
Tips for Developing Performance Efficient Verification
Environments

Prashanth Srinivasa
LSI India R&D Pvt. Ltd

GTP, Devarabeesanahalli
Outer Ring Rd, Bangalore, India

(+91)80-41979643
Prashanth.Srinivasa@lsi.com

Sarath Chandrababu Valapala
LSI India R&D Pvt. Ltd

GTP, Devarabeesanahalli
Outer Ring Rd, Bangalore, India

(+91)80-41979598
Sarath.Valapala@lsi.com

Varun S
Synopsys India R&D Pvt Ltd
RMZ Infinity, Benniganahalli,

Old Madras Rd, Bangalore, India
(+91)80-40188424

Varun.S@synopsys.com

ABSTRACT
SystemVerilog is being extensively used in the industry for the

verification of today‟s complex designs. Standard verification

methodologies like Universal Verification Methodology (UVM) and

Verification Methodology Manual (VMM) provide sufficient

guidelines and base class libraries to build efficient reusable

verification environments. Despite these guidelines, verification

engineers spend considerable time debugging non-functional issues

like slowdowns and memory blowups in verification environments.

This could be due to inappropriate use of UVM/VMM features in a

verification environment or also because of the lack of a process to

check these issues in an early stage. This paper deliberates over such

points which can reduce the effectiveness of an exhaustive and

complex testbench. It provides guidelines to improve the quality of

the testbench code with the help of examples. The paper also

emphasizes the importance of profiling verification environments in

order to get optimal simulation time and run-time memory, citing

examples based on our experience.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and

Features – abstract data types, polymorphism, control structures.

This is just an example, please use the correct category and subject

descriptors for your submission.

General Terms
Verification.

Keywords
VMM: Verification Methodology Manual, by Synopsys

OVM: Open Verification Methodology

UVM: Universal Verification Methodology, by Accellera

VIP: Verification Intellectual Property

RAL: Register Abstraction Layer

DUT: Design Under Test

BFM: Bus functional model

TLM: Transaction Level Model

EDA: Electronic Design Automation

1. INTRODUCTION
 Due to growing complexity of the chips and time-to-market

pressures, verification cost is significantly increasing in terms of

verification engineers, hardware resources and EDA licenses.

Making optimal use of the existing resources saves a considerable

amount of verification time and cost. For simulation-based functional

verification, SystemVerilog is widely used to develop verification

environments using standard methodologies like VMM/UVM. These

methodologies provide sufficient guidelines and base class libraries

to quickly build reusable verification environments. However, if

these methodologies and the language features are not used carefully,

then they might lead to simulation slowdowns and memory leaks.

Debugging such issues is not easy especially when the verification

environment is complex, having base class libraries, applications,

VIPs, etc. In this paper, we describe the possible reasons behind

such problems and steps to quickly identify and resolve such

problems by sharing our experiences.

2. PERFORMANCE EFFICIENT

VERIFICATION ENVIRONMENT
A verification environment is performance efficient when it

consumes only the required amount of hardware resources. That

means it should consume least run-time memory and least simulation

time without making any compromise on its quality. We are

describing various guidelines with the help of examples and case

studies we followed in making our verification environments

performance efficient. Although methodology related examples we

are describing are based on VMM, they are applicable to UVM and

OVM as well, unless explicitly mentioned.

3. RUN-TIME MEMORY MANAGEMENT
When the simulation starts, the simulation data base (having the

information of the design and the testbench) is loaded for execution.

Accordingly machine memory is allocated for holding data base

information throughout the simulation and this run-time memory

keeps changing whenever verification components get created or

destroyed. If the run-time memory keeps on increasing unexpectedly,

then it is called memory leak and when it reaches the maximum

available memory, then the simulation aborts abruptly. This section

discusses run-time memory issues, identifying and analyzing them,

and steps to avoid such issues while developing testbenches.

3.1 Understanding Memory leak

SystemVerilog provides dynamic data-types like

associative/dynamic arrays, queues and classes. These data types are

very useful in modeling a variety of testbench components like

sparse memories, transaction data models, BFMs, etc. Whenever a

dynamic component gets created, machine memory gets allocated

during run-time, and whenever the component gets destroyed,

machine memory which was allocated earlier gets deallocated. If the

dynamic objects keep getting created and not destroyed, then run-

time memory keeps growing causing memory leak. This not only

slows down the simulation, but also can lead to memory allocation

failures resulting in simulation abortion. There is no automatic

mechanism to monitor the size of the dynamic data-types. A simple

example is shown in Fig 1. where objects are put into a mailbox from

a generator, but are not retrieved anywhere, leading to memory blow

up.

3.2 Identifying root cause for Memory leak –

Case study
It is often trivial to determine if there is a memory leak during the

simulation, but it is not easy to find the root cause for the memory

leak(s). The following describes the approach we used for one of our

block level environments. The environment was VMM based using

RAL application library for accessing and verifying DUT registers,

internal VIPs and the testbench components like scoreboard,

scenarios, etc.

3.2.1 Check for the memory leak
We selected a long running test case and started monitoring the run-

time memory using the UNIX command top –p <process id>. When

the simulation is started, initially at zero simulation time, there was a

steep increase in run-time memory to around 140MB. We understood

that it was because of initial loading of the data base. Then after few

seconds again memory started increasing gradually to 352MB till the

end of the simulation. Although simulation completed successfully,

we realized that some dynamic objects were not getting deallocated,

causing a memory leak which needed to be fixed, otherwise we

would run into problems at the sub-system/system level.

3.2.2 Finding the root cause and fixing the issue
It is difficult to find the root cause if there is no profiling mechanism

provided by the simulation tool. We used the simulation memory

profiler provided by the tool. We ran the simulation again enabling

the profile, and generated a HTML report through the tool provided

utility. This report provided information about the memory

consumption of different components and classes at different

intervals of time as shown in the Figure 2. We noticed that

associative array elements, events and some class objects were

growing throughout the simulation. We started looking at the

transaction related classes (since they are the ones which get created

thousands of times) axi_master_bfm_burst and vmm_rw_access. For

axi_master_bfm_burst, the number of instances at any simulation

time was fluctuating between 5 and 2000. But for vmm_rw_access

the number of instances was growing constantly to around 40000.

The objects for this class were supposed to get created and destroyed

for any register write or read through the RAL, but somehow objects

were not getting destroyed. Since this class was not used directly by

us, we sought guidance from the vendor providing the RAL

application and found that, whenever this object gets created, it was

pushed into a vmm_object associative array, but was not removed

from it any time. The vendor addressed this issue by preventing the

object from getting pushed into the associative array. When we ran

the simulation again with the fixed RAL application,

vmm_rw_access instances stopped growing and started fluctuating

between 0 and 200. This not only reduced the run-time memory, but

also improved the simulation performance as shown in Table 1.

Table 1. Comparison of run-time memory and simulation

performance

Metric
Before memory

leak fix

After memory

leak fix

Peak run-time memory 352 MB 188MB

Simulation run-time 358.880 sec 283.690

program P;

class transaction;
 rand bit [31:0] addr;
 rand bit [31:0] data;
 rand bit direction;
endclass

class generator;
 mailbox mbox;

 function new(mailbox mbox=null);
 this.mbox = mbox;
 endfunction

 task run();
 transaction data;
 while (1) begin
 data = new(); data.randomize();
 if (mbox != null) mbox.put(data);
 #100;
 end
 endtask

endclass

initial begin
 mailbox mbox;
 generator gen;
 mbox = new();
 gen = new(mbox);
 gen.run();
end

endprogram

Figure 1. Example of memory leak

Figure 2. Testbench dynamic memory profile report for different components

3.3 Guidelines to avoid memory leaks
Development of a verification environment with the knowledge of

language and methodology features from the memory consumption

point of view helps in avoiding memory leaks. Following are some

of the tips which help in this regard.

3.3.1 Threshold values for queues and associative

arrays
Most memory leak issues are due to uncontrolled increase in the size

of queues and associative arrays. Monitoring their size and avoiding

their direct access externally avoids the unexpected memory growth.

In the example shown below, queue trQ of the class scoreboard is

declared protected so that no other class can access it directly.

Method add_trans() is provided to add transactions into the queue by

the external components. In addition to adding transaction into the

queue, this method monitors the size of the queue and flags an error

if the queue size exceeds a reasonable threshold value of 1000. This

way, the excessive addition of objects by external components can be

detected and readily corrected.

program P;

class transaction;
 rand bit [31:0] addr;
 rand bit [31:0] data;
endclass

class scoreboard;
 protected transaction trQ[$];

 function void add_trans(transaction tr);
 if (trQ.size() >= 1000) begin
 $display("FAILURE! trQ size exceeds 1000, cannot add any more");
 return;
 end
 trQ.push_back(tr);
 endfunction

 function void remove_trans();
 trQ.pop_front();
 endfunction
endclass

scoreboard sb;
initial begin
 sb = new;
 for (int i=0; i<1005; i++) begin
 transaction tr = new;
 sb.add_trans(tr);
 end
end
endprogram

3.3.2 Avoid generating too many data models at a

time
It is often necessary to generate thousands of transactions in a

verification environment. Instead of generating a big set of

transactions at one time and sending them one by one to the

driver/DUT, it is better to generate transactions one by one (or a

small set) and send them to the driver/DUT before generating the

next transaction. This way, run-time memory can be saved. This is

not a problem if the transaction data structure is small, but if each

transaction consumes several kilobytes of memory, then it is better to

follow the guideline. Sometimes, when even a single transaction size

is too high, it might need to be generated in chunks.

3.3.3 Methodology specific memory issues
Users developing verification environments using the base class

libraries provided by standard methodologies like UVM/VMM can

follow the below mentioned guidelines to avoid memory related

issues.

3.3.3.1 Use Callbacks/Analysis ports instead of non-

blocking channels
Commonly used communication mechanisms among the verification

components are channels, TLM ports and callbacks. Passive

components like monitors typically send transactions through TLM

analysis ports, callbacks or non-blocking channels. It is

recommended to use callbacks/analysis ports to send transactions

rather than non-blocking channels.

If a transaction is sent to a non-blocking channel and if there is no

subscriber (e.g., scoreboard) to pop the transaction from the channel,

then transaction objects remain in the channel without getting

deallocated causing a memory leak. But if Callbacks or TLM

analysis ports are used to send the transactions, even if there are no

subscribers, transaction objects will not get into any queues/arrays. It

is always safe to use callbacks/analysis ports to send transactions

when the receiving end is not known.

3.3.3.2 Using vmm_log in VMM based environments
In VMM based verification environments vmm_log class is used for

message handling. Any instance of this class once created will not

get destroyed till the end of the simulation (unless a method

vmm_log::kill() is explicitly called). If a vmm_log instance in a

transaction class is initialized, then whenever a transaction object

gets created, vmm_log instance also gets created causing numerous

objects to not get deallocated. This results in memory blow up. To

avoid this, vmm_log instance has to be declared static and should be

implicitly initialized as shown in the below example. This should not

be done when vmm_log is instantiated in static components like

transactors where the number of objects that get created are very few.

If vmm_log instances are declared as static in a transactor, then

messages from all the instances of the transactor come from a single

instance making it difficult for the user to know which transactor is

sending the messages.

class transaction extends vmm_data;
 rand bit [31:0] addr;
 rand bit [31:0] data;
 static vmm_log log = new(“transaction”, “class”);
 …..
endclass

class driver extends vmm_xactor;
 …..
 vmm_log log;

 function new(…);
 log = new(“driver”, instance);
 endfunction
endclass

3.3.3.3 Passing parent handle to vmm_data in VMM

based environments
In UVM/VMM based verification environments, parent-child

hierarchy can be maintained by passing the parent handle through

constructor argument. This is required for traversing across the

hierarchy to search for a component. But this prevents any

component in the hierarchyfrom getting deallocated. This is fine for

static components like transactors, scoreboards, etc (as they get

created once and remain till the end of the simulation), but not for

VMM based transactions which are supposed to get created and

destroyed. So, for transaction classes, a parent handle should not be

passed.

Passing parent handle to uvm_object based transactions is not a

problem since UVM does not saves transactions in its object hierarcy

list.

3.3.4 Use testbench profiling early in the testbench

development.

When the testbench becomes complex, it is difficult to find the root

cause for a memory leak even with a profiling mechanism. It is better

to profile the testbenches at the block level so that it becomes easy to

debug at higher levels. Also it helps in improving the simulation

performance. Whenever there is any major change in a testbench, it

is recommended to run profiling for a few selected test cases.

4. SIMULATION PERFORMANCE
Testbench constructs contribute to a considerable amount of run-time

with different components like generators, monitors, scoreboards,

etc. This section provides a set of guidelines in developing a

verification environment to make it run as fast as possible.

4.1 Guidelines to develop a performance efficient

testbench

4.1.1 Use innovative approaches in optimizing

performance

4.1.1.1 Memory model optimization
If there is a requirement for modeling a centralized memory (like the

system memory) in the verification environment it is natural to

implement it using an associative array or a queue in SystemVerilog.

For example, we can define an associative array of 8 bits (like shown

below) to model a system memory and keep allocating some part of

it to the user/job requesting the memory.

 bit [7:0] data_mem [*];

We might well be deallocating the memory once the user/job is done

with it (there by making sure that we are not running into memory

leak issues) but there is an issue with this kind of implementation.

As the number of simultaneous users/jobs increase and their

cumulative memory requirement at any particular instance is huge

(around 1Mega Bytes for e.g.), the memory operations slow down. In

our project we observed that the deallocation of memory (deleting

the memory allocated to a job by deleting the corresponding

locations of the associative array in a “loop” one at a time using the

.delete() method of associative array) was consuming huge run-time

because of the size of the associative array (memory model). In the

project each job needed 64 Kilo Bytes of memory and some of the

test cases (where the number of outstanding jobs was more) used to

take approximately 7 hours to finish. Once we understood that the

deallocation is taking more time because of the growing size of the

associative array, we remodeled the system memory by embedding it

in a class as shown below and creating an object for each job

(memory allocation for that job), thus creating an array of those

objects to model the entire memory.

class data_mem_c;
 bit [7:0] data_mem [*];
endclass
data_mem_c data_mem_obj_arr[*];

In this implementation, each job is allocated an associative array (an

object of the class) and the collection of those arrays (array of the

objects) form the system memory. Deallocation of memory of a job

is done by deleting the corresponding object in the array of objects

(data_mem_obj_arr). This is a better implementation for deleting the

memory than the earlier method of deleting each location, one at a

time, in a “loop”. In our project this resulted in a drastic reduction in

run-time to approximately 20 minutes (from approximately 7 hours

with the earlier implementation). In a nutshell, it is always better to

use small chunks of memory (through objects and arrays) and

operate on them instead of a single big memory, even if the

requirement is to model a centralized memory.

4.1.1.2 String specific optimization
If there is a requirement to compare strings from a source with an

existing database (for example, to check if a parsed string pattern

matches with any element of an array of strings) and there is a

chance of repeated occurrence of the same source string, then using a

modeling caching mechanism instead of direct comparison will

improve the simulation performance. In the example shown below,

there is a command_database class which has an array of string

patterns. There is a cache model command_cache to store frequently

occurring string patterns. When the method get_command() of

command_database is called, a search for the pattern happens first in

the cache model which is very fast since the array size is small. If

there is a cache miss, then normal search happens in the command

database. The performance benefit here depends on the amount of

frequent occurrences of the same source patterns (i.e., number of

cache hits).

class command_cache; //Cache model
 string cmds[10];
 int num_of_occurrences[10];
 int cache_size;

 function int get_cmd(string str);
 foreach (cmds[i]) begin
 if (cmds[i] == str) begin
 num_of_occurrences[i]++;
 return cmds[i];
 end
 end
 return (-1);
 endfunction

 function void add_cmd(string regex);
 if (cache_size < 10) begin
 cmds[cache_size] = regex;
 cache_size++;
 end
 else begin
 int p[$], k;
 p = num_of_occurrences.min();
 k = p[0];
 cmds[k] = regex; num_of_occurrences[k] = 0;
 end
 endfunction

endclass

class command_database;
 command_cache cache = new;
 int commands[string];

 function int get_command(string regex);
 int val = cache.get_cmd(regex); //Fast Cache path
 if (val >= 0) begin
 return(val);
 end
 foreach (commands[i]) begin //Slow normal path
 if (i.match(regex)) begin
 cache.add_cmd(regex);
 return commands[i];
 end

 end
 return (-1);
 endfunction

endclass

4.1.2 Data model/Transaction optimization
During the simulation of a verification environment, most of the

testbench time is consumed by the transaction related activities.

Optimized transaction generation and processing mechanisms and

judicious use of message features help in improving the simulation

performance to a large extent.

Generation involves creation and randomization of transactions.

During randomization, constraints specified get solved in parallel.

However, if the constraints are complex, the constraint solver takes

longer time to solve the constraints leading to slowdowns in the

simulation. Partitioning the constraints and generating them

sequentially, like moving some of the dependent value generation to

post_randomize() from the constraint block will result in faster

generation. Of course this must be done without compromising the

quality and controllability of generation.

4.1.3 Methodology specific guidelines

4.1.3.1 Message optimization
Messages are the errors, warnings, and other information that is

displayed to the terminal or log file to know the status and debug a

test. They affect the run-time in two ways:

1. Time taken to process the message string.

2. Time taken to output the message to a terminal or log file.

All the methodologies suggest the usage of their built in log

mechanism instead of using the simple “$display” task provided in

SystemVerilog. For e.g. VMM provides “vmm_log” base class with

methods like “start_msg”, “text”, and “end_msg” for displaying the

messages.

The inbuilt log mechanism is effective in reducing the run-time and

improving the performance of a test. It has two important features

that counter the two run-time issues of messages mentioned above.

4.1.3.1.1 Use macro based/filter enabled message

features

The log mechanism checks the message filters before processing the

message string. This eliminates the necessity of processing the

message string that would eventually be filtered out because of the

filters enabled in the test. For e.g. if the default severity is “ERROR”,

all the lower severity message strings will never be processed. This

saves a lot of time if the message strings are formatted strings, which

is the case most of the time.

In VMM this feature is provided through the “start_msg” method of

“vmm_log” base class. The code below demonstrates its usage.

if (log.start_msg (vmm_log::DEBUG_TYP,
 vmm_log::TRACE_SEV)) begin
 log.text (tr.psdisplay());
 log.end_msg();
end

The “if” condition checks whether the DEBUG type message is not

filtered out and the severity level is higher than TRACE. If it is

filtered out or if it is not severe enough, the message text is not

processed at all. i.e., tr.psdisplay() is not all executed which saves

time. The above code can also be written using message macro as

shown below.

`vmm_debug (log, tr.psdisplay());

The above macro does the same job of checking for the message

filters and then processing the text and printing it to the output. It is

advised to use the macros to improve the performance when a lot of

formatted messages are to be processed.

In case of UVM/OVM, always use macro based messaging (like

`uvm_error, `uvm_info, etc) as shown below instead of using the

message method directly (uvm_report_error, uvm_report_info, etc).

This will prevent execution of the second argument and thus improve

the simulation performance.

`uvm_info (get_type_name(), tr.sprint(), UVM_FULL);

4.1.3.1.2 Use messages with appropriate severity and

control them

The log mechanism forbids displaying messages that are filtered out.

This eliminates the necessity to flush the message text to a terminal

or log file thus saving time. For e.g. if the default severity is

“ERROR”, all the lower severity messages (like “WARNING”,

“NOTE”, etc) are not displayed.

In VMM this feature is provided through the “set_verbosity”,

“disable_types” methods of “vmm_log” base class. Using these

methods the required message type and severity level can be selected

and the others can be filtered out there by reducing both the number

of messages to be printed and the run-time. Simulator switches like

“+vmm_log_default=<value>”, and

“+vmm_force_verbosity=<value>” are the alternatives for the built

in methods to filter the messages and improve the performance.

Both the features described above are necessary for providing an

optimum message service in terms of run-time and all the

methodologies have these built in. If the test environment is

developed independent of any methodology then it is important to

include these features as part of the log mechanism for better run-

time performance.

4.1.3.2 Using log catcher
Log catcher mechanism is provided in verification methodologies

like VMM, UMM, etc. to identify a message issued by any

verification component (termed as „catching a message‟) and execute

some specific code once the required message is „caught‟. It is a

three step process:

1. Select the message to be caught.
2. Catch the message.
3. Execute the required code upon catching the message.

The first step is implemented by matching the required string pattern

in all the messages (using regular expressions [regexp]). The second

step is implemented using the methodology provided log catching

methods (for e.g. VMM provides vmm_log::catch() method). The

third step is also implemented by using the methodology provided

methods (for e.g. VMM provides vmm_log_catcher::caught() and

vmm_log_catcher::issue() methods). Usually the third step involves

modifying the „caught message‟ itself (for e.g. prefix a string

“Expected Error” to an error message) and/or changing its severity,

though executing any code is permissible.

Using a log catcher mechanism is performance intensive since it

involves a string matching attempt for every message (the first step

as described above). So, use the log catching feature of the

methodology being followed (if the methodology provides it) only at

the test case level for short negative test cases where some error

messages are intended. At the environmental level, instead of

catching a message, catch the event (may be a flag/callback)

responsible for it and process it based on the requirement. Most of

the applications served by the log catcher mechanism can be

implemented using the other related features like message filters,

events, etc. that are less severe on run-time. In summary, the log

catcher mechanism should not be used as a general feature of a

testbench; it has to be used (if at all there is a need) during

exceptions only (like the tests where errors are forced intentionally)

to improve the run-time performance.

4.1.3.3 Using run-time options
The capability of passing the desired input values at run-time is

provided in SystemVerilog through the system tasks $test$plusargs

and $value$plusargs. Similarly all the verification methodologies

provide a mechanism that is more sophisticated than the $plusargs of

SystemVerilog to pass input values through run-time options (for e.g.

VMM provides methods like vmm_opts::get_object_int(),

vmm_opts::get_object_string(), etc. to receive the run-time options

passed through the simulator switch

+vmm_opts+<option>=<value>). Usage of the run-time options

reduces the overall test execution time by eliminating the necessity

of compiling the source code for each option. But the run-time

options are performance intensive since they undergo string

processing (string operations are run-time sensitive).

Though there is an effective performance gain while executing all the

tests (by saving on the compile time), the run-time of each individual

test increases because of the usage of run-time options. So there is a

necessity for judicious usage of run-time options. It is advised to use

the run-time options in such parts of the testbench code that executes

only one time or few times (for e.g., in the configuration phase and

build phase that execute during the beginning of a simulation), and

not to use them in a transaction or any other place where there is a

repeated execution of the function scanning the run-time option as

shown in the examples below. The run-time of each individual test

can be controlled by following this guideline and thus achieving a

better overall performance gain with the usage of run-time options.

//NOT RECOMMENDED

class driver;
 int max_length;

 virtual task run();
 while (1) begin //executes many times
 max_length = vmm_opts::get_object_int(….);
 if (len < max_length) …
 ….
 end
 endtask
…
endclass

//RECOMMENDED

class driver;
 int max_length;

 function new(); //executes only once
 max_length = vmm_opts::get_object_int(…);
 endfunction

 virtual task run();
 while (1) begin
 if (len < max_length) …
 ….
 end
 endtask
…
endclass

5. SUMMARY
SystemVerilog language aided with verification methodologies

provides a rich set of features to build efficient verification

environments. However, it is possible to face performance issues if

the features are not used appropriately. All these issues can be

resolved by proper understanding of the behavior and usage of the

features.

In this paper we have discussed some of those features that can lead

to memory leaks and simulation slowdowns if used inappropriately.

We have also discussed the usage of profiling and threshold values to

avoid memory leaks; proposed solutions like a better way of

modeling a memory, message and string optimizations, and proper

run-time options usage to improve the run-time performance by

citing examples from our experience apart from the general

guidelines of usage. The tips provided in this paper, if followed

along with the methodology guidelines, will help in developing

performance efficient verification environments.

6. ACKNOWLEDGMENTS
Thanks to Jayendra Dwaraka Bhamidipatti for his guidance and

support.

7. REFERENCES
 [1] IEEE Standard for System Verilog - Unified Hardware Design,

Specification,and Verification Language. IEEE Computer Society,
NewYork: IEEE 2005

[2] Janick Bergeron, Eduard Cerny Alan Hunter and Andrew Nightingale.
2006. Verification Methodology Manual for SystemVerilog

[3] Accellera Univarsal Verification Methodology (UVM) 1.0 Early Adopter
California: Accellera 2010

[4] VMM Register Abstraction Layer User Guide, RAL version 1.15

