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Abstract: 
This paper describes a new verification technique using Test-IP, which are pre-built UVM test sequences implemented 

using a combination of directed, intelligent testbench (iTBA), and random methods.  Test-IP converts an abstract test 

description defined in the UVM test into a series of protocol-specific burst sequence items passed to a standard 

verification-IP driver.  This paper describes why the technique was first developed for AXI bus fabric applications and 

references a case-study where it was used to verify a 2-port AXI DDR controller. 

 

The Test-IP approach differs from traditional approaches used with verification IP in the following ways: 

 Eliminates user requirements to understand how the verification IP works when implementing tests.  The user 

writes simple UVM tests 

 Each UVM test populates a simple configuration (cfg) class specifying the type of bus traffic to be generated  

 The cfg class contains user-defined address ranges/properties for peripheral addresses in the system. A set of cfg-

class controls defining bus master agent capabilities are also provided 

 Test-IP reads the cfg and generates traffic using intelligent testbench (iTBA) graph-based methods.  iTBA graphs 

target stimulus combinations inferred by the cfg class which can be validated using traditional functional coverage 

metrics 

 Supports optional generation of sequential address accesses for applications needing a more directed test approach 

 Supports optional random selection of various protocol fields for use in constrained-random (CRT) applications 

 

This technique vastly simplifies the test development process and achieves equivalent or superior functional coverage 

results in a fraction of the simulation time, and has applications in other verification work including bus fabric verification 

and performance profiling.  Similar test-IP components have been implemented supporting the full set of AMBA 

protocols including AHB, AXI4, and ACE and used in related applications in both OVM and UVM environments. 
 

Introduction 
Test-IP was first developed for an AMBA bus fabric application where the prior approach used a large number of directed 

sequences with limited functional coverage metrics.  Test effectiveness was limited because it relied entirely on the user’s 

capacity to write enough sequences without adequate feedback from functional coverage metrics.  Test-IP supporting AXI 

was developed to address both the test capacity and test effectiveness problems. 

 

Figure 1 shows a typical UVM fabric application using traditional directed sequences targeting AXI slaves in the system, 

with user-developed code highlighted in yellow.  User directed sequences construct AXI bursts targeting various slaves 

required different addressing and burst construction depending on slave design. Unique sequences were needed for each 

master because different masters typically have different slave connectivity on the fabric.  Each master would typically 

manage multiple outstanding read and write bursts which could interleave, further complicating the design of the 

sequences.  Developing functional coverage to measure that each master accessed its target slaves generating the legal 

subset of AXI protocol supported by those slaves was too difficult to implement, leaving no effective means to assure 

tests were effective. 

 



 
Figure 1: Typical Directed Sequence Application where Test-IP could be applied 

 

 
Figure 2: Fabric Application with Test-IP applied 

 

Figure 2 shows the same application, but using Test-IP.  The key elements of the Test-IP approach are: 

 The Test-IP sequence never changes 

 Behavior of each Test-IP sequence is controlled by a user-developed configuration class (cfg) 

 Users specify cfg class controls identifying addresses for slaves to target including per-slave restrictions on the 

type of bursts generated 

 Users specify cfg class controls managing how its associated master operate including burst interleave behavior, 

transaction gaps between bursts, stimulus coverage targeting, random or incrementing data payloads, and 

sequence termination controls 

 

Benefits of the Test-IP approach in this application included: 

 Significant reduction in the amount and complexity of test code to develop.  The user only needed to write simple 

cfg classes specifying how the associated Test-IP sequence operates 

 Eliminated requirements to understand VIP internals as they were handled by Test-IP 

 Automatic generation of stimulus functional coverage metrics to measure test effectiveness built-in to Test-IP 

 

The balance of the paper describes Test-IP configuration class (cfg) controls and how Test-IP is implemented.  An 

application of Test-IP for verifying a 2-port AXI DDR controller is then described, comparing before and after results.   

Lessons learned from this work and prospects for applying the Test-IP approach for other bus protocols and applications 

are discussed in the summary. 

 

Test-IP Configuration Class Overview 
The user-interface to control Test-IP is a configuration class (cfg) constructed during the build phase of a UVM test.  The 

usage shown in Figure 3 is typical.  Users of Test-IP only need to understand the cfg controls to use Test-IP.  Each cfg 

class instance is registered with the  uvm_config_db and looked-up by an associatedTest-IP sequence instance using a 

uvm_config_db “get” call. 



 

Figure 3: Test-IP configuration class construction with typical fields shown 

There are three types of cfg fields which users specify when setting up a test: 

 Address range specification (min 1, max 32, corresponds to AXI addresses the Master will target) 

 AXI Master control fields (~50 fields, configure the overall behavior of the AXI Master) 

 uvm_config_db::set() call to register the cfg class with the uvm configuration database 

Test-IP cfg Class Address Specification Controls 

Cfg class address ranges identify addresses the Test-IP targets during simulation.  These address ranges are typically 

associated with specific slave peripherals in the system, or regions of memory to target.  A typical address range 

specification block is shown in Figure 4: 



 

Figure 4: Test-IP cfg Class Address Range Qualifiers 

In this example address ranges 1..5 are added to the cfg class, each range specifying a start and end addresses, and range-

specific qualifiers encoded in an enable_mask.  There are no restrictions on address overlapping across multiple ranges.  

Various enable_mask qualifiers may be specified to restrict the types of accesses in the respective range: 

 Access type: For AXI these are in the set AXI_NORMAL|EXCLUSIVE|LOCKED 

 Burst types: For AXI these are in the set AXI_INCR|FIXED|WRAP 

 Bus size: For AXI, the size in bytes of the R|W channels and may allow narrow transfers 

 Cache and Protection qualifiers: AXI-specific 

 Read-only or Write-only qualifiers 

 Optional ID associated with specific range accesses 

The example also specifies an optional “addr_range_sequence” which restricts address selection to a sequence of 

address_ranges for applications needing sequential bus accesses.  This feature enables generation of sequential reads or 

writes to one or more slave targets: 

 cfg.addr_range_sequence= {1,2,3,4,4,4,4,5,5,5,5,4,5,4,5}; 

Optional control: 

 cfg.incr_address_in_rng = 1; 

enables an automatic address increment logic to increment up through each address range address space.  This control is 

useful in fabric verification as it avoids overlapping in-flight accesses targeting the same address, which might occur in a 

CRT testbench that uses random address selection. 

Test-IP cfg Class Global Controls 

Remaining cfg class controls specify how bursts are constructed by the associated bus master agent.  Controls apply to all 

address ranges.  Figure 5 shows some common controls for AXI: 



 

Figure 5: Test-IP cfg Class Global Controls for AXI Test-IP 

The set of controls include bus-protocol-specific controls, and general controls that determine how the associated UVM 

Test-IP sequence operates: 

 Burst attributes including alignment, write strobes, data 

 Low-level burst construction controls (AXI channel (i.e. phase) controls, channel interleaving) 

 Termination controls and transaction gap 

 Address range sequencing, write-before-read option 

 

Current Test-IP implementation supports random or incrementing data selection using control en_rand_data.  Access to 

external data in a TLM fifo could be implemented as an enhancement. 

Test-IP cfg class uvm_config_db assignment 

The user-constructed cfg class is put into the uvm_config_db using the syntax shown in Figure 6.  The associated Test-IP 

sequence instance will locate this cfg entry in the uvm_config_db when the sequence is started during simulation. 

 

Figure 6: Test-IP uvm_config_db::set call used with Test-IP cfg classes 

Test-IP also supports direct assignment of cfg class instances to their respective sequences for applications where 

sequences are created and started in a UVM virtual sequence. 



Test-IP Internal Implementation 
Users of Test-IP need only understand the controls provided in the cfg class, while Test-IP developers will need to 

understand the design of the Test-IP sequence and the verification IP it controls.  The main elements of Test-IP are shown 

in Figure 7: 

 

Figure 7: Test-IP Sequence Implementation 

Cfg-class Design: 

Each cfg class extends from uvm_object and contains cfg variables and related functions specific to the VIP bus protocol 

it supports.  A number of common cfg variables and functions are independent of the VIP protocol and form a common 

set of controls to simplify usage in applications using multiple types of Test-IP.  The protocol-specific cfg class contains 

functions to access the config_db, check functions to validate cfg class definitions are consistent, and routines to print cfg 

info to the transcript. 

Sequence Design: 

Test-IP Sequences are UVM sequences that internally call an inFact graph that populates VIP sequence item fields based 

on settings provided in the user’s cfg class.  The inFact graph is protocol-specific and understands the various burst 

construction options and fields, along with the user-defined address ranges being targeted.  Figure 8 shows the inFact 

graph used inside AXI Test-IP: 



 

Figure 8: AXI Test-IP Graph Example 

Some of the important aspects of this graph design include: 

 Address range selection options 

 Three main vertical branches corresponding to AXI Normal|Exclusive|Locked accesses 

 Read or Write sub-branches 

 Optional sub-branches to configure channel-level phasing and delays 

 Logic to insert transaction gaps 

 Various algebraic constraints (not shown) that: 

o Enable|disable different graph branches based on user cfg class settings 

o Control burst construction based on user cfg class settings 



o Implement AXI-specific address alignment based on burst type 

o Implement address increment logic if specified in the cfg 

o Restrict burst construction based on cfg class address_range enable_mask attributes 

 Various color-coded stimulus coverage regions that inFact algorithms target during simulation when user cfg 

controls enable stimulus coverage 

The inFact Test-IP sequence and underlying graph are configurable during simulation based on the user-specified cfg 

controls, and any VIP parameterization for (AXI) bus widths and related attributes.  This means that each Test-IP 

sequence instance is likely to be unique even though the Test-IP sequence code never changes.   Another important design 

attribute of the Test-IP is the built-in stimulus coverage provided by the underlying inFact technology.  This stimulus 

coverage assures that all slave peripherals identified in the cfg class address_map are targeted with all possible burst 

constructions.  Results from these stimulus coverages are saved in a covergroup managed by the Test-IP sequence. 

Using Test-IP to Verify an AXI DDR Controller 
An existing mostly directed OVM test environment having multiple sequences and functional coverage was retrofitted to 

use Test-IP.   This enabled comparison of the two different approaches.  Figure 9 shows the original test environment: 

 

Figure 9: Original Directed/CRT Testbench Architecture for the AXI DDR Controller 

The AXI DDR controller is used in a larger SOC design and provides DDR memory access to an internal processor on 

one interface, and various peripherals on the bus fabric interface.  Some of the more difficult verification challenges 

involved testing of new logic added to a pre-existing single port controller design: 

 

 Verifying priority-access control logic that re-orders queued memory accesses works properly, by generating 

sequential memory accesses on both ports that cause internal states to be hit. 

 Verifying queue buffer logic is capable of handling all AXI transaction size variations presented on both ports 

 Verifying the controller supports all specified AXI burst constructions and channel timing variations for each 

respective port, where the two ports have different capabilities  

 

Various tests and sequences highlighted in yellow target functional coverage goals measured by functional coverage 

implemented as bus monitors provided by the VIP (not shown) and instrumented internally in the controller RTL (state 

machine transition coverage).  

The original Directed/CRT testbench required a large number of tests and sequences to meet functional coverage goals 

due to a variety of issues: 

 Requires detailed VIP knowledge to write test sequences 

 Difficulty achieving functional coverage using CRT because highly-sequential bus traffic is needed, requiring 

many custom sequences and iteration across simulation seeds 



 Difficulty implementing directed tests as complex procedural code is needed to construct sequential accesses on 

both controller ports 

 

This original testbench and design were analyzed to determine the best way to deploy Test-IP and a test design identified 

containing 7 separate tests as shown in Figure 10: 

 
Figure 10: Test-IP Testbench Architecture for the AXI DDR Controller 

Seven distinct tests were identified that were logically equivalent to the original set of 93 Directed/CRT tests as show in 

Figure 11.  Each test was described by a pair of cfg classes constructed in the OVM Test that are passed to the AXI Test-

IP sequence, which in-turn transforms it into a series of AXI bursts  

Test Name Test Purpose & Design 

Token Test Verifies behavior w/multiple concurrent near-proximity reads. Implement using 5-interleaved back-

to-back reads on fabric port w/varying AXI_IDs 

Priority Test Verifies priority given to high-priority AXI_ID using a mix of traffic on both ports, NORMAL & LOCK, 

reads & writes, non-adjacent addrs to avoid read combining 

Exhaustive Test Verifies all supported burst types , atomic modes, sizes, write strobes across a fixed set of AXI_IDs. 

Slverr Test Verifies controller responds to unsupported AXI_FIXED access with slverr response 

Range Test Verifies controller can access all memory pages generating burst that span large addr increments 

R/W interleave 

Test 

Verifies correct operation at the channel level for interleaved reads/writes on both ports with 

varying address/data/response timing 

Figure 11: Test-IP Test Partitioning for the AXI DDR Controller 

Figure 12 shows the essential elements of the Token Test implementation to illustrate how AXI Test-IP is configured and 

used.  All tests extend from a infact_base* class that defines common cfg settings used by all tests.  The Token test 

constructs two cfg objects configured to generate memory accesses on the two AXI controller ports.  For this test the axi0 

port was kept largely inactive, while the axi1(fabric) port is accessed with an addr_range_sequence of back-to-back reads 

using a mix of fixed and varying AXI_IDs. 



Figure 12: Test-IP Test Implementation for the AXI DDR Token Test 

Results Using Test-IP to Verify an AXI DDR Controller 
 

 

 

 

The test-IP approach offered some key benefits over CRT/Directed methods in this application 

 Leverages pre-built test-IP sequences … less code to write 

 Simple test design reduces the amount of user-code by >40x 

 Corner cases easily hit without any requirement to re-run simulations at different seeds, resulting in an overall 

reduction in simulation time to reach equivalent CRT coverage by 68x 

 Supports stimulus coverage targeting for variables and cross combinations using iTBA methods built-in to the 

test-IP 

 Option to generate random bursts constrained by cfg class settings 

 Supports “directed style” tests where address sequences can be specified having important attributes needed to hit 

coverage cases, ie: read@id1, write@id2, read@id3... and so on..   

Metric CRT/ Directed Test-IP Approach Benefit 

#lines user testbench code 40,000 850 47x less 

#OVM tests 93 7 13x fewer 

Simulation  time to coverage 17hrs 15min 68x faster 



Findings and Conclusion 
Test-IP has the potential to significantly reduce the amount of work verification engineers spend generating bus traffic 

when verifying devices like memory controllers, bus fabrics, routers, and switches.  Equivalent tests implemented using 

either CRT or Directed test methods have difficulty meeting coverage goals, and often require many more tests and low-

level test coding to implement.  Verification engineers must also understand the low-level implementation details of their 

verification IP to develop these tests and sequences.  Test-IP eliminates the requirement to understand these details. 

Test-IP leverages the built-in stimulus targeting features of the underlying inFact technology, which can automatically 

adapt the targeted stimulus based on instance-specific test configurations.   There is no equivalent methodology using 

CRT or Directed techniques.  While users are always encouraged to write System Verilog functional coverage models, the 

effort to do so can be prohibitive and often functional coverage is dropped when project timelines are critical.  Test-IP 

adds stimulus coverage targeting for such applications, reducing the time to reach System Verilog functional coverage 

goals (if implemented), or increasing confidence using the built-in stimulus coverage targeting. 

Protocols supported today using Test-IP include Amba ahb, axi, axi4, and ace.  Other standard bus protocols could be 

supported.  While Test-IP today is primarily intended for applications having an arbitrary data payload, the architecture 

could be extended to access application-specific data contained in a TLM fifo, which could be either static data, or data 

generated by a higher-level UVM sequence designed to generate real data in an SOC system. 

Test-IP is most easily implemented using inFact graph-based UVM sequences, and could be designed to drive various 

types of verification IP as long as the VIP has well-architected sequence items.  Non-inFact Test-IP could be developed 

using a combination of directed and random techniques, though the adaptive nature of the inFact-based Test-IP graphs and 

stimulus coverage targeting would be difficult to implement. 


