to analog?
- Idea: Replace the term "protocol" by "shape"
- Signals can be of different shapes

Idea of Analog Transactions

- To name a shape is not sufficient to describe a signal
- Parameters are required

 transaction

- Introduction
- Idea of Analog Transactions
- Constraint Random Analog Stimulus
- Monitoring Analog Behavior
- Checking Analog Transactions
- Example
- Summary and Outlook

Constraint Random Analog Stimulus

- In UVM, transactions are converted to stimulus by drivers
- We follow the same principle using a generic driver for analog stimulus
- The algorithm that converts the transaction to signal level activity can be exchanged through a plug-in mechanism even at runtime
- Communication between the generic driver and the algorithm is done via a predefined API
- New algorithms implement this API

Constraint Random Analog Stimulus

Constraint Random Analog Stimulus

- Introduction
- Idea of Analog Transactions
- Constraint Random Analog Stimulus
- Monitoring Analog Behavior
- Checking Analog Transactions
- Example
- Summary and Outlook

Monitoring Analog Behavior

- We followed the same principle as in driving
- Monitoring is more complicated than driving
 - Start of transaction has to be determined
 - Single vs. Multi threaded
- This leads to a more complex algorithm API

Monitoring Analog Behavior

- Determining the times T_1 , T_2 and T_3 requires multithreaded monitoring
- Trigger objects determine start of monitoring
 - Discontinuities
 - Threshold levels
 - Changes in frequency

— ...

- Introduction
- Idea of Analog Transactions
- Constraint Random Analog Stimulus
- Monitoring Analog Behavior
- Checking Analog Transactions
- Example
- Summary and Outlook

- In order to check for functional correctness of the DUT, transactions must be compared – possibly inside of a scoreboard
- In UVM, transactions are compared bitwise, field by field
- This does not work for analog transactions
 - When comparing analog behavior, a certain fuzziness is allowed
 - Real-valued numbers can suffer from round-off errors
 which affect direct comparison
 5 == 5.00000000000001

- Similarity can be measured by several metrics (Pearson correlation, cosine similarity, Euclidean distance, ...)
- Deficiency: bin-by-bin measures do not necessarily match perceptual similarity well

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \longrightarrow \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$

- Leveraging cross-bin measures in order to obtain more meaningful results
 - → Earth Mover's Distance

- Approach to measure the distance between two distributions
- Visualization: transportation of soil from one pile to another

- Work += distance x amount: $A = \sum_{i=1}^{n} \sum_{j=1}^{n} d_{ij} f_{ij}$
- Find minimum flow which equalizes distributions
 optimization problem has to be solved

SYSTEMS INITIATIVE

 Analyzing one pair of transactions results in exactly one value s_{EM} for the Earth Mover's Distance

- Range: 0 ≤ s_{EM} ≤ 1 (where 1 implies a full match)
- Basic idea for regression: defining a lower bound for s_{EM}
- Once s_{EM} falls below this bound, the regression test fails and the regarding transactions can be examined

- Introduction
- Idea of Analog Transactions
- Constraint Random Analog Stimulus
- Monitoring Analog Behavior
- Checking Analog Transactions
- Example
- Summary and Outlook

Example

- Observed signal: PMU-related voltage
- Four different signal phases are automatically detected by analog monitors
- Forced failure scenarios:

SYSTEMS INITIATIVE

- Curve A: stuck-at-sleep
- Curve B: modified external cap

Signals	Phase1	Phase2	Phase3	Phase4
RefvsRef	100%	100%	100%	100%
RefvsA	99%	99%	99%	53%
RefvsB	99%	99%	88%	99%

- Introduction
- Idea of Analog Transactions
- Constraint Random Analog Stimulus
- Monitoring Analog Behavior
- Checking Analog Transactions
- Example
- Summary and Outlook

Summary and Outlook

- We presented a possible definition for analog transactions
- We showed, how this definition can be used to accomplish stimulation, monitoring and checking of analog circuitry or models

Questions?

