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Abstract―Designing and verifying an SoC is challenging. Design 

complexity is exploding at the same time engineers have to deal with 

reduced time for development due to ever-shrinking schedules, while 

at the same time not compromising design quality. Design teams have 

to collect and analyze large amounts of data produced by electronic 

design automation (EDA) tools as part of the sign-off process. Most 

of data analytics is manual, repetitive, error-prone, and can be 

difficult to automate. EDA data mining and extracting useful results 

in a timely fashion is the key ingredient to successfully taping out a 

chip. There are discussions about the application of “Big Data” 

analytics in the EDA space but a well-defined methodology to 

analyze EDA data using them is yet to be identified. An important 

piece of data analytics is data visualization and identification of points 

of interest. This paper proposes a method of converting repetitive, 

critical tasks like analyzing EDA data to something that developers can 

easily visualize. Manual tasks can be broken down and spread across 

the chip-development cycle.  

I. INTRODUCTION 
 

Recently, the growing amount of data generated from 
various data sources, such as consumer information-sensing 
devices, software logs and the like, have led to the development 
of advancements in Big Data analytics and related tools. Many 
methods and utilities have evolved that analyze and extract 
useful information out of huge amounts of data  

An important part of Big Data analytics is data 
visualization. Humans can easily identify causality and trends 
in data if the presentation of such data lends itself to 
visualization. A good example of data visualization is the 
waveform viewer. A simulator running an RTL/gate simulation 
can be considered a data generation machine. The data is 
selectively sampled and routed into the waveform viewer using 
special tool constructs. Once visualized, the data makes perfect 
sense to a trained eye.        

Data generated in EDA space has the same characteristics 
as that of Big Data. Huge amount of data is generated by 
various EDA design tools, simulations, scripts etc. A variety of 
data is generated; it can be either structured or unstructured.  
Data can come from multiple sources. As design complexity 
explodes, the data generated by various tools that analyzes 
same also increases at a greater rate.  

In the hardware design space, as time progresses we see the 
evolution of new design standards and methodologies. All 
these ultimately translate to different tools from a variety of 
vendors. Diverse design teams may work using a combination 
of these tools to achieve their design objectives. A byproduct of 
this activity can be large amounts of data, represented in a 
variety of formats.   

II. CHALLENGES 
 

Time-to-market requirements, shortened spin-off times, and 
SoC design complexity pose many challenges today. To assure 
the quality of the design, designers are required to run a variety 
of tools and analyze the results. Data can flow from one design 
stage to another design stage or from one tool chain to another. 
Most of the time, the tool may be wrapped in an in-house flow 
that can modulate the data dumped out by the tool. 

One of the challenges faced in the chip-development space 
is rapid identification of issues and fixing the design 
accordingly. The cost of development increases if the issues are 
identified later in the design cycle. If the issue cannot be fixed, 
the result can be catastrophic.  

By nature, most of the design processes are iterative and 
manual. Many EDA tools are run multiple times throughout the 
design process and engineers are required to review the reports 
over and over to make sure the identified issues are fixed and 
no new ones are generated. Some examples are: 

a. The running and analysis of tool reports, such as code 
coverage and functional coverage. Many times the 
process is repeated until all holes have been accounted 
for. 

b. Reviewing regression results: regressions are run 
multiple times and holes fixed until some convergence 
is observed. 

There are few patterns that here. The first is “human,” the 
second is “manual” and the last one is “repetitive.” When a task 
is manual and repetitive, humans tend to overlook obvious 
problems. This means some kind of automation should be 
developed to minimize the impact of this problem in chip 
development.   

The developmental activity performed on a chip is not 
uniform throughout the development cycle. Towards tape-out, 
there is usually a spike—a “mad rush” to get all reports clean 
and hence most of the designers and verification team members 
are multitasking. Consequently, the development effort 
required by team members is not uniform over the development 
schedule and most of the important items are accomplished just 
before tape-out. Stress level increases and as a result, the risk 
involved also increases. Even though there are proper 
procedures set up, designers can miss important aspects.  

 

 



 

III. DATA VISUALIZATION EXAMPLE 
 

As mentioned earlier, data visualization is a generic term 
that denotes effort to help people understand significance of 
data by placing it in a visual context. We already use data 
visualization—it can be as simple as a table that has rows and 
columns that represent a general relationship between various 
elements, or it can be complex, such as a schematic viewer. It 
can have interactive capabilities, like the sorting of a table or 
putting markers/zoom on a visualization. 

Another good example of a data visualization tool is the 
“diff” or “tkdiff” program that we are all familiar with. Just by 
using these utilities, we can visualize the difference between 
two text files. 

EDA data dumped by different tools can be structured, 
unstructured, or semi-structured. Waveform files, sdf files, gate 
netlists, and tool logs are some examples. Data from these 
sources can be filtered and cleansed using scripts and relevant 
information can be extracted. It can be put in the form of a 
table to create a simple visualization (example 1). The only 
requirement here is somebody should know what data needs to 
be extracted and the format of the original data source. We will 
stick with “table” visualization for the rest of our discussions, 
since that is the most common form of visualization people use. 
This can be extended to other forms of visualizations as well.         

 

 

 
 

Example 1 

 
Let’s look into an existing method of inspecting design data 

dumped out by tools. In general, the tools read in the design in 
a Linux environment and dump out reports in a text format. 
Some of the tools may have their own graphical user interface. 
Advanced users prefer to run the tool in batch mode and 
examine the text/log reports using a variety of tools, such as a 
text editor or text grep-ing/filtering using scripts. This may 
pose problems for those users that do not have access to such 
systems/software but may want to examine the data. To solve 
the problem, the data that needs to be examined can be also 
made available through a web browser. 

 Nowadays, the web browser has become one of the most 
widespread platforms for information exchange and retrieval. 
Browsers are available in all compute platforms and have the 
ability to support complex visualization. The simple table with 
EDA data discussed earlier can be easily rendered in a web 
browser using minimal code.    

The volume of design data displayed in the browser can 
pose many challenges. It may not be practical to display full 
data in the browser due to performance considerations. In case 
of a table, only the data that fits into the user’s view port need 
to be rendered. The user should have the ability to sift through 
the data presented in the table by means of sorting the table or 
by using filter functions in the table. Each time users apply a 
filter or sort function, data can be streamed into the browser 
from an intermediate external source, such as a database. This 
enables the user to filter and view only the interesting data. 

IV. RECORDING USER INPUTS 
 

So far we have described a basic framework for displaying 
data in a browser. When we present data to users for review, 
they may go through data and figure out interesting 
observations. For example, if it is chip-level connectivity data 
that users are looking into, somebody may observe a bad 
connection. The discrepancy should be recorded and the design 
fixed. The table visualization can be easily modified to attach 
user comments and status with each entry. A variety of widgets 
such as checkboxes, textboxes, and in-place editing toolsets are 
available to achieve this.  Once saved, the user inputs get 
attached to data and get saved back into database. When 
somebody else opens the table from a browser from a different 
device, he or she may have full access to view the data together 
with the user inputs. It may be possible to filter data based on 
user comments—for example, somebody can sort data based on 
bad connections and immediately start fixing the original 
source code.  

The final missing piece in the above system is the addition 
of accountability. When a specific user adds a comment or a 
status, it can be saved with the user ID and timestamp. In case 
of design flaws, it can later be traced back to the reviewer. If an 
authentication mechanism is implemented, user names can be 
appended to status and comments along with timestamp. At 
this point, the system may truly reflect a collaborative 
environment.  

Sometimes the tool environment may need access to user 
inputs for refining the next tool iteration. A typical example of 
this is where a user waives certain functional coverage points 
by clicking the “waive”’ checkbox. The underlying tool may 
want to access this for the next run. Once the user input is 
saved into the database, the tool can access the checkbox value 
from the UNIX/Linux environment and can use the same to 
configure itself.  

 

 

V. CHASING A DYNAMIC DESIGN 
 



 

The development schedule of a typical chip design project 
runs for months until the project is wrapped up. During this 
period, the design is very fluid and changes as new IPs are 
integrated. New connections can appear and existing ones can 
become obsolete. Designers run various tools periodically to 
quality-check the design. Since the design constantly changes, 
the data and reports generated by the tools also change. Care 
needs to be taken to ensure that no existing features are broken 
while newer ones are added as per the specification. This is 
easier said than done—it requires that team members 
constantly monitor tool reports. One way to tackle this is to 
keep reviewing data until the design is frozen. The designer 
may end up spending energy reviewing items that have already 
been reviewed multiple times and can easily miss design flaws 
that appear in reports. Since everything is dynamic, engineers 
may choose to run certain tools towards the end of the design 
cycle when the design is stable, closer to tape out. This indeed 
is a very common practice across many design teams. There are 
risks involved here, since there can be a spike in effort 
involved. Individuals may start prioritizing tasks that are 
deemed important and may choose to skip finer inspection of 
data. 

One way to solve the above problem is by evenly 
distributing the effort involved in data inspection throughout 
the design cycle instead of towards tape out. This can be 
achieved by data processing/visualization techniques. The raw 
data that comes out of a tool can be processed to extract only 
relevant information. The intermediate data can be stored into a 
database. For the second iteration, data processing techniques 
can be employed to find out the delta between the previous 
iteration and the current run. There can be differences and these 
can be presented in visualization by appropriately flagging the 
entries. The user can then focus more on changes in the design 
since the last tool run. When a delta is detected and resolved, 
comments and status can be added to it and it can be saved 
back into database along with the complete history information.  

The system can be designed to run at predefined intervals 
as soon as the project takes off. Users can spread the work 
evenly throughout the chip development cycle rather than 
increasing it at tape-out. The effort level comes down 
drastically and risk to the project is minimized.        

Example 2 represents the idea in brief. In the initial 
iteration, the data is extracted and processed. After data 
cleansing operations, it is saved into a database. The 
visualization tool (browser) fetches data from the database 
based on the user requirements. The user analyzes data, adds 
comments and status, and saves data. The data gets saved into 
the database and will be available to all users of the system. 
During the next iteration, the process is repeated. Deltas 
between each run are presented to the user. In the given 
example, the data in red refers to new/modified data and the 
data in strikethrough format represents deleted data. When a 
new visualization is generated, the comments/status from the 
older iterations can be rolled over or imported to the new 
visualization. This way, users may not waste time in reviewing 
data that has been reviewed previously. They can focus only on 
the changes flagged by the platform. 

 

 

Example 2 

 

VI. OTHER CONSIDERATIONS 
 

EDA vendors generally provide a tool or utility to analyze 
the design and generate reports. It is up to the user to decide 
how to interpret the tool output data. The size and architecture 
of designs may vary between design teams. Depending on their 
requirements, designers may choose to use a specific vendor 
tool to achieve a design goal or they may use an assorted list of 
tools. Hence the data obtained from flows using these tools can 
be very diverse. Again, each team may choose to focus on 
different aspects of tool data—for example one group may be 
focusing on achieving full code coverage on their design. 
Others may be more interested in achieving more functional 
coverage. In summary, it is not possible to create a generic 
platform to address everybody’s needs. In addition, each team 
may have individual preferences on how the data needs to be 
presented. For example, hardware design is organized 
hierarchically. One team’s requirement may be to capture data 
from all hierarchies in a single web page, yet others may want 
data to be more organized—per block level.  

Now the question remains whether it makes economic 
sense to invest in developing such a web application. The 
following are the obvious benefits: 

1. Chip data is collected, organized, and documented.  
Every aspect of the review process is recorded. 

2. It cuts down development time and brings down the 
effort involved. 

3. It reduces risk. 

4. Once historic data is available in an organized form, 
users can do interesting data analytics, for example, 
comparing different versions of designs. 

5. The system can be reused or shared between different 
groups in the company.  

6. The system can be built ground-up from freely 
available open source tools, so licensing fees can be 
minimal. 

Obviously there are technological challenges in 
implementing such a system, but the end product will be worth 
that investment. 



 

VII. TECHNOLOGY INVOLVED 
 

The following components are needed to implement the 
proposed platform: 

1. Script infrastructure to filter needed data from EDA log 
files or tool data. Data cleansing and extraction 
operations can be done here. Infrastructure based on 
languages such as perl, python, etc. can be used. The 
developer should be aware of what data is relevant and 
what needs to be extracted.  

2. A database to store the data. A data base is a program 
that runs perpetually on a machine that has the 
capability to store and retrieve data. Various standard 
database technologies are available, most notably 
NoSQL data bases like MongoDB.   

3. A web browser on the user’s device. The web browser 
connects the user to the web server. The visualization 
application will be physically located in the webserver 
and it will be downloaded to the browser from the 
webserver for execution. The applications executed in 
a browser are typically written in JavaScript and 
HTML (the front-end, user-facing part of the 
visualization application). Many open source front-end 
frameworks like Angular.js, D3.js and Bootstrap are 
available that further create higher-level abstractions of 
the front-end development tasks. All the code that is 
written for a browser is called “client side” code. The 
data needed by the application that runs on browser 
comes from the data base.  

4. A web server that hosts the application code. The web 
server helps to connect a browser with the database 
after authenticating the user. Many web server 
implementations are available, such as  Apache, which 
is difficult to set up and configure. Now there are 
newer technologies like Node.js that developers are 
adopting, which can be easier to configure and use. 
Frameworks developed on top of Node.js, like 
“Express.js,” make configuration and use of the web 
server very easy. All the code that is written for the 
webserver is called “server side” code. 

 

A variety of open source software bundles that integrate the 
technologies described above in a concise fashion exist today. 
One such bundle is called a MEAN stack (meanjs.org). It 
makes use of MongoDB, Express.js, Angular.js  and Node.js. 
The beauty of this framework is that all the components can be 
configured using only one programming language: JavaScript, 
as opposed to other technologies that involve a variety of 
programming languages specific to tools. This makes it very 
easy to develop and deploy applications using MEAN. 

VIII. IMPLEMENTATION ASPECTS 
 

The MEAN framework can be checked out of GitHub, as 
described in the MEAN website. The dependencies (MongoDB 
and Node.js) also need to be installed in the target machine. 

Once the MEAN framework is installed and configured, it can 
be a matter of minutes before the first sample site can be ready.   

The developer can also set up an authentication system that 
comes with the MEAN framework. It can be easily integrated 
with the company’s LDAP authentication scheme. Depending 
on the design data, the developer needs to come up with a 
schema. This is a simple JSON data structure that describes 
how data will be stored in a MongoDB database.  The schema 
should be set up in such a way that it also captures the time 
stamp and user ID of the end user. Additional fields also can be 
added to distinguish tool iterations.  

Once the data cleansing/extraction scripts that parse the 
EDA tool data extract the relevant information, the MongoDB 
database can be populated from the extraction script itself. The 
population of the database needs to use the same schema 
described above. Once populated, the visualization application 
running in the browser will have access to the data. 

Another important aspect of the user interface (UI) is the 
aesthetics of the visualization. The Bootstrap JavaScript library 
can be used to improve the look and feel of the site. For 
example, for the table visualization the end user may request to 
organize a table with a variety of UI features such as paging, 
filtering, accordion, and the like. All these can be integrated 
into the web page with minimal code.  

The various components of the MEAN framework are 
widely used in web development. All the tools used in the 
framework are open source and heavily documented. There are 
tons of resources and example code available on the Internet 
that can help anybody with the development of complex 
applications. 

IX. PRACTICAL EXAMPLES 
 

The system described above can also be extended to other 
areas of chip design, not just front-end design and verification.  

Many design teams use checklists for signoff purposes. It is 
generally a shared spreadsheet, checked into version control. 
As the spreadsheet grows in size and complexity, it becomes a 
problem to maintain. The above system can be used as an 
alternative to a spreadsheet. It can automatically store a history 
of edits, names of collaborators, etc.  Specific UI components 
can be added to make this a living document.  

 

For example, if a specific checkbox is selected in the 
webpage, the value of the same (checked/unchecked) can be 
assessed from the UNIX/Linux side. Tool configurations or 
wrappers can have access to the same value. 

Another interesting application can be online test plan 
generation and maintenance. Specific widgets are available that 
support in-place editing of text in a webpage.  Users can 
check/uncheck various scenarios in a test plan that are relevant 
to the product. Regression results can be automatically parsed 
and imported into the test plan. This will give an accurate idea 
of how much functionality in the design has been tested and 
how much is passing or failing. Most importantly, users can 



 

compare the previous regression runs with the current 
regression run and analyze what exactly changed. 

Code reviews are an important part of the design process. 
Most design teams review the connectivity at the top level of 
the chip with various IP owners. The code to be reviewed may 
amount to hundreds of thousands of lines. Many interesting 
observations and bugs can come out during code/connectivity 
reviews. It is a highly collaborative process. Formal/assertion 
tool-based reverse connectivity can be used to extract the 
connectivity of the top level. This can be converted into a 
connectivity table for users to review. They can go through the 
data and put in comments and status for each entry. As time 
proceeds, the design may change. After each design iteration, 
the data can be extracted and presented in such a way as to 
allow easy visualization of the changes, much like “tkdiff” 
works for basic text. The users can review only the changed 
information and sign off. This process can repeat until the 
design stabilizes and the project is taped out.  This system can 
potentially save hundreds of man-hours and can also create 
good documentation of the design connectivity.   

To illustrate this further, the connectivity of a block in the 
top level of a chip can be represented in a table as given in 
Example 3. 

 

 

Example 3 

 

Designers can browse through the table and update the 
status and comments. During review, they can flag erroneous 
connections. As time proceeds, the design may change. 
Example 4 shows “old design” and “new modified design” 
with a few changes in connections. Connectivity can again be 
extracted and presented in a similar table as given in Example 
3. Since we already have the connectivity data for the old 
design, data can be processed so that the comments and status 
of those fields for which connections has not changed can be 
rolled over to the new table.  

 

Example 4 

 

 

 

 

 

 

Example 5 

 

Example 5 shows the case where some connections are 
changed. In the “old design”, all bits of bus_0[2:0] were tried 
off to zero whereas in the “new modified design”, bit bus[0] is 
connected differently. In the table visualization, such changes 
can be highlighted as given in Example 5 and the reviewer can 
easily spot such delta changes in design. For example, the 
reviewer can sort and filter the table only to view unchecked 
checkboxes and it represents the new connections in the design, 
not yet reviewed. Hence this type of visualization aids team 
members to review only the changes in design as opposed to 
reviewing complete dataset, especially when there are 
thousands of connections to be reviewed. 

X. CONCLUSION 
 

For a given EDA tool report/data generated on a design, 
knowledge about the data points of interest and feedback on 
how data needs to be organized visually only comes through 
user experience. The information is not generally translated to 
specific utilities that industry can develop and use. This paper 
describes a way in which semiconductor companies can rapidly 
develop and prototype data mining tools in-house using an 
inexpensive MEAN development stack that combines the 
power of software tools like MongoDB, Express, AngularJS, 
and NodeJS.  While there is initial effort involved in 
implementing such a system, the benefits of having it far 
outweigh the initial investment. Examples from a real-world 
scenario involving code coverage and formal connectivity were 
presented. 
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