
TLM modeling and simulation for NAND
Flash and Solid State Drive systems

Tim Kogel, Victor Reyes - Synopsys

© Accellera Systems Initiative 1

Agenda

• Introduction to NAND Flash storage
• Solid State Drive challenges
• Virtual Prototyping
• SSD Reference VDK overview
• Summary

© Accellera Systems Initiative 2

Introduction
• Growing demand for Solid State Drives

in Enterprise and Client markets
– Time to market is shortening
– NAND Flash is the technology of choice

• SSD is non-volatile storage that can be
electrically erased and reprogrammed
+ High durability (vs. hard disks)
+ Fast access times (similar to DRAM)
– Finite number of writes to a block after

which it wears out

Source: Micron

© Accellera Systems Initiative 3

NAND Flash memory organization
A NAND Flash

memory package is
composed of ‘dies’

A die contains
Logical Units

(LUN)

A LUN is
organized
in ‘Planes’

A LUN
contains
‘Blocks’

A ‘Block’
contains
‘Pages’

A ‘Page’ is
composed of

8/16-bit words

© Accellera Systems Initiative 4

ONFI protocol

• Open NAND Flash Interface Specification
– www.onfi.org

• 34 standardized ONFI commands
(composed of cycles)
– 1 or 2 command cycles
– 0, 1, 3 or 5 address cycles
– Variable data read/write cycles

Mandatory
Commands

Optional
Commands

Read Multi-plane Change Row Address

Change Read Column Copyback Read Volume Select

Block Erase Change Read Column
Enhanced ODT Configure

Read Status Read Cache Random Read Unique ID

Page Program Read Cache Sequential Get Features

Change Write Column Read Cache End Set Features

Read ID Multi-plane LUN Get Features

Read Parameter Page Read Status Enhanced LUN Set Features

Reset Multi-plane ZQ Calibration Short

Page Cache Program ZQ Calibration Long

Copyback Program Reset LUN

Multi-plane Synchronous Reset

Small Data Move

© Accellera Systems Initiative 5

http://www.onfi.org/

SSD CHALLENGES

© Accellera Systems Initiative 6

NAND flash limitations

• Block erasure
– Erasure is always at a block level

• Memory wear
– NAND flash memory wears out, typically after 100k to 1M program/erase cycles
– Wear leveling balances write operations among blocks to avoid loss of capacity

• Read disturb
– Frequent reads between erases may change content of nearby cells
– The block’s content must copied over to another location and original block erased

© Accellera Systems Initiative 7

System complexity

© Accellera Systems Initiative

• Performance
– Dominated by controller latency and memory interface speeds
– Parallel NAND operations are required to scale bandwidth and hide latencies
– Fast host interfaces such PCIe (NVMe) are required

• Reliability
– Improved through ECC and overprovisioning

• Security
– Encryption

8

Firmware complexity
• SSD controllers are embedded processors executing

firmware-level software functions
– Bad block mapping
– Read and write caching
– Encryption
– Error detection and correction via Error-correcting code (ECC)
– Garbage collection
– Read scrubbing and read disturb management
– Wear leveling

• Flexible to support evolving algorithms and interface standards

• Optimized to provide highest performance

Flash Translation Layer
(FTL)

Host Interface Layer

Low Level Driver

Wear
Leveling

Garbage
Collection

Bad Block
Mapping

ECC

Nand Flash device

Host interface

© Accellera Systems Initiative 9

VIRTUAL PROTOTYPING

© Accellera Systems Initiative 10

Why do Virtual Prototyping?

© Accellera Systems Initiative

Virtual Prototype Development

SoC Development

SW Development
Shift Left

SoC Development SW Development

• Break Dependencies on RTL Availability (by using Transaction Level Models)
• Agile Software Development in Lock Step with Virtual Prototype Development

Incremental Approach

11

Virtualizer Development Kits (VDKs)

© Accellera Systems Initiative

• Software Development Kits that use a Virtual Prototype as a target
• VDK’s are fully functional models of the system executing target code (SW / FW)

Development board

Synopsys Virtual
Prototype

Software Stack

Early Availability

Easier Deployment

Better SW Development
Productivity

• Visibility
• Control and repeatability
• Fault Injection support
• Scriptable

12

Benefits and opportunities for SSD

© Accellera Systems Initiative

• Mitigate risk
– Try new software, architectures and components before starting implementation

• Early firmware development
– Develop, integrate and test controller firmware before silicon

• Customer enablement
– Share VDK based Software development platform with device maker

• Improve reliability
– Use fault injection capabilities to ensure robustness of firmware

13

SSD REFERENCE VDK OVERVIEW

© Accellera Systems Initiative 14

Custom VDK

Methodology reference kits

© Accellera Systems Initiative

,

• Jump start your custom VDK Development
• Simple Customization of your ARM CPU

subsystem
• Extend with your own IP or Synopsys IP

Libraries
• Simple Firmware booting out of the box as

a reference
• ONFI compliant TLM model examples

Initial Design
ARM Cluster, memory, …

SSD firmware
FTL, NAND, PCIe driver,…

Bare metal testing SW
For integration test build and source

Host
Interface

Your
peripherals

Custom Design
refined

Custom FW
refined

Integr. Tests
refined

SSD Reference VDK

SSD Reference VDK

CPU Sub
System

NAND
Flash IF StorageMemory

IF

15

SSD Reference VDK Block Diagram

© Accellera Systems Initiative

SSD device

Host
interface

PCIe
PCIe On-chip interconnect

Memory
interface

DRAM

CPU subsystem

CoreCore

NAND Flash
interface

Controller

NAND
driver

FTL firmware

PCIe
driver

Storage

CoreCoreCoreNAND
Flash

ONFI

FTL
command
generation

16

SSD Reference VDK Design
• Virtualizer Studio based VDK
• Easy reconfiguration of CPU subsystem

– Any number and types of cores
– Automatic connectivity

• Largest library of TLM models for interface IP
– DesignWare PCIe, USB3, SATA

• ONFI compliant configurable TLM models
– NAND Flash controller, including software driver
– NAND Flash memories with configurable number of LUN, planes, blocks, pages, etc.

• Script based FTL command generation with Python or TCL
© Accellera Systems Initiative 17

SSD Reference VDK in Virtualizer Studio

© Accellera Systems Initiative 18

NAND Flash Modeling Approach
• Separate Controller from Target devices

– Explicitly model the NAND Flash interface at the TLM level

• Provide reusable building blocks that encapsulate the NAND Flash protocol details
– Protocol engine(s) can be share across models
– Verify once, reuse many times
– Include best practices for simulation speed using callbacks and analysis instrumentation

• Include solution for model unit-testing
– Based on reusable objects and TLM Creator unit testing framework

• File based implementation to deal with high density storage
– Encapsulated as a reusable ‘Logical Unit’ object with debug and analysis instrumentation
– Highly configurable

© Accellera Systems Initiative 19

ONFI protocol TLM Modeling
NAND Flash Controller

ONFI
protocol
engine

NAND Flash Target

ONFI
socket

ONFI
protocol
engine

Command
callbacks

Ready/Busy
callback

Onfi/dma
control TX

FIFOAC
FIFO

RX
FIFO

registers

Register
callbacks

Ready busy
update

CEn

LUNLUN

config

Protocol engine object
decodes ONFI commands
and triggers callbacks

Logical Unit object
models the storage

Protocol engine object allows different levels of
timing and accuracy on the interface:
• Single transfer with overall time (fastest)
• Separate transfers for command, address and

data (more accurate)

© Accellera Systems Initiative

O
N

FI
 b

us

ONFI
socket

20

TLM
socket

Unit-Testing infrastructure
Component Test Setup

Model MirrorModel

Component
Test ClassComponent Test

Infrastructure
SystemC Aware

Assertions
void write_TheRegister() {

P.write32(TheRegister, 0x01);
SCML2_ASSERT_THAT(

P.read32(PERIOD.equals(0));
}

SCML2_ASSERT_THAT(condition);
SCML2_ASSERT_THAT(socket.read32(ADDRESS).equals(value);
SCML2_ASSERT_THAT(pin.equals(value));
SCML2_ASSERT_THAT(pin.equals(value).after_ms(amount));
SCML2_ASSERT_THAT(pin.equals(value).after_ns(amount));
SCML2_ASSERT_THAT(socket.read32(ADDR).equals(val).after_cycles(amount, CLK));
SCML2_ASSERT_THAT(socket.read32(ADDR).equals(val).within_ms(amount));
SCML2_ASSERT_THAT(socket.read32(ADDR).equals(val).within_ns(amount)):

• Automated execution
and reporting

• SystemC aware assertions

© Accellera Systems Initiative 21

ONFI Unit-Testing example
Test harness The test example below:

1. configures the target proxy
2. programs the controller to execute a read page command
3. waits until the command is completed
4. asserts that the command received is the one programmed

1

2

3
4

© Accellera Systems Initiative 22

NAND Flash Controller

ONFI
protocol
engine

Ready/Busy
callback

Onfi/dma
control

TX
FIFO

AC
FIFO

RX
FIFO

registers

Register
callbacks

Mirror
device

mockup

proxy

test

SSD Reference VDK Capabilities
• Execute, debug and test full SSD software stacks

– Debug with full visibility and correlation on software and
hardware events

– Automated testing for a large number of scenarios
– Analyze software statistics and utilization

• Analyze ONFI metrics
– Utilization of the NAND Flash controller
– Number and type of ONFI commands per memory
– Per block, number of erase operation
– Per page, number of read and program operation

• Configure and inject errors
– Factory defect mapping and dynamic data corruption

© Accellera Systems Initiative 23

SSD Reference VDK Software
• SW based on the “Cosmos OpenSSD platform”

– http://www.openssd-project.org
• Page-level mapping

– Emulates the functionality of an HDD
– Every logical page is mapped to a physical page
– Redirect each write request from the host to an empty

area already erased
• Garbage collection

– Reclaim new free blocks for future write requests
– Greedy algorithm: victim block is selected to minimize

search time
• NAND Controller driver

– Provides basic commands: block erase, read page,
program page, read status, etc.

– Provide data corruption fault checking

© Accellera Systems Initiative

Read sequence

select a page

logical to physical

read a page unit

DMA device to host

range done?
yes

no

Write sequence

find free page

program SSD

update map

range done?
yes

no

DMA host to device

pre-read

24

http://www.openssd-project.org/

Hardware / Software analysis
Scenario: NAND Flash Controller driver performing a reset command

© Accellera Systems Initiative

Function trace of main core
running FTL software

NAND Flash Controller
block registers

NAND Flash Controller
internal state

NAND Flash Controller
internal processed command type

ONFI bus state (Active|Idle)

NAND Target #0
ONFI command received

NAND Target #0 state
25

26© Accellera Systems Initiative

ONFI bus utilization in
percentage (Active / Idle)

Bad block detection SSD erase

IOPS (cycles per seconds)

Number and type of ONFI
commands per target

Number of erased blocks

Number of read and
program operations

Number of read and program
operations (sliced by page)

ONFI Statistics

Factory Defects and Error injection
Factory defect mapping (scriptable) Inject data corruption (scriptable)

SSD Reference VDK

Configurable
number of

corrupted bits

© Accellera Systems Initiative 27

Error injection analysis
SSD Reference VDK

Next Read Page operation
triggers ECC error

(detected by the NAND
Flash Controller)

Error is exposed to the
Software through the

controller registers
(ECC_ERROR_LAST)

Software routines checks
and clears the ECC fields

(assuming data integrity is
recovered by ECC hardware)

Inject data corruption on
NAND Target (scripting)© Accellera Systems Initiative 28

SUMMARY

© Accellera Systems Initiative 29

Summary
• SSD market is growing rapidly

• Use Virtual Prototyping to manage SSD development risks and challenges
– Software complexity start firmware development months before hardware
– Time to market enable customers early across the supply chain
– Performance optimization analyze hardware/software interactions and trend
– Data reliability validate many (error) scenarios with regression testing

• The SSD Reference VDK is the best starting point to engage!
– Ready out of the box with configurable models and example software
– Easy to customize and match an specific customer design
– Great analysis and scripting capabilities

© Accellera Systems Initiative 30

References
• “Overview of the NAND Flash High-Speed Interfacing and Controller Architecture”, Nina

Mitiukhina, IEE 5008 Memory Systems Final Report 0060805

• “Open NAND Flash Interface Specification, revision 4.0”, 2014, www.onfi.org

• “03 NAND Basics: Understanding the Technology Behind Your SSD”,
http://www.samsung.com/it/business-images/resource/white-
paper/2014/01/Samsung_SSD_WhitePaper_Final_PDF_130724d-0.pdf

• “NAND Flash 101: An Introduction to NAND Flash and How to Desing It In to Your Next
Product”, TN-29-19, www.micron.com

• “A Comparative Study of Flash Storage Technologies for Embedded Devices”, 2015,
www.datalight.com

http://www.onfi.org/
http://www.samsung.com/it/business-images/resource/white-paper/2014/01/Samsung_SSD_WhitePaper_Final_PDF_130724d-0.pdf
http://www.micron.com/
http://www.datalight.com/

Thank You!
Questions?

tim.kogel@synopsys.com
victor.reyes@synopsys.com

© Accellera Systems Initiative

mailto:tim.kogel@synopsys.com
mailto:victor.reyes@synopsys.com

	TLM modeling and simulation for NAND Flash and Solid State Drive systems
	Agenda
	Introduction
	NAND Flash memory organization
	ONFI protocol
	SSD challenges
	NAND flash limitations
	System complexity
	Firmware complexity
	Virtual Prototyping
	Why do Virtual Prototyping?
	Virtualizer Development Kits (VDKs)
	Benefits and opportunities for SSD
	SSD Reference VDK overview
	Methodology reference kits
	SSD Reference VDK Block Diagram
	SSD Reference VDK Design
	SSD Reference VDK in Virtualizer Studio
	NAND Flash Modeling Approach
	ONFI protocol TLM Modeling
	Unit-Testing infrastructure
	ONFI Unit-Testing example
	SSD Reference VDK Capabilities
	SSD Reference VDK Software
	Hardware / Software analysis
	ONFI Statistics
	Factory Defects and Error injection
	Error injection analysis
	summary
	Summary
	References
	Thank You!�Questions?

