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ABSTRACT  
SystemVerilog is being extensively used in the industry for the 

verification of today‟s complex designs. Standard verification 

methodologies like Universal Verification Methodology (UVM) and 

Verification Methodology Manual (VMM) provide sufficient 

guidelines and base class libraries to build efficient reusable 

verification environments. Despite these guidelines, verification 

engineers spend considerable time debugging non-functional issues 

like slowdowns and memory blowups in verification environments. 

This could be due to inappropriate use of UVM/VMM features in a 

verification environment or also because of the lack of a process to 

check these issues in an early stage. This paper deliberates over such 

points which can reduce the effectiveness of an exhaustive and 

complex testbench. It provides guidelines to improve the quality of 

the testbench code with the help of examples. The paper also 

emphasizes the importance of profiling verification environments in 

order to get optimal simulation time and run-time memory, citing 

examples based on our experience. 

 

Categories and Subject Descriptors  
D.3.3 [Programming Languages]: Language Constructs and 

Features – abstract data types, polymorphism, control structures. 

This is just an example, please use the correct category and subject 

descriptors for your submission.  

 

General Terms  
Verification.  
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1. INTRODUCTION  
 Due to growing complexity of the chips and time-to-market 

pressures, verification cost is significantly increasing in terms of 

verification engineers, hardware resources and EDA licenses. 

Making optimal use of the existing resources saves a considerable 

amount of verification time and cost. For simulation-based functional 

verification, SystemVerilog is widely used to develop verification 

environments using standard methodologies like VMM/UVM. These 

methodologies provide sufficient guidelines and base class libraries 

to quickly build reusable verification environments. However, if 

these methodologies and the language features are not used carefully, 

then they might lead to simulation slowdowns and memory leaks.  

Debugging such issues is not easy especially when the verification 

environment is complex, having base class libraries, applications, 

VIPs, etc.  In this paper, we describe the possible reasons behind 

such problems and steps to quickly identify and resolve such 

problems by sharing our experiences.  

 

2. PERFORMANCE EFFICIENT 

VERIFICATION ENVIRONMENT  
A verification environment is performance efficient when it 

consumes only the required amount of hardware resources. That 

means it should consume least run-time memory and least simulation 

time without making any compromise on its quality. We are 

describing various guidelines with the help of examples and case 

studies we followed in making our verification environments 

performance efficient. Although methodology related examples we 

are describing are based on VMM, they are applicable to UVM and 

OVM as well, unless explicitly mentioned. 

 

3. RUN-TIME MEMORY MANAGEMENT 
When the simulation starts, the simulation data base (having the 

information of the design and the testbench) is loaded for execution. 

Accordingly machine memory is allocated for holding data base 

information throughout the simulation and this run-time memory 

keeps changing whenever verification components get created or 

destroyed. If the run-time memory keeps on increasing unexpectedly, 

then it is called memory leak and when it reaches the maximum 

available memory, then the simulation aborts abruptly. This section 

discusses run-time memory issues, identifying and analyzing them, 

and steps to avoid such issues while developing testbenches. 

 

3.1 Understanding Memory leak 

SystemVerilog provides dynamic data-types like 

associative/dynamic arrays, queues and classes. These data types are 

very useful in modeling a variety of testbench components like 

sparse memories, transaction data models, BFMs, etc. Whenever a 

dynamic component gets created, machine memory gets allocated 

during run-time, and whenever the component gets destroyed, 

machine memory which was allocated earlier gets deallocated.  If the 

dynamic objects keep getting created and not destroyed, then run-

time memory keeps growing causing memory leak.  This not only 

slows down the simulation, but also can lead to memory allocation 

failures resulting in simulation abortion.  There is no automatic 

mechanism to monitor the size of the dynamic data-types. A simple 



example is shown in Fig 1. where objects are put into a mailbox from 

a generator, but are not retrieved anywhere, leading to memory blow 

up.   

 

 

3.2 Identifying root cause for Memory leak – 

Case study 
It is often trivial to determine if there is a memory leak during the 

simulation, but it is not easy to find the root cause for the memory 

leak(s). The following describes the approach we used for one of our 

block level environments. The environment was VMM based using 

RAL application library for accessing and verifying DUT registers, 

internal VIPs and the testbench components like scoreboard, 

scenarios, etc. 

 

 

 

3.2.1 Check for the memory leak 
We selected a long running test case and started monitoring the run-

time memory using the UNIX command top –p <process id>. When 

the simulation is started, initially at zero simulation time, there was a 

steep increase in run-time memory to around 140MB. We understood 

that it was because of initial loading of the data base. Then after few 

seconds again memory started increasing gradually to 352MB till the 

end of the simulation. Although simulation completed successfully, 

we realized that some dynamic objects were not getting deallocated, 

causing a memory leak which needed to be fixed, otherwise we 

would run into problems at the sub-system/system level. 

 

3.2.2 Finding the root cause and fixing the issue 
It is difficult to find the root cause if there is no profiling mechanism 

provided by the simulation tool. We used the simulation memory 

profiler provided by the tool. We ran the simulation again enabling 

the profile, and generated a HTML report through the tool provided 

utility. This report provided information about the memory 

consumption of different components and classes at different 

intervals of time as shown in the Figure 2. We noticed that 

associative array elements, events and some class objects were 

growing throughout the simulation. We started looking at the 

transaction related classes (since they are the ones which get created 

thousands of times) axi_master_bfm_burst and vmm_rw_access. For 

axi_master_bfm_burst, the number of instances at any simulation 

time was fluctuating between 5 and 2000. But for vmm_rw_access 

the number of instances was growing constantly to around 40000. 

The objects for this class were supposed to get created and destroyed 

for any register write or read through the RAL, but somehow objects 

were not getting destroyed. Since this class was not used directly by 

us, we sought guidance from the vendor providing the RAL 

application and found that, whenever this object gets created, it was 

pushed into a vmm_object associative array, but was not removed 

from it any time. The vendor addressed this issue by preventing the 

object from getting pushed into the associative array. When we ran 

the simulation again with the fixed RAL application, 

vmm_rw_access instances stopped growing and started fluctuating 

between 0 and 200. This not only reduced the run-time memory, but 

also improved the simulation performance as shown in Table 1. 

 

Table 1. Comparison of run-time memory and simulation 

performance 

Metric 
Before memory 

leak fix 

After memory 

leak fix 

Peak run-time memory 352 MB 188MB 

Simulation run-time 358.880 sec 283.690 

 

program P; 
 
class transaction; 
   rand bit [31:0] addr; 
   rand bit [31:0] data; 
   rand bit direction; 
endclass 
 
class generator; 
   mailbox mbox; 
 
   function new(mailbox mbox=null); 
      this.mbox = mbox; 
   endfunction 
 
   task run(); 
      transaction data; 
      while (1) begin 
        data = new(); data.randomize(); 
        if (mbox != null) mbox.put(data); 
        #100; 
       end 
   endtask 
 
endclass 
 
initial begin 
  mailbox mbox; 
  generator gen; 
  mbox = new(); 
  gen = new(mbox); 
  gen.run(); 
end 

endprogram 

Figure 1. Example of memory leak 



 
Figure 2. Testbench dynamic memory profile report for different components

 

3.3 Guidelines to avoid memory leaks 
Development of a verification environment with the knowledge of 

language and methodology features from the memory consumption 

point of view helps in avoiding memory leaks. Following are some 

of the tips which help in this regard. 

 

3.3.1 Threshold values for queues and associative 

arrays 
Most memory leak issues are due to uncontrolled increase in the size 

of queues and associative arrays. Monitoring their size and avoiding 

their direct access externally avoids the unexpected memory growth. 

In the example shown below, queue trQ of the class scoreboard is 

declared protected so that no other class can access it directly. 

Method add_trans() is provided to add transactions into the queue by 

the external components. In addition to adding transaction into the 

queue, this method monitors the size of the queue and flags an error 

if the queue size exceeds a reasonable threshold value of 1000. This 

way, the excessive addition of objects by external components can be 

detected and readily corrected. 

 

program P; 
 
class transaction; 
   rand bit [31:0] addr; 
   rand bit [31:0] data; 
endclass 
 
class scoreboard; 
   protected transaction trQ[$]; 
    
   function void add_trans(transaction tr); 
      if (trQ.size() >= 1000) begin 
         $display("FAILURE! trQ size exceeds 1000, cannot add any more"); 
         return; 
      end 
      trQ.push_back(tr); 
   endfunction 
 

   function void remove_trans(); 
      trQ.pop_front(); 
   endfunction 
endclass 
 
scoreboard sb; 
initial begin 
   sb = new; 
   for (int i=0; i<1005; i++) begin 
     transaction tr = new; 
     sb.add_trans(tr); 
   end 
end 
endprogram 
 

3.3.2 Avoid generating too many data models at a 

time 
It is often necessary to generate thousands of transactions in a 

verification environment. Instead of generating a big set of 

transactions at one time and sending them one by one to the 

driver/DUT, it is better to generate transactions one by one (or a 

small set) and send them to the driver/DUT before generating the 

next transaction. This way, run-time memory can be saved. This is 

not a problem if the transaction data structure is small, but if each 

transaction consumes several kilobytes of memory, then it is better to 

follow the guideline. Sometimes, when even a single transaction size 

is too high, it might need to be generated in chunks. 

 

3.3.3 Methodology specific memory issues 
Users developing verification environments using the base class 

libraries provided by standard methodologies like UVM/VMM can 

follow the below mentioned guidelines to avoid memory related 

issues. 

 

3.3.3.1 Use Callbacks/Analysis ports instead of non-

blocking channels 
Commonly used communication mechanisms among the verification 

components are channels, TLM ports and callbacks. Passive 

components like monitors typically send transactions through TLM 



analysis ports, callbacks or non-blocking channels. It is 

recommended to use callbacks/analysis ports to send transactions 

rather than non-blocking channels. 

If a transaction is sent to a non-blocking channel and if there is no 

subscriber (e.g., scoreboard)  to pop the transaction from the channel, 

then transaction objects remain in the channel without getting 

deallocated causing a memory leak. But if Callbacks or TLM 

analysis ports are used to send the transactions, even if there are no 

subscribers, transaction objects will not get into any queues/arrays. It 

is always safe to use callbacks/analysis ports to send transactions 

when the receiving end is not known. 

 

3.3.3.2 Using vmm_log in VMM based environments 
In VMM based verification environments vmm_log class is used for 

message handling. Any instance of this class once created will not 

get destroyed till the end of the simulation (unless a method 

vmm_log::kill() is explicitly called). If a vmm_log instance in a 

transaction class is initialized, then whenever a transaction object 

gets created, vmm_log instance also gets created causing numerous 

objects to not get deallocated. This results in memory blow up. To 

avoid this, vmm_log instance has to be declared static and should be 

implicitly initialized as shown in the below example. This should not 

be done when vmm_log is instantiated in static components like 

transactors where the number of objects that get created are very few. 

If vmm_log instances are declared as static in a transactor, then 

messages from all the instances of the transactor come from a single 

instance making it difficult for the user to know which transactor is 

sending the messages. 

 

class transaction extends vmm_data; 
   rand bit [31:0] addr; 
   rand bit [31:0] data; 
   static vmm_log log = new(“transaction”, “class”); 
   ….. 
endclass 
 
class driver extends vmm_xactor; 
     ….. 
    vmm_log log; 
 
    function new(…); 
        log = new(“driver”, instance); 
    endfunction 
endclass 
 

3.3.3.3 Passing parent handle to vmm_data in VMM 

based environments 
In UVM/VMM based verification environments, parent-child 

hierarchy can be maintained by passing the parent handle through 

constructor argument. This is required for traversing across the 

hierarchy to search for a component. But this prevents any 

component in the hierarchyfrom getting deallocated. This is fine for 

static components like transactors, scoreboards, etc (as they get 

created once and remain till the end of the simulation), but not for 

VMM based transactions which are supposed to get created and 

destroyed. So, for transaction classes, a parent handle should not be 

passed. 

Passing parent handle to uvm_object based transactions is not a 

problem since UVM does not saves transactions in its object hierarcy 

list.  

 

3.3.4 Use testbench profiling early in the testbench 

development. 

When the testbench becomes complex, it is difficult to find the root 

cause for a memory leak even with a profiling mechanism. It is better 

to profile the testbenches at the block level so that it becomes easy to 

debug at higher levels. Also it helps in improving the simulation 

performance. Whenever there is any major change in a testbench, it 

is recommended to run profiling for a few selected test cases. 

 

4. SIMULATION PERFORMANCE 
Testbench constructs contribute to a considerable amount of run-time 

with different components like generators, monitors, scoreboards, 

etc. This section provides a set of guidelines in developing a 

verification environment to make it run as fast as possible. 

  

4.1 Guidelines to develop a performance efficient 

testbench 

 
4.1.1 Use innovative approaches in optimizing 

performance 

 

4.1.1.1 Memory model optimization  
If there is a requirement for modeling a centralized memory (like the 

system memory) in the verification environment it is natural to 

implement it using an associative array or a queue in SystemVerilog. 

For example, we can define an associative array of 8 bits (like shown 

below) to model a system memory and keep allocating some part of 

it to the user/job requesting the memory. 

 

  bit [7:0]  data_mem [*]; 
 

We might well be deallocating the memory once the user/job is done 

with it (there by making sure that we are not running into memory 

leak issues) but there is an issue with this kind of implementation.  

As the number of simultaneous users/jobs increase and their 

cumulative memory requirement at any particular instance is huge 

(around 1Mega Bytes for e.g.), the memory operations slow down. In 

our project we observed that the deallocation of memory (deleting 

the memory allocated to a job by deleting the corresponding 

locations of the associative array in a “loop” one at a time using the 

.delete() method of associative array) was consuming huge run-time 

because of the size of the associative array (memory model). In the 

project each job needed 64 Kilo Bytes of memory and some of the 

test cases (where the number of outstanding jobs was more) used to 

take approximately 7 hours to finish. Once we understood that the 

deallocation is taking more time because of the growing size of the 

associative array, we remodeled the system memory by embedding it 

in a class as shown below and creating an object for each job 

(memory allocation for that job), thus creating an array of those 

objects to model the entire memory. 

 

class data_mem_c; 
   bit [7:0]  data_mem [*]; 
endclass 
data_mem_c  data_mem_obj_arr[*]; 
 

In this implementation, each job is allocated an associative array (an 

object of the class) and the collection of those arrays (array of the 

objects) form the system memory. Deallocation of memory of a job 

is done by deleting the corresponding object in the array of objects 

(data_mem_obj_arr). This is a better implementation for deleting the 

memory than the earlier method of deleting each location, one at a 

time, in a “loop”. In our project this resulted in a drastic reduction in 

run-time to approximately 20 minutes (from approximately 7 hours 

with the earlier implementation). In a nutshell, it is always better to 



use small chunks of memory (through objects and arrays) and 

operate on them instead of a single big memory, even if the 

requirement is to model a centralized memory. 

 

4.1.1.2 String specific optimization 
If there is a requirement to compare strings from a source with an 

existing database (for example, to check if a parsed string pattern 

matches with any element of an array of strings) and there is a 

chance of repeated occurrence of the same source string, then using a 

modeling caching mechanism instead of direct comparison will 

improve the simulation performance. In the example shown below, 

there is a command_database class which has an array of string 

patterns. There is a cache model command_cache to store frequently 

occurring string patterns. When the method get_command() of  

command_database is called, a search for the pattern happens first in 

the cache model which is very fast since the array size is small. If 

there is a cache miss, then normal search happens in the command 

database. The performance benefit here depends on the amount of 

frequent occurrences of the same source patterns (i.e., number of 

cache hits). 

 

class command_cache; //Cache model 
   string cmds[10]; 
   int num_of_occurrences[10]; 
   int cache_size; 
 
   function int get_cmd(string str); 
      foreach (cmds[i]) begin 
         if (cmds[i] == str) begin 
            num_of_occurrences[i]++; 
            return cmds[i]; 
         end 
      end 
      return (-1); 
   endfunction 
 
   function void add_cmd(string regex); 
     if (cache_size < 10) begin 
        cmds[cache_size] = regex; 
        cache_size++; 
     end 
     else begin 
        int p[$], k; 
        p = num_of_occurrences.min(); 
        k = p[0]; 
        cmds[k] = regex; num_of_occurrences[k] = 0; 
     end 
   endfunction 
 
endclass 
 
class command_database; 
   command_cache cache = new; 
   int commands[string]; 
 
   function int get_command(string regex); 
      int val = cache.get_cmd(regex); //Fast Cache path 
      if (val >= 0) begin 
          return(val); 
      end 
      foreach (commands[i]) begin //Slow normal path 
         if (i.match(regex)) begin 
             cache.add_cmd(regex); 
             return commands[i]; 
         end 

      end 
      return (-1); 
   endfunction 
 
endclass 
 

4.1.2 Data model/Transaction optimization 
During the simulation of a verification environment, most of the 

testbench time is consumed by the transaction related activities. 

Optimized transaction generation and processing mechanisms and 

judicious use of message features help in improving the simulation 

performance to a large extent. 

Generation involves creation and randomization of transactions. 

During randomization, constraints specified get solved in parallel. 

However, if the constraints are complex, the constraint solver takes 

longer time to solve the constraints leading to slowdowns in the 

simulation. Partitioning the constraints and generating them 

sequentially, like moving some of the dependent value generation to 

post_randomize() from the constraint block will result in faster 

generation. Of course this must be done without compromising the 

quality and controllability of generation. 
 

4.1.3 Methodology specific guidelines 
 

4.1.3.1 Message optimization 
Messages are the errors, warnings, and other information that is 

displayed to the terminal or log file to know the status and debug a 

test. They affect the run-time in two ways:  

1. Time taken to process the message string. 

2. Time taken to output the message to a terminal or log file.  

All the methodologies suggest the usage of their built in log 

mechanism instead of using the simple “$display” task provided in 

SystemVerilog. For e.g. VMM provides “vmm_log” base class with 

methods like “start_msg”, “text”, and “end_msg” for displaying the 

messages. 

The inbuilt log mechanism is effective in reducing the run-time and 

improving the performance of a test. It has two important features 

that counter the two run-time issues of messages mentioned above. 

 

4.1.3.1.1 Use macro based/filter enabled message 

features 

The log mechanism checks the message filters before processing the 

message string. This eliminates the necessity of processing the 

message string that would eventually be filtered out because of the 

filters enabled in the test. For e.g. if the default severity is “ERROR”, 

all the lower severity message strings will never be processed. This 

saves a lot of time if the message strings are formatted strings, which 

is the case most of the time. 

In VMM this feature is provided through the “start_msg” method of 

“vmm_log” base class. The code below demonstrates its usage. 

 

if (log.start_msg (vmm_log::DEBUG_TYP,  
                             vmm_log::TRACE_SEV)) begin 
  log.text (tr.psdisplay()); 
  log.end_msg(); 
end 
 

The “if” condition checks whether the DEBUG type message is not 

filtered out and the severity level is higher than TRACE. If it is 

filtered out or if it is not severe enough, the message text is not 

processed at all. i.e., tr.psdisplay() is not all executed which saves 

time. The above code can also be written using message macro as 

shown below. 

 



`vmm_debug (log, tr.psdisplay()); 
 

The above macro does the same job of checking for the message 

filters and then processing the text and printing it to the output. It is 

advised to use the macros to improve the performance when a lot of 

formatted messages are to be processed. 

In case of UVM/OVM, always use macro based messaging (like 

`uvm_error, `uvm_info, etc) as shown below instead of using the 

message method directly (uvm_report_error, uvm_report_info, etc). 

This will prevent execution of the second argument and thus improve 

the simulation performance. 

 

`uvm_info (get_type_name(), tr.sprint(), UVM_FULL); 
 

4.1.3.1.2 Use messages with appropriate severity and 

control them 

The log mechanism forbids displaying messages that are filtered out. 

This eliminates the necessity to flush the message text to a terminal 

or log file thus saving time. For e.g. if the default severity is 

“ERROR”, all the lower severity messages (like “WARNING”, 

“NOTE”, etc) are not displayed. 

In VMM this feature is provided through the “set_verbosity”, 

“disable_types” methods of “vmm_log” base class. Using these 

methods the required message type and severity level can be selected 

and the others can be filtered out there by reducing both the number 

of messages to be printed and the run-time. Simulator switches like 

“+vmm_log_default=<value>”, and 

“+vmm_force_verbosity=<value>” are the alternatives for the built 

in methods to filter the messages and improve the performance. 

Both the features described above are necessary for providing an 

optimum message service in terms of run-time and all the 

methodologies have these built in. If the test environment is 

developed independent of any methodology then it is important to 

include these features as part of the log mechanism for better run-

time performance. 

 

4.1.3.2 Using log catcher 
Log catcher mechanism is provided in verification methodologies 

like VMM, UMM, etc. to identify a message issued by any 

verification component (termed as „catching a message‟) and execute 

some specific code once the required message is „caught‟. It is a 

three step process: 

1. Select the message to be caught. 
2. Catch the message. 
3. Execute the required code upon catching the message. 

The first step is implemented by matching the required string pattern 

in all the messages (using regular expressions [regexp]). The second 

step is implemented using the methodology provided log catching 

methods (for e.g. VMM provides vmm_log::catch() method). The 

third step is also implemented by using the methodology provided 

methods (for e.g. VMM provides vmm_log_catcher::caught() and 

vmm_log_catcher::issue() methods). Usually the third step involves 

modifying the „caught message‟ itself (for e.g. prefix a string 

“Expected Error” to an error message) and/or changing its severity, 

though executing any code is permissible. 

Using a log catcher mechanism is performance intensive since it 

involves a string matching attempt for every message (the first step 

as described above). So, use the log catching feature of the 

methodology being followed (if the methodology provides it) only at 

the test case level for short negative test cases where some error 

messages are intended. At the environmental level, instead of 

catching a message, catch the event (may be a flag/callback) 

responsible for it and process it based on the requirement. Most of 

the applications served by the log catcher mechanism can be 

implemented using the other related features like message filters, 

events, etc. that are less severe on run-time. In summary, the log 

catcher mechanism should not be used as a general feature of a 

testbench; it has to be used (if at all there is a need) during 

exceptions only (like the tests where errors are forced intentionally) 

to improve the run-time performance. 
 

4.1.3.3 Using run-time options 
The capability of passing the desired input values at run-time is 

provided in SystemVerilog through the system tasks $test$plusargs 

and $value$plusargs. Similarly all the verification methodologies 

provide a mechanism that is more sophisticated than the $plusargs of 

SystemVerilog to pass input values through run-time options (for e.g. 

VMM provides methods like vmm_opts::get_object_int(),  

vmm_opts::get_object_string(), etc. to receive the run-time options 

passed through the simulator switch 

+vmm_opts+<option>=<value>).  Usage of the run-time options 

reduces the overall test execution time by eliminating the necessity 

of compiling the source code for each option. But the run-time 

options are performance intensive since they undergo string 

processing (string operations are run-time sensitive). 

Though there is an effective performance gain while executing all the 

tests (by saving on the compile time), the run-time of each individual 

test increases because of the usage of run-time options. So there is a 

necessity for judicious usage of run-time options. It is advised to use 

the run-time options in such parts of the testbench code that executes 

only one time or few times (for e.g., in the configuration phase and 

build phase that execute during the beginning of a simulation), and 

not to use them in a transaction or any other place where there is a 

repeated execution of the function scanning the run-time option as 

shown in the examples below. The run-time of each individual test 

can be controlled by following this guideline and thus achieving a 

better overall performance gain with the usage of run-time options. 

 

//NOT RECOMMENDED 

class driver;    
   int max_length; 
   
   virtual task run(); 
      while (1) begin //executes many times 
          max_length = vmm_opts::get_object_int(….); 
          if (len < max_length) … 
          …. 
      end 
   endtask 
… 
endclass 
 
//RECOMMENDED 

class driver;    
   int max_length; 
   
   function new(); //executes only once 
       max_length = vmm_opts::get_object_int(…); 
   endfunction 
  
   virtual task run(); 
      while (1) begin 
          if (len < max_length) … 
          …. 
      end 
   endtask 
… 
endclass 
 



5. SUMMARY  
SystemVerilog language aided with verification methodologies 

provides a rich set of features to build efficient verification 

environments. However, it is possible to face performance issues if 

the features are not used appropriately. All these issues can be 

resolved by proper understanding of the behavior and usage of the 

features.  

In this paper we have discussed some of those features that can lead 

to memory leaks and simulation slowdowns if used inappropriately. 

We have also discussed the usage of profiling and threshold values to 

avoid memory leaks; proposed solutions like a better way of 

modeling a memory, message and string optimizations, and proper 

run-time options usage to improve the run-time performance by 

citing examples from our experience apart from the general 

guidelines of usage. The tips provided in this paper, if followed 

along with the methodology guidelines, will help in developing 

performance efficient verification environments. 
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