

Tough Verification Challenges: Data Visualization to the Rescue

Shaji Kunjumohamed

Broadcom Corporation

email:shajikk@broadcom.com

Abstract―Designing and verifying an SoC is challenging. Design

complexity is exploding at the same time engineers have to deal with

reduced time for development due to ever-shrinking schedules, while

at the same time not compromising design quality. Design teams have

to collect and analyze large amounts of data produced by electronic

design automation (EDA) tools as part of the sign-off process. Most

of data analytics is manual, repetitive, error-prone, and can be

difficult to automate. EDA data mining and extracting useful results

in a timely fashion is the key ingredient to successfully taping out a

chip. There are discussions about the application of “Big Data”

analytics in the EDA space but a well-defined methodology to

analyze EDA data using them is yet to be identified. An important

piece of data analytics is data visualization and identification of points

of interest. This paper proposes a method of converting repetitive,

critical tasks like analyzing EDA data to something that developers can

easily visualize. Manual tasks can be broken down and spread across

the chip-development cycle.

I. INTRODUCTION

Recently, the growing amount of data generated from
various data sources, such as consumer information-sensing
devices, software logs and the like, have led to the development
of advancements in Big Data analytics and related tools. Many
methods and utilities have evolved that analyze and extract
useful information out of huge amounts of data

An important part of Big Data analytics is data
visualization. Humans can easily identify causality and trends
in data if the presentation of such data lends itself to
visualization. A good example of data visualization is the
waveform viewer. A simulator running an RTL/gate simulation
can be considered a data generation machine. The data is
selectively sampled and routed into the waveform viewer using
special tool constructs. Once visualized, the data makes perfect
sense to a trained eye.

Data generated in EDA space has the same characteristics
as that of Big Data. Huge amount of data is generated by
various EDA design tools, simulations, scripts etc. A variety of
data is generated; it can be either structured or unstructured.
Data can come from multiple sources. As design complexity
explodes, the data generated by various tools that analyzes
same also increases at a greater rate.

In the hardware design space, as time progresses we see the
evolution of new design standards and methodologies. All
these ultimately translate to different tools from a variety of
vendors. Diverse design teams may work using a combination
of these tools to achieve their design objectives. A byproduct of
this activity can be large amounts of data, represented in a
variety of formats.

II. CHALLENGES

Time-to-market requirements, shortened spin-off times, and
SoC design complexity pose many challenges today. To assure
the quality of the design, designers are required to run a variety
of tools and analyze the results. Data can flow from one design
stage to another design stage or from one tool chain to another.
Most of the time, the tool may be wrapped in an in-house flow
that can modulate the data dumped out by the tool.

One of the challenges faced in the chip-development space
is rapid identification of issues and fixing the design
accordingly. The cost of development increases if the issues are
identified later in the design cycle. If the issue cannot be fixed,
the result can be catastrophic.

By nature, most of the design processes are iterative and
manual. Many EDA tools are run multiple times throughout the
design process and engineers are required to review the reports
over and over to make sure the identified issues are fixed and
no new ones are generated. Some examples are:

a. The running and analysis of tool reports, such as code
coverage and functional coverage. Many times the
process is repeated until all holes have been accounted
for.

b. Reviewing regression results: regressions are run
multiple times and holes fixed until some convergence
is observed.

There are few patterns that here. The first is “human,” the
second is “manual” and the last one is “repetitive.” When a task
is manual and repetitive, humans tend to overlook obvious
problems. This means some kind of automation should be
developed to minimize the impact of this problem in chip
development.

The developmental activity performed on a chip is not
uniform throughout the development cycle. Towards tape-out,
there is usually a spike—a “mad rush” to get all reports clean
and hence most of the designers and verification team members
are multitasking. Consequently, the development effort
required by team members is not uniform over the development
schedule and most of the important items are accomplished just
before tape-out. Stress level increases and as a result, the risk
involved also increases. Even though there are proper
procedures set up, designers can miss important aspects.

III. DATA VISUALIZATION EXAMPLE

As mentioned earlier, data visualization is a generic term
that denotes effort to help people understand significance of
data by placing it in a visual context. We already use data
visualization—it can be as simple as a table that has rows and
columns that represent a general relationship between various
elements, or it can be complex, such as a schematic viewer. It
can have interactive capabilities, like the sorting of a table or
putting markers/zoom on a visualization.

Another good example of a data visualization tool is the
“diff” or “tkdiff” program that we are all familiar with. Just by
using these utilities, we can visualize the difference between
two text files.

EDA data dumped by different tools can be structured,
unstructured, or semi-structured. Waveform files, sdf files, gate
netlists, and tool logs are some examples. Data from these
sources can be filtered and cleansed using scripts and relevant
information can be extracted. It can be put in the form of a
table to create a simple visualization (example 1). The only
requirement here is somebody should know what data needs to
be extracted and the format of the original data source. We will
stick with “table” visualization for the rest of our discussions,
since that is the most common form of visualization people use.
This can be extended to other forms of visualizations as well.

Example 1

Let’s look into an existing method of inspecting design data

dumped out by tools. In general, the tools read in the design in
a Linux environment and dump out reports in a text format.
Some of the tools may have their own graphical user interface.
Advanced users prefer to run the tool in batch mode and
examine the text/log reports using a variety of tools, such as a
text editor or text grep-ing/filtering using scripts. This may
pose problems for those users that do not have access to such
systems/software but may want to examine the data. To solve
the problem, the data that needs to be examined can be also
made available through a web browser.

 Nowadays, the web browser has become one of the most
widespread platforms for information exchange and retrieval.
Browsers are available in all compute platforms and have the
ability to support complex visualization. The simple table with
EDA data discussed earlier can be easily rendered in a web
browser using minimal code.

The volume of design data displayed in the browser can
pose many challenges. It may not be practical to display full
data in the browser due to performance considerations. In case
of a table, only the data that fits into the user’s view port need
to be rendered. The user should have the ability to sift through
the data presented in the table by means of sorting the table or
by using filter functions in the table. Each time users apply a
filter or sort function, data can be streamed into the browser
from an intermediate external source, such as a database. This
enables the user to filter and view only the interesting data.

IV. RECORDING USER INPUTS

So far we have described a basic framework for displaying
data in a browser. When we present data to users for review,
they may go through data and figure out interesting
observations. For example, if it is chip-level connectivity data
that users are looking into, somebody may observe a bad
connection. The discrepancy should be recorded and the design
fixed. The table visualization can be easily modified to attach
user comments and status with each entry. A variety of widgets
such as checkboxes, textboxes, and in-place editing toolsets are
available to achieve this. Once saved, the user inputs get
attached to data and get saved back into database. When
somebody else opens the table from a browser from a different
device, he or she may have full access to view the data together
with the user inputs. It may be possible to filter data based on
user comments—for example, somebody can sort data based on
bad connections and immediately start fixing the original
source code.

The final missing piece in the above system is the addition
of accountability. When a specific user adds a comment or a
status, it can be saved with the user ID and timestamp. In case
of design flaws, it can later be traced back to the reviewer. If an
authentication mechanism is implemented, user names can be
appended to status and comments along with timestamp. At
this point, the system may truly reflect a collaborative
environment.

Sometimes the tool environment may need access to user
inputs for refining the next tool iteration. A typical example of
this is where a user waives certain functional coverage points
by clicking the “waive”’ checkbox. The underlying tool may
want to access this for the next run. Once the user input is
saved into the database, the tool can access the checkbox value
from the UNIX/Linux environment and can use the same to
configure itself.

V. CHASING A DYNAMIC DESIGN

The development schedule of a typical chip design project
runs for months until the project is wrapped up. During this
period, the design is very fluid and changes as new IPs are
integrated. New connections can appear and existing ones can
become obsolete. Designers run various tools periodically to
quality-check the design. Since the design constantly changes,
the data and reports generated by the tools also change. Care
needs to be taken to ensure that no existing features are broken
while newer ones are added as per the specification. This is
easier said than done—it requires that team members
constantly monitor tool reports. One way to tackle this is to
keep reviewing data until the design is frozen. The designer
may end up spending energy reviewing items that have already
been reviewed multiple times and can easily miss design flaws
that appear in reports. Since everything is dynamic, engineers
may choose to run certain tools towards the end of the design
cycle when the design is stable, closer to tape out. This indeed
is a very common practice across many design teams. There are
risks involved here, since there can be a spike in effort
involved. Individuals may start prioritizing tasks that are
deemed important and may choose to skip finer inspection of
data.

One way to solve the above problem is by evenly
distributing the effort involved in data inspection throughout
the design cycle instead of towards tape out. This can be
achieved by data processing/visualization techniques. The raw
data that comes out of a tool can be processed to extract only
relevant information. The intermediate data can be stored into a
database. For the second iteration, data processing techniques
can be employed to find out the delta between the previous
iteration and the current run. There can be differences and these
can be presented in visualization by appropriately flagging the
entries. The user can then focus more on changes in the design
since the last tool run. When a delta is detected and resolved,
comments and status can be added to it and it can be saved
back into database along with the complete history information.

The system can be designed to run at predefined intervals
as soon as the project takes off. Users can spread the work
evenly throughout the chip development cycle rather than
increasing it at tape-out. The effort level comes down
drastically and risk to the project is minimized.

Example 2 represents the idea in brief. In the initial
iteration, the data is extracted and processed. After data
cleansing operations, it is saved into a database. The
visualization tool (browser) fetches data from the database
based on the user requirements. The user analyzes data, adds
comments and status, and saves data. The data gets saved into
the database and will be available to all users of the system.
During the next iteration, the process is repeated. Deltas
between each run are presented to the user. In the given
example, the data in red refers to new/modified data and the
data in strikethrough format represents deleted data. When a
new visualization is generated, the comments/status from the
older iterations can be rolled over or imported to the new
visualization. This way, users may not waste time in reviewing
data that has been reviewed previously. They can focus only on
the changes flagged by the platform.

Example 2

VI. OTHER CONSIDERATIONS

EDA vendors generally provide a tool or utility to analyze
the design and generate reports. It is up to the user to decide
how to interpret the tool output data. The size and architecture
of designs may vary between design teams. Depending on their
requirements, designers may choose to use a specific vendor
tool to achieve a design goal or they may use an assorted list of
tools. Hence the data obtained from flows using these tools can
be very diverse. Again, each team may choose to focus on
different aspects of tool data—for example one group may be
focusing on achieving full code coverage on their design.
Others may be more interested in achieving more functional
coverage. In summary, it is not possible to create a generic
platform to address everybody’s needs. In addition, each team
may have individual preferences on how the data needs to be
presented. For example, hardware design is organized
hierarchically. One team’s requirement may be to capture data
from all hierarchies in a single web page, yet others may want
data to be more organized—per block level.

Now the question remains whether it makes economic
sense to invest in developing such a web application. The
following are the obvious benefits:

1. Chip data is collected, organized, and documented.
Every aspect of the review process is recorded.

2. It cuts down development time and brings down the
effort involved.

3. It reduces risk.

4. Once historic data is available in an organized form,
users can do interesting data analytics, for example,
comparing different versions of designs.

5. The system can be reused or shared between different
groups in the company.

6. The system can be built ground-up from freely
available open source tools, so licensing fees can be
minimal.

Obviously there are technological challenges in
implementing such a system, but the end product will be worth
that investment.

VII. TECHNOLOGY INVOLVED

The following components are needed to implement the
proposed platform:

1. Script infrastructure to filter needed data from EDA log
files or tool data. Data cleansing and extraction
operations can be done here. Infrastructure based on
languages such as perl, python, etc. can be used. The
developer should be aware of what data is relevant and
what needs to be extracted.

2. A database to store the data. A data base is a program
that runs perpetually on a machine that has the
capability to store and retrieve data. Various standard
database technologies are available, most notably
NoSQL data bases like MongoDB.

3. A web browser on the user’s device. The web browser
connects the user to the web server. The visualization
application will be physically located in the webserver
and it will be downloaded to the browser from the
webserver for execution. The applications executed in
a browser are typically written in JavaScript and
HTML (the front-end, user-facing part of the
visualization application). Many open source front-end
frameworks like Angular.js, D3.js and Bootstrap are
available that further create higher-level abstractions of
the front-end development tasks. All the code that is
written for a browser is called “client side” code. The
data needed by the application that runs on browser
comes from the data base.

4. A web server that hosts the application code. The web
server helps to connect a browser with the database
after authenticating the user. Many web server
implementations are available, such as Apache, which
is difficult to set up and configure. Now there are
newer technologies like Node.js that developers are
adopting, which can be easier to configure and use.
Frameworks developed on top of Node.js, like
“Express.js,” make configuration and use of the web
server very easy. All the code that is written for the
webserver is called “server side” code.

A variety of open source software bundles that integrate the
technologies described above in a concise fashion exist today.
One such bundle is called a MEAN stack (meanjs.org). It
makes use of MongoDB, Express.js, Angular.js and Node.js.
The beauty of this framework is that all the components can be
configured using only one programming language: JavaScript,
as opposed to other technologies that involve a variety of
programming languages specific to tools. This makes it very
easy to develop and deploy applications using MEAN.

VIII. IMPLEMENTATION ASPECTS

The MEAN framework can be checked out of GitHub, as
described in the MEAN website. The dependencies (MongoDB
and Node.js) also need to be installed in the target machine.

Once the MEAN framework is installed and configured, it can
be a matter of minutes before the first sample site can be ready.

The developer can also set up an authentication system that
comes with the MEAN framework. It can be easily integrated
with the company’s LDAP authentication scheme. Depending
on the design data, the developer needs to come up with a
schema. This is a simple JSON data structure that describes
how data will be stored in a MongoDB database. The schema
should be set up in such a way that it also captures the time
stamp and user ID of the end user. Additional fields also can be
added to distinguish tool iterations.

Once the data cleansing/extraction scripts that parse the
EDA tool data extract the relevant information, the MongoDB
database can be populated from the extraction script itself. The
population of the database needs to use the same schema
described above. Once populated, the visualization application
running in the browser will have access to the data.

Another important aspect of the user interface (UI) is the
aesthetics of the visualization. The Bootstrap JavaScript library
can be used to improve the look and feel of the site. For
example, for the table visualization the end user may request to
organize a table with a variety of UI features such as paging,
filtering, accordion, and the like. All these can be integrated
into the web page with minimal code.

The various components of the MEAN framework are
widely used in web development. All the tools used in the
framework are open source and heavily documented. There are
tons of resources and example code available on the Internet
that can help anybody with the development of complex
applications.

IX. PRACTICAL EXAMPLES

The system described above can also be extended to other
areas of chip design, not just front-end design and verification.

Many design teams use checklists for signoff purposes. It is
generally a shared spreadsheet, checked into version control.
As the spreadsheet grows in size and complexity, it becomes a
problem to maintain. The above system can be used as an
alternative to a spreadsheet. It can automatically store a history
of edits, names of collaborators, etc. Specific UI components
can be added to make this a living document.

For example, if a specific checkbox is selected in the
webpage, the value of the same (checked/unchecked) can be
assessed from the UNIX/Linux side. Tool configurations or
wrappers can have access to the same value.

Another interesting application can be online test plan
generation and maintenance. Specific widgets are available that
support in-place editing of text in a webpage. Users can
check/uncheck various scenarios in a test plan that are relevant
to the product. Regression results can be automatically parsed
and imported into the test plan. This will give an accurate idea
of how much functionality in the design has been tested and
how much is passing or failing. Most importantly, users can

compare the previous regression runs with the current
regression run and analyze what exactly changed.

Code reviews are an important part of the design process.
Most design teams review the connectivity at the top level of
the chip with various IP owners. The code to be reviewed may
amount to hundreds of thousands of lines. Many interesting
observations and bugs can come out during code/connectivity
reviews. It is a highly collaborative process. Formal/assertion
tool-based reverse connectivity can be used to extract the
connectivity of the top level. This can be converted into a
connectivity table for users to review. They can go through the
data and put in comments and status for each entry. As time
proceeds, the design may change. After each design iteration,
the data can be extracted and presented in such a way as to
allow easy visualization of the changes, much like “tkdiff”
works for basic text. The users can review only the changed
information and sign off. This process can repeat until the
design stabilizes and the project is taped out. This system can
potentially save hundreds of man-hours and can also create
good documentation of the design connectivity.

To illustrate this further, the connectivity of a block in the
top level of a chip can be represented in a table as given in
Example 3.

Example 3

Designers can browse through the table and update the
status and comments. During review, they can flag erroneous
connections. As time proceeds, the design may change.
Example 4 shows “old design” and “new modified design”
with a few changes in connections. Connectivity can again be
extracted and presented in a similar table as given in Example
3. Since we already have the connectivity data for the old
design, data can be processed so that the comments and status
of those fields for which connections has not changed can be
rolled over to the new table.

Example 4

Example 5

Example 5 shows the case where some connections are
changed. In the “old design”, all bits of bus_0[2:0] were tried
off to zero whereas in the “new modified design”, bit bus[0] is
connected differently. In the table visualization, such changes
can be highlighted as given in Example 5 and the reviewer can
easily spot such delta changes in design. For example, the
reviewer can sort and filter the table only to view unchecked
checkboxes and it represents the new connections in the design,
not yet reviewed. Hence this type of visualization aids team
members to review only the changes in design as opposed to
reviewing complete dataset, especially when there are
thousands of connections to be reviewed.

X. CONCLUSION

For a given EDA tool report/data generated on a design,
knowledge about the data points of interest and feedback on
how data needs to be organized visually only comes through
user experience. The information is not generally translated to
specific utilities that industry can develop and use. This paper
describes a way in which semiconductor companies can rapidly
develop and prototype data mining tools in-house using an
inexpensive MEAN development stack that combines the
power of software tools like MongoDB, Express, AngularJS,
and NodeJS. While there is initial effort involved in
implementing such a system, the benefits of having it far
outweigh the initial investment. Examples from a real-world
scenario involving code coverage and formal connectivity were
presented.

XI. REFERENCES

[1] http://meanjs.org/

[2] https://en.wikipedia.org/wiki/AngularJS

[3] https://en.wikipedia.org/wiki/D3.js

[4] https://en.wikipedia.org/wiki/Node.js

[5] https://en.wikipedia.org/wiki/MongoDB

