
TLM-2.0 in SystemVerilog
Mark Glasser1, Janick Bergeron2

1Mentor Graphics Corporation
Fremont, CA

mark_glasser@mentor.com

2Synopsys, Inc.
Mountain View, CA

janick.bergeron@synopsys.com

Abstract—Transaction-level modeling (TLM) is a methodology
for building models at high levels of abstraction, those above
RTL. TLM-2.0 is a library that contains classes that implements
a methodology for building transaction-level models in systemC
and connecting them together. It was developed by OSCI and
released in 2009 and is now on its way to becoming an IEEE
standard as part of IEEE-1666-2011. In order to support new
use models in SystemVerilog, a translation of TLM-2.0 is now
included in UVM. This paper will describe the translation of
TLM-2.0 from SystemC to SystemVerilog.

I. INTRODUCTION

TLM-2.0 was released as a standard by OSCI in July 2009.
Since that time, it has become an important tool for building
interoperable transaction-level models. The OSCI standard has
been implemented in SystemC and to date has primarily been
used to build architectural models of bus-based platforms in
SystemC.

Recently, the SystemVerilog community has become in-
terested in TLM-2.0. TLM-2.0 provides a number of fea-
tures not available in TLM-1.0, including timing annotations,
bidirectional blocking and nonblocking interfaces, and the
generic payload. Although TLM-2.0 was primarily targeted
for building transaction-level models of bus-based systems,
those in the verification community are seeing that it can
be used effectively in building testbenches as well. Addi-
tionally, connecting TLM-2.0-based SystemC models into a
SystemVerilog environment is increasingly important in multi-
abstraction verification environments.

Having originally been designed and implemented in Sys-
temC, it was necessary to translate TLM-2.0 into SystemVer-
ilog. Because of the differences in the two languages, it was
not possible to translate the systemC implementation directly
into SystemVerilog.

In this paper we will discuss the issues encountered when
translating TLM-2.0 from SystemC to SystemVerilog and how
they were addressed. We provide a tour of the major features
on the SystemVerilog dialect of TLM-2.0. We will compare
the SystemC and SystemVerilog versions of TLM-2.0 and
show how to build essential structures using TLM-2.0. Finally,
we will present an agenda for future verification-related work
using the SystemVerilog version of TLM-2.0.

II. CHOOSING TLM-2.0 SUBSET

Translating any code between programming languages can
be tricky. It’s not simply a matter of converting syntax. The
problem lies in matching the semantics of the target language
to that of the source language. Douglas Hofstadter, in his
book “Le Ton beau de Marot” [3] where he discusses natural
language translation at length, says:

. . . I brought up some notions I had been exploring
about “generalized translation”. The basic idea was
to conceive of translation as the faithful transport of
some abstract pattern from one medium to another.

We may have an easier task translating computer code than
natural language text, as Hofstadter discusses. Nevertheless, it
is not the same as taking each line or function in SystemC and
re-writing it in SystemVerilog. In translating TLM-2.0 from
SystemC to SystemVerilog we tried to capture the essential
abstract pattern of the code’s meaning, i.e. the author’s intent,
and re-implement it in SystemVerilog. We were fortunate that
the authors intent is clearly stated in the TLM-2.0 LRM [5]
and in a reference implementation.

The essential features that we chose to focus on are:
• transport interfaces
• sockets
• generic payload
We felt that this was sufficient to implement the base

protocol and enable the kinds of TLM-2.0 structures that
are useful in implementing Verification IP and verification
environments.

III. TRANSLATION ISSUES

SystemC and TLM-2.0 are implemented in C++. Translating
some kinds of C++ code to SystemVerilog is straightforward,
some kinds are not.

Like C++, SystemVerilog is an object-oriented language and
supports classes and inheritance. However, SystemVerilog only
supports single inheritance, whereas C++ supports multiple-
inheritance. Multiple-inheritance had to be emulated in Sys-
temVerilog to translate TLM-2.0 code that was implemented
using multiple-inheritance in C++.

C++ provides a richer templating facility than SystemVer-
ilog does. In particular, C++ supports function templates which

are used in the implementation of TLM-2.0. SystemVerilog has
no such feature.

The convenience sockets in TLM-2.0 rely on function
pointers to register callbacks as implementations of the various
interface functions. SystemVerilog does not support function
pointers. It’s possible to implement callback registration in
convenience sockets as UVM supports the notion of callbacks.
The best strategy for building convenience sockets which have
function callbacks is still an area for investigation.

IV. IMPLEMENTATION DETAILS

In this section we will discuss the details of how TLM-2.0
is implemented in UVM.

Interfaces. TLM-2.0 contains two transport interfaces –
a blocking and a nonblocking transport. The nonblocking
transport interface provides bi-directional communication via
a forward transport path, and a backward transport path. The
nonblocking forward and backward transport paths perform
essentially the same operation, just in reverse directions.

The transport functions are specified in SystemC as follows:
void b_transport(TRANS& trans,

sc_core::sc_time& t);

tlm_sync_enum nb_transport_fw(TRANS& trans,
PHASE& phase,
sc_core::sc_time& t);

tlm_sync_enum nb_transport_bw(TRANS& trans,
PHASE& phase,
sc_core::sc_time& t);

TRANS and PHASE are the transaction type and phase
enum type, respectively, and these are specified as template
parameters. The SystemVerilog translation of these interfaces
is shown here:
task b_transport(T t, uvm_tlm_time delay);

function uvm_tlm_sync_e
nb_transport_fw(T t, ref P p,

input uvm_tlm_time delay);

function uvm_tlm_sync_e
nb_transport_bw(T t, ref P p,

input uvm_tlm_time delay);

In SystemC, the transaction, phase, and time are all passed
by reference. That means the target can modify the values of
those arguments and the new values will be reflected back
in the calling function. This pass-by-reference is one of the
key element of TLM-2.0. Whereas C++ uses an ampersand
on the right hand side of a variable to denote a reference,
SystemVerilog uses the keyword ref to do essentially the
same thing. The phase enum is a scalar so we use the ref
keyword to pass this arguments by reference. The transaction
and time arguments on the other hand are objects. Whereas
object variables are treated like any other scalar variable in
C++, object variables in SystemVerilog are always references
(i.e. pointers) to the object instance. When assigning or passing
object variables in SystemVerilog, object handles are passed
by value and the entire object is not copied. Passing an object
handle by value is similar to pass by reference. That is, the
recipient of the handle can modify the contents of the object

and those changes will be reflected back to the calling function
(or task). Thus it is not necessary to use the ref keyword for
the transaction and time arguments. Had we supplied the ref
keyword for the transaction object then that would mean the
value of the handle itself could be changed. Another object
could have been substituted for the one we passed in. That
semantic is not equivalent to pass-by-reference in C++.

Ports, Exports, and Imps. Ports and exports are connectors
through which control and data is transferred in a transaction-
level communication. A call to an interface function is initiated
on a port. A corresponding export, which is connected to the
port, responds. Since the port is making the call it requires
the interface function to be available. The export provides
is the entity that makes the function available. A transaction-
level connection can be threaded through the hierarchy in a
chain of ports and exports. On one end of the chain is a port,
which initiates a transaction. At the other end of the chain is
an imp which supplies the implementation of the function. For
more details on how ports, exports, and imps work see [2].

SystemC comes natively with ports and exports. That is,
port and export templates are part of the SystemC library.
Both the TLM-1.0 and TLM-2.0 SystemC libraries supply
interface templates, classes derived from sc_interface,
which are used to create ports and exports. SystemVerilog
does not natively have the notion of a port. However, base
port classes are provided by UVM. They were built to support
TLM-1.0 and now are used also to support TLM-2.0.

Defining a port in SystemC is a matter of supplying the
interface type to the port template. E.g.
sc_port <tlm_blocking_get_if < my_trans > > get_port;

The equivalent in SystemVerilog looks like this:
uvm_blocking_get_port #(my_trans) get_port;

In the TLM-1.0 library in SystemVerilog, a collection of
port objects exists, each specialized with the interface type.
Since SystemVerilog does not support multiple inheritance,
specialized classes are necessary. Each specialized port/export
class both extends and implements the interface. The Sys-
temVerilog implementation of TLM-2.0 also contains a set of
specialized port and export classes for the interfaces described
above. Unlike in TLM-1.0, users will not directly instantiate
and connect TLM-2.0 ports and exports. Instead, ports and
exports are used to construct sockets. Sockets are the objects
that are directly instantiated and connected to form TLM-2.0
connections between components.

Sockets. A socket is a combined port and export. A socket
represents a bidirectional connection between the initiator and
the target. For the blocking interfaces, the forward path is
activated by calling the task b_transport()1, and the
return path is the annotated transaction and delay arguments of
the task. For nonblocking interfaces, the forward and backward
paths are implemented by the nb_transport_fw() and
nb_transport_bw() functions respectively.

Depending on the type of socket, a socket either is a
port, is an export or imp, is a port and has an export or

1blocking interfaces must be tasks since functions cannot block

imp, or is an export and has a port. For the nonblocking
sockets, the initiator socket contains in implementation of
nb_transport_bw and the target socket contains an imple-
mentation of nb_transport_fw. Table I shows the possible
combinations.

Blocking Nonblocking

initiator IS-A fw port IS-A fw port;
HAS-A bw imp

target IS-A fw imp IS-A fw imp;
HAS-A bw port

pass-through
initiator

IS-A fw port IS-A fw port;
HAS-A bw export

pass-through
target

IS-A fw export IS-A fw export;
HAS-A bw port

TABLE I
SOCKET ORGANIZATION

IS-A refers to the object-oriented relationship of inheritance.
if D IS-A B then D inherits from B. HAS-A refers to an
association between objects. Details on relationships between
objects can be found in [4]. Discussion of how to represent
object relationships graphically using UML can be found in
[1].

The connection mechanism for sockets is the same as
for ports and exports since sockets are built upon ports
and export. A proper connection is ensured through a
combination of compile time and run time type checking.
The base class from which ports and exports are derived,
uvm_port_base#(IF) is the same base class from which
sockets are derived. uvm_port_base#(IF) contains a the
connect() method which is used to form a connection
between two objects derived from uvm_port_base — i.e.
ports, exports, imps, and sockets.

The function uvm_port_base: :connect() is virtual
and thus can be overridden by the derived class. For the
nonblocking sockets that are combined ports and exports,
the connect() function first calls super.connect()
which properly connects the base object. connect() per-
form as a run-time check to ensure that the connection
is valid. Finally, the subordinate object is connected. As
an example of this process here is the implementation of
uvm_tlm_nb_initiator_socket: :connect():

super.connect(provider);

if($cast(initiator_pt_socket, provider)) begin
initiator_pt_socket.bw_export.connect(bw_imp);
return;

end
if($cast(target_pt_socket, provider)) begin

target_pt_socket.bw_port.connect(bw_imp);
return;

end
if($cast(target_socket, provider)) begin

target_socket.bw_port.connect(bw_imp);
return;

end

c = get_comp();
‘uvm_error_context(get_type_name(),

"type mismatch in connect", c)

The call to super.connect() connects the base object,
which in this case is a port. An initiator socket can only be
connected to an initiator pass-through socket, a target pass-
through socket, or a target socket. The series of $cast()
calls checks to see which one of those it is and makes the
appropriate connection of the subordinate export. If the object
we are attempting to connect to is none of those socket types
then and error is emitted and no connection is made. The
connection process is similar for other socket types.

Generic Payload. The generic payload is designed to
represent a bus transaction. It contains address, data, and other
elements needed to describe a concrete transaction on a bus.
The main data structure is very simple: a collection of scalar
and array variables.

Translating those to SystemVerilog is straightforward. The
types used in the SystemC generic payload and their Sys-
temVerilog equivalents are shown in table II. Unsigned ints
in C++ are unsigned ints in SystemVerilog; Enumerated types
in SystemVerilog are very similar to those in SystemC. The
arrays defined as char* are translated to dynamic arrays of
unsigned bytes. A bool in SystemC is a bit in SystemVer-
ilog.

SystemC SystemVerilog

sc_dt::uint64 bit [63:0]

tlm_command uvm_tlm_command_e

unsigned char* byte unsigned[]

unsigned int int unsigned

tlm_response_status uvm_tlm_response_status_e

bool bit

TABLE II
TYPE TRANSLATION FOR THE GENERIC PAYLOAD

There are several key differences which are worth noting.
First, the SystemVerilog tlm_generic_payload class is
derived from uvm_sequence_item, whereas the SystemC
class does not inherit from any other class. In SystemVerilog,
this enables generic payload objects to be used as sequence
items. Another difference is the use of the rand keyword. Sys-
temC does not have an automated way of randomizing classes,
but SystemVerilog does. Either on its own or when used as a
sequence item, the generic payload can be randomized.

Extensions. The SystemC LRM says that any instance
of the generic payload can have an arbitrary number of
extensions, but only one of any specific type. So that means
that we need to be able to identify each extension object by
type and ensure that no more than one of any type is present
for a generic payload object.

In SystemC, extension objects of type T are derived from a

base object, tlm_extension<T>. The base object contains
some virtual functions for managing the extensions object,
clone(), copy_from(), and free(). In SystemVerilog,
a similar uvm_tlm_extension<T> class is provided. It is
derived from uvm_object which contains the interface for
basic object management such as copy(), clone(), etc. A
function for freeing an extension object is not necessary in
SystemVerilog as garbage collection is handled automatically.

In systemC, a function template is used by the
get_extension() method to obtain, from the
tlm_extension base class, an identifier that uniquely
identifies the extension type to be retrieved from the generic
payload object.
class tlm_generic_payload {

...
template <typename T>
void get_extension(T*& ext) const
{

ext = get_extension<T>();
}
template <typename T> T* get_extension() const
{

return static_cast<T*>(get_extension(T::ID));
}
// Non-templatized version with manual index:
tlm_extension_base*

get_extension(unsigned int index) const
{

return m_extensions[index];
}
...

}

Due to the lack of template functions in SystemVerilog, only
the non-templatized version of the get_extension() is
provided and the static function ID must be explicitly called.
Extensions can then be easily attached to, and later retrieved
from, a generic payload object instance.

class my_extension
extends uvm_tlm_extension<my_extension>;
...

endclass

my_extension ext1 = new("ext1");
gp.set_extension(ext1);
...
$cast(ext1, gp.get_extension(my_extension::ID));

Extensions have to be considered when copying, comparing,
and printing generic payload objects. The implementation of
do_copy(), do_compare(), do_print() iterates over
all attached extension instances in the generic payload object
and calls the corresponding copy, compare or print method on
the extension.

Managing Time. TLM-2.0 supports different timing accu-
racy models for transaction-level models written in SystemC.
A key element to being able to implement these various timing
models is the ability of decoupling the execution time of an
initiator from its target. This allows a target to model delays
and activity up to a point some time in the future without
having to involve multiple simulation threads or the scheduler.

This temporal decoupling is accomplished by advancing the
nominal simulation time for a transaction by incrementing

the sc_core::sc_time& t argument on the blocking and
nonblocking interface functions. The nominal transaction time
is subsequently decreased when appropriate when simulation
time physically advances.

SystemC models time values using the sc_time type.
Literal time values are specified by constructing an instance
of the sc_time class which requires a physical unit to be
specified. Because time values are always specified with a
physical unit, a target and an initiator will always interpret
a time value of 1.5ns the same way.
void b_transport(tlm_generic_payload& trans,

sc_core::sc_time& t)
{

...
sc_time delta(1.5, SC_NS);
t += delta;

}

Unfortunately, SystemVerilog inherited its time specification
system from Verilog. It uses a simple 64-bit integer value
and variable. The current t̀imescale implicitly specifies the
physical unit of those integer time values. SystemVerilog did
add the ability to explicitly specify a time unit with a time
literal. However, it is a simple compile-time syntactical artifice
and the resulting simulation-time value is still converted to a
pure integer value based on the current timescale.

This approach is fine as long as the time values remain
within the same compilation unit. SystemVerilog does not
allow the timescale to be changed within a compilation unit.
Therefore, the (unit-less) time values will be consistently
interpreted. However, once it becomes necessary to pass time
values across components that are implemented in different
compilation units (e.g. different modules or different pack-
ages), there is a definite possibility that they will interpret
the integer time values differently, with catastrophic results.
Using the SystemVerilog type was therefore not suitable to
exchange transaction timing information between an initiator
and a target.

The solution was to implement in SystemVerilog a time
type similar to SystemC’s sc_time type: uvm_tlm_time.
Like SystemC’s sc_time, it represents time values using
a specific time resolution (femtoseconds by default) into an
absolute canonical time value. It can convert this canonical
time value to and from a time value in the current timescale.
It can similarly be incremented or decremented by a time value
in the current timescale.

task b_transport(uvm_tlm_generic_payload trans,
uvm_tlm_time t);

...
t.incr(1.5ns, 1ns);

endtask

b_transport(gp, t);
#(t.get_realtime(1ns));
t.reset();

The "1ns" time literal value is used to identify the
timescale of the caller’s scope to the uvm_tlm_time
class, which is itself potentially compiled using a different
timescale. The implicit type conversion in SystemVerilog

converts the literal into a scaled, unit-less real time value. The
uvm_tlm_time class is then able to compute the timescale
of the caller by multiplying this reference time value by 1_0E9.
Once the scale of the caller is known, it is a simple matter of
dividing incoming time values or multiplying outgoing time
values to/from the resolution of the internal canonical time
value.

V. CROSS-LANGUAGE COMMUNICATION

An important use model for TLM-2.0 in SystemVerilog is
communicating between SystemVerilog and SystemC models.
Increasingly common is verification engineers wanting to use
SystemC architectural models as reference models in RTL
testbenches. Complex stimulus generators or other models
that are useful in testbenches may also exist in SystemC.
Rewriting models is precarious at best; it’s not easy to exactly
duplicate semantics between languages (a problem we have to
address in translating TLM-2.0 into SystemVerilog!) and, even
when semantic conversion is straightforward, ensure identical
behavior is difficult. Rather than rewriting those models in
SystemVerilog, it is usually preferable to connect the SystemC
models in a SystemVerilog verification environment.

For performance reasons, all the TLM-2.0 interfaces pass
transaction objects by reference. However, this presents a prob-
lem when passing transactions between language domains: it
is not possible to pass handles between language domains and
allow the handle to be dereferenced in a language domain
other than the one in which it was created.

When passing arguments by value, we can hide the data
conversion operation as part of the copy. No such hiding is
possible when doing pass-by-reference. That is why objects
cannot be passed between SystemVerilog and C using the
SystemVerilog DPI. Fortunately, one can attempt to emulate
pass-by-reference when an object is shared across a language
boundary.

One way would be to have a coherency mechanism that
would cause the sister object to be updated whenever an
object is modified. This is potentially complex and inefficient.
Implementing this mechanism would require a system of event
notifications and conversions between the two languages.

Fortunately, TLM-2.0 has well-defined timing points that are
the only time that objects shared between an initiator and a
target can be effectively modified. These timing points identify
when an object and its sister object need to be brought into
coherency cross the language boundary. Furthermore, these
timing points occur only when an interface function is called.
At other times it is acceptable that that there may be differ-
ences. When an interface function is called, a corresponding
call is made in the associated component across the language
boundary. At that point the passed transaction object can be
converted into the other language. This is essentially the same
as a pass-by-value model.

VI. CONCLUSIONS

The TLM-2.0 standard as ratified by OSCI is not just a Sys-
temC tool. It defines a methodology for building transaction-
level components that is independent of language. We have

shown how those semantics can be implemented in Sys-
temVerilog. Further, a facility that implements a large part
of the TLM-2.0 standard in SystemVerilog has been released
in UVM.

VII. FUTURE WORK

The most obvious area for future work is to translate more of
the elements that are in the OSCI standard into SystemVerilog.
This primarily means the convenience sockets.

It is unlikely that the SystemVerilog dialect of TLM-2.0 will
be used extensively to build transaction-level models for the
purpose of architectural analysis or for stepwise refinement
into RTL. This kind of activity is the domain of SystemC
and will likely remain there for a long time. However, there
is work to be done to invent and discover meaningful use
models for verification that rely on TLM-2.0 semantics. For
example, can the nonblocking interfaces be used to improve
the sequencer/driver interface? Is there an advantage to using
TLM-2.0 interfaces to connect monitors to scoreboards? These
are only a small sample of the questions to be investigated
concerning how to apply TLM-2.0 semantics to testbench
architectures.

REFERENCES

[1] M. Fowler. UML Distilled. Addison-Wesley, third edition edition, 2004.
[2] M. Glasser. The OVM Cookbook. Springer, 2009.
[3] D. R. Hofstadter. Le Ton beau de Marot: In Praise of the Music of

Language. Basic Books, 1997.
[4] J. Martin and J. Odell. Object-Oriented Methods: A Foundation. Prentice

Hall, 1995.
[5] Open SystemC Initiative. OSCI TLM-2.0 Language Reference Manual,

2009.

