
Title: Using Test-IP Based Verification Techniques in a UVM

Environment

Vidya Bellippady Sundar Haran Jay O’Donnell

Microsemi Corporation Microsemi Corporation Mentor Graphics

San Jose, CA Hyderabad, India Seattle, WA

Abstract:
This paper describes a new verification technique using Test-IP, which are pre-built UVM test sequences implemented

using a combination of directed, intelligent testbench (iTBA), and random methods. Test-IP converts an abstract test

description defined in the UVM test into a series of protocol-specific burst sequence items passed to a standard

verification-IP driver. This paper describes why the technique was first developed for AXI bus fabric applications and

references a case-study where it was used to verify a 2-port AXI DDR controller.

The Test-IP approach differs from traditional approaches used with verification IP in the following ways:

 Eliminates user requirements to understand how the verification IP works when implementing tests. The user

writes simple UVM tests

 Each UVM test populates a simple configuration (cfg) class specifying the type of bus traffic to be generated

 The cfg class contains user-defined address ranges/properties for peripheral addresses in the system. A set of cfg-

class controls defining bus master agent capabilities are also provided

 Test-IP reads the cfg and generates traffic using intelligent testbench (iTBA) graph-based methods. iTBA graphs

target stimulus combinations inferred by the cfg class which can be validated using traditional functional coverage

metrics

 Supports optional generation of sequential address accesses for applications needing a more directed test approach

 Supports optional random selection of various protocol fields for use in constrained-random (CRT) applications

This technique vastly simplifies the test development process and achieves equivalent or superior functional coverage

results in a fraction of the simulation time, and has applications in other verification work including bus fabric verification

and performance profiling. Similar test-IP components have been implemented supporting the full set of AMBA

protocols including AHB, AXI4, and ACE and used in related applications in both OVM and UVM environments.

Introduction
Test-IP was first developed for an AMBA bus fabric application where the prior approach used a large number of directed

sequences with limited functional coverage metrics. Test effectiveness was limited because it relied entirely on the user’s

capacity to write enough sequences without adequate feedback from functional coverage metrics. Test-IP supporting AXI

was developed to address both the test capacity and test effectiveness problems.

Figure 1 shows a typical UVM fabric application using traditional directed sequences targeting AXI slaves in the system,

with user-developed code highlighted in yellow. User directed sequences construct AXI bursts targeting various slaves

required different addressing and burst construction depending on slave design. Unique sequences were needed for each

master because different masters typically have different slave connectivity on the fabric. Each master would typically

manage multiple outstanding read and write bursts which could interleave, further complicating the design of the

sequences. Developing functional coverage to measure that each master accessed its target slaves generating the legal

subset of AXI protocol supported by those slaves was too difficult to implement, leaving no effective means to assure

tests were effective.

Figure 1: Typical Directed Sequence Application where Test-IP could be applied

Figure 2: Fabric Application with Test-IP applied

Figure 2 shows the same application, but using Test-IP. The key elements of the Test-IP approach are:

 The Test-IP sequence never changes

 Behavior of each Test-IP sequence is controlled by a user-developed configuration class (cfg)

 Users specify cfg class controls identifying addresses for slaves to target including per-slave restrictions on the

type of bursts generated

 Users specify cfg class controls managing how its associated master operate including burst interleave behavior,

transaction gaps between bursts, stimulus coverage targeting, random or incrementing data payloads, and

sequence termination controls

Benefits of the Test-IP approach in this application included:

 Significant reduction in the amount and complexity of test code to develop. The user only needed to write simple

cfg classes specifying how the associated Test-IP sequence operates

 Eliminated requirements to understand VIP internals as they were handled by Test-IP

 Automatic generation of stimulus functional coverage metrics to measure test effectiveness built-in to Test-IP

The balance of the paper describes Test-IP configuration class (cfg) controls and how Test-IP is implemented. An

application of Test-IP for verifying a 2-port AXI DDR controller is then described, comparing before and after results.

Lessons learned from this work and prospects for applying the Test-IP approach for other bus protocols and applications

are discussed in the summary.

Test-IP Configuration Class Overview
The user-interface to control Test-IP is a configuration class (cfg) constructed during the build phase of a UVM test. The

usage shown in Figure 3 is typical. Users of Test-IP only need to understand the cfg controls to use Test-IP. Each cfg

class instance is registered with the uvm_config_db and looked-up by an associatedTest-IP sequence instance using a

uvm_config_db “get” call.

Figure 3: Test-IP configuration class construction with typical fields shown

There are three types of cfg fields which users specify when setting up a test:

 Address range specification (min 1, max 32, corresponds to AXI addresses the Master will target)

 AXI Master control fields (~50 fields, configure the overall behavior of the AXI Master)

 uvm_config_db::set() call to register the cfg class with the uvm configuration database

Test-IP cfg Class Address Specification Controls

Cfg class address ranges identify addresses the Test-IP targets during simulation. These address ranges are typically

associated with specific slave peripherals in the system, or regions of memory to target. A typical address range

specification block is shown in Figure 4:

Figure 4: Test-IP cfg Class Address Range Qualifiers

In this example address ranges 1..5 are added to the cfg class, each range specifying a start and end addresses, and range-

specific qualifiers encoded in an enable_mask. There are no restrictions on address overlapping across multiple ranges.

Various enable_mask qualifiers may be specified to restrict the types of accesses in the respective range:

 Access type: For AXI these are in the set AXI_NORMAL|EXCLUSIVE|LOCKED

 Burst types: For AXI these are in the set AXI_INCR|FIXED|WRAP

 Bus size: For AXI, the size in bytes of the R|W channels and may allow narrow transfers

 Cache and Protection qualifiers: AXI-specific

 Read-only or Write-only qualifiers

 Optional ID associated with specific range accesses

The example also specifies an optional “addr_range_sequence” which restricts address selection to a sequence of

address_ranges for applications needing sequential bus accesses. This feature enables generation of sequential reads or

writes to one or more slave targets:

 cfg.addr_range_sequence= {1,2,3,4,4,4,4,5,5,5,5,4,5,4,5};

Optional control:

 cfg.incr_address_in_rng = 1;

enables an automatic address increment logic to increment up through each address range address space. This control is

useful in fabric verification as it avoids overlapping in-flight accesses targeting the same address, which might occur in a

CRT testbench that uses random address selection.

Test-IP cfg Class Global Controls

Remaining cfg class controls specify how bursts are constructed by the associated bus master agent. Controls apply to all

address ranges. Figure 5 shows some common controls for AXI:

Figure 5: Test-IP cfg Class Global Controls for AXI Test-IP

The set of controls include bus-protocol-specific controls, and general controls that determine how the associated UVM

Test-IP sequence operates:

 Burst attributes including alignment, write strobes, data

 Low-level burst construction controls (AXI channel (i.e. phase) controls, channel interleaving)

 Termination controls and transaction gap

 Address range sequencing, write-before-read option

Current Test-IP implementation supports random or incrementing data selection using control en_rand_data. Access to

external data in a TLM fifo could be implemented as an enhancement.

Test-IP cfg class uvm_config_db assignment

The user-constructed cfg class is put into the uvm_config_db using the syntax shown in Figure 6. The associated Test-IP

sequence instance will locate this cfg entry in the uvm_config_db when the sequence is started during simulation.

Figure 6: Test-IP uvm_config_db::set call used with Test-IP cfg classes

Test-IP also supports direct assignment of cfg class instances to their respective sequences for applications where

sequences are created and started in a UVM virtual sequence.

Test-IP Internal Implementation
Users of Test-IP need only understand the controls provided in the cfg class, while Test-IP developers will need to

understand the design of the Test-IP sequence and the verification IP it controls. The main elements of Test-IP are shown

in Figure 7:

Figure 7: Test-IP Sequence Implementation

Cfg-class Design:

Each cfg class extends from uvm_object and contains cfg variables and related functions specific to the VIP bus protocol

it supports. A number of common cfg variables and functions are independent of the VIP protocol and form a common

set of controls to simplify usage in applications using multiple types of Test-IP. The protocol-specific cfg class contains

functions to access the config_db, check functions to validate cfg class definitions are consistent, and routines to print cfg

info to the transcript.

Sequence Design:

Test-IP Sequences are UVM sequences that internally call an inFact graph that populates VIP sequence item fields based

on settings provided in the user’s cfg class. The inFact graph is protocol-specific and understands the various burst

construction options and fields, along with the user-defined address ranges being targeted. Figure 8 shows the inFact

graph used inside AXI Test-IP:

Figure 8: AXI Test-IP Graph Example

Some of the important aspects of this graph design include:

 Address range selection options

 Three main vertical branches corresponding to AXI Normal|Exclusive|Locked accesses

 Read or Write sub-branches

 Optional sub-branches to configure channel-level phasing and delays

 Logic to insert transaction gaps

 Various algebraic constraints (not shown) that:

o Enable|disable different graph branches based on user cfg class settings

o Control burst construction based on user cfg class settings

o Implement AXI-specific address alignment based on burst type

o Implement address increment logic if specified in the cfg

o Restrict burst construction based on cfg class address_range enable_mask attributes

 Various color-coded stimulus coverage regions that inFact algorithms target during simulation when user cfg

controls enable stimulus coverage

The inFact Test-IP sequence and underlying graph are configurable during simulation based on the user-specified cfg

controls, and any VIP parameterization for (AXI) bus widths and related attributes. This means that each Test-IP

sequence instance is likely to be unique even though the Test-IP sequence code never changes. Another important design

attribute of the Test-IP is the built-in stimulus coverage provided by the underlying inFact technology. This stimulus

coverage assures that all slave peripherals identified in the cfg class address_map are targeted with all possible burst

constructions. Results from these stimulus coverages are saved in a covergroup managed by the Test-IP sequence.

Using Test-IP to Verify an AXI DDR Controller
An existing mostly directed OVM test environment having multiple sequences and functional coverage was retrofitted to

use Test-IP. This enabled comparison of the two different approaches. Figure 9 shows the original test environment:

Figure 9: Original Directed/CRT Testbench Architecture for the AXI DDR Controller

The AXI DDR controller is used in a larger SOC design and provides DDR memory access to an internal processor on

one interface, and various peripherals on the bus fabric interface. Some of the more difficult verification challenges

involved testing of new logic added to a pre-existing single port controller design:

 Verifying priority-access control logic that re-orders queued memory accesses works properly, by generating

sequential memory accesses on both ports that cause internal states to be hit.

 Verifying queue buffer logic is capable of handling all AXI transaction size variations presented on both ports

 Verifying the controller supports all specified AXI burst constructions and channel timing variations for each

respective port, where the two ports have different capabilities

Various tests and sequences highlighted in yellow target functional coverage goals measured by functional coverage

implemented as bus monitors provided by the VIP (not shown) and instrumented internally in the controller RTL (state

machine transition coverage).

The original Directed/CRT testbench required a large number of tests and sequences to meet functional coverage goals

due to a variety of issues:

 Requires detailed VIP knowledge to write test sequences

 Difficulty achieving functional coverage using CRT because highly-sequential bus traffic is needed, requiring

many custom sequences and iteration across simulation seeds

 Difficulty implementing directed tests as complex procedural code is needed to construct sequential accesses on

both controller ports

This original testbench and design were analyzed to determine the best way to deploy Test-IP and a test design identified

containing 7 separate tests as shown in Figure 10:

Figure 10: Test-IP Testbench Architecture for the AXI DDR Controller

Seven distinct tests were identified that were logically equivalent to the original set of 93 Directed/CRT tests as show in

Figure 11. Each test was described by a pair of cfg classes constructed in the OVM Test that are passed to the AXI Test-

IP sequence, which in-turn transforms it into a series of AXI bursts

Test Name Test Purpose & Design

Token Test Verifies behavior w/multiple concurrent near-proximity reads. Implement using 5-interleaved back-

to-back reads on fabric port w/varying AXI_IDs

Priority Test Verifies priority given to high-priority AXI_ID using a mix of traffic on both ports, NORMAL & LOCK,

reads & writes, non-adjacent addrs to avoid read combining

Exhaustive Test Verifies all supported burst types , atomic modes, sizes, write strobes across a fixed set of AXI_IDs.

Slverr Test Verifies controller responds to unsupported AXI_FIXED access with slverr response

Range Test Verifies controller can access all memory pages generating burst that span large addr increments

R/W interleave

Test

Verifies correct operation at the channel level for interleaved reads/writes on both ports with

varying address/data/response timing

Figure 11: Test-IP Test Partitioning for the AXI DDR Controller

Figure 12 shows the essential elements of the Token Test implementation to illustrate how AXI Test-IP is configured and

used. All tests extend from a infact_base* class that defines common cfg settings used by all tests. The Token test

constructs two cfg objects configured to generate memory accesses on the two AXI controller ports. For this test the axi0

port was kept largely inactive, while the axi1(fabric) port is accessed with an addr_range_sequence of back-to-back reads

using a mix of fixed and varying AXI_IDs.

Figure 12: Test-IP Test Implementation for the AXI DDR Token Test

Results Using Test-IP to Verify an AXI DDR Controller

The test-IP approach offered some key benefits over CRT/Directed methods in this application

 Leverages pre-built test-IP sequences … less code to write

 Simple test design reduces the amount of user-code by >40x

 Corner cases easily hit without any requirement to re-run simulations at different seeds, resulting in an overall

reduction in simulation time to reach equivalent CRT coverage by 68x

 Supports stimulus coverage targeting for variables and cross combinations using iTBA methods built-in to the

test-IP

 Option to generate random bursts constrained by cfg class settings

 Supports “directed style” tests where address sequences can be specified having important attributes needed to hit

coverage cases, ie: read@id1, write@id2, read@id3... and so on..

Metric CRT/ Directed Test-IP Approach Benefit

#lines user testbench code 40,000 850 47x less

#OVM tests 93 7 13x fewer

Simulation time to coverage 17hrs 15min 68x faster

Findings and Conclusion
Test-IP has the potential to significantly reduce the amount of work verification engineers spend generating bus traffic

when verifying devices like memory controllers, bus fabrics, routers, and switches. Equivalent tests implemented using

either CRT or Directed test methods have difficulty meeting coverage goals, and often require many more tests and low-

level test coding to implement. Verification engineers must also understand the low-level implementation details of their

verification IP to develop these tests and sequences. Test-IP eliminates the requirement to understand these details.

Test-IP leverages the built-in stimulus targeting features of the underlying inFact technology, which can automatically

adapt the targeted stimulus based on instance-specific test configurations. There is no equivalent methodology using

CRT or Directed techniques. While users are always encouraged to write System Verilog functional coverage models, the

effort to do so can be prohibitive and often functional coverage is dropped when project timelines are critical. Test-IP

adds stimulus coverage targeting for such applications, reducing the time to reach System Verilog functional coverage

goals (if implemented), or increasing confidence using the built-in stimulus coverage targeting.

Protocols supported today using Test-IP include Amba ahb, axi, axi4, and ace. Other standard bus protocols could be

supported. While Test-IP today is primarily intended for applications having an arbitrary data payload, the architecture

could be extended to access application-specific data contained in a TLM fifo, which could be either static data, or data

generated by a higher-level UVM sequence designed to generate real data in an SOC system.

Test-IP is most easily implemented using inFact graph-based UVM sequences, and could be designed to drive various

types of verification IP as long as the VIP has well-architected sequence items. Non-inFact Test-IP could be developed

using a combination of directed and random techniques, though the adaptive nature of the inFact-based Test-IP graphs and

stimulus coverage targeting would be difficult to implement.

