
Timing Coverage: An Approach to

Analyzing Performance Holes

Surbhi Kalia, Shubhadeep Karmakar, Vikas Makhija, Apoorva Mathur
Synopsys India Pvt. Ltd.

kalia@synopsys.com, shubhade@synopsys.com, vikasm@synopsys.com, apoorvam@synopsys.com

I. INTRODUCTION

Designs are becoming more complex and require advanced verification to cover each aspect

of the specification. While trying to achieve comprehensive verification of a complex design,

repetitive testing of the same functionality can waste a lot of time. This repetition can be

avoided using coverage to achieve comprehensive verification. Functional coverage is a

method used to find holes in verification with respect to the functional specification of a

design; however, due to the increasing complexity of designs, it may not be sufficient for

plugging all the verification holes. It is also equally as important to check if performance

critical aspects of a design have been verified. This paper proposes a timing coverage model

for measuring performance verification closure. We will use LPDDR (Low Power Double

Data Rate) Verification IP (VIP) as an example to demonstrate timing coverage driven

verification for finding performance verification holes.

Fig. 1: A functional coverage model

The most common coverage metrics in a verification flow are code coverage and functional

coverage. Code coverage helps with identifying the values, sub-expressions in conditional

statements, and evaluation of decision statements. It also helps to ascertain whether or not a

line or block has been executed. It cannot however, provide detailed information about the

functional correctness of design logic. To cover correctness of features in any design,

functional coverage metrics are implemented as part of verification cycles and the result

predicts the functional completeness of verification.

Controller

Sample Event Transaction

Covergroup. Sample ()

CG1

CG2

.

.

.

Memory Model

mailto:kalia@synopsys.com
mailto:shubhade@synopsys.com
mailto:vikasm@synopsys.com

The functional coverage can determine the verification completeness, but does not guarantee

whether performance bottlenecks have been tested or covered in the design. Fig. 1,

demonstrates a generic functional coverage model where different functional features of a

design have been implemented as covergroups/coverpoints. An event transaction defines the

point in the design where the corresponding covergroup is sampled. In this example, we have

proposed a new area, or subdomain, in functional coverage, referred to as timing coverage,

which helps in testing the design against different timing variations and ensures all the

performance critical testing has been completed for the design under test (DUT).

II. UVM ARCHITECTURE WITH FUNCTIONAL COVERAGE

 Fig. 2: UVM VIP architecture with functional coverage points

The LPDDR VIP model in Fig. 2 is implemented with different functional coverage models,

with various coverage points at different components.

 F1: Functional coverage points are very near the randomization.

 F2: Functional coverage points are sampled at input interface of DUT.

 F3: Functional coverage points which sample internal DUT states.

 F4: Functional coverage points which sample output interface of DUT.

III. MODELING OF TIMINGS WITH TIMING COVERAGE

As previously discussed, the timing coverage model is a subset of the functional coverage

model, which is designed to capture the performance centric holes. In the timing coverage

model, the covergroups and coverpoints have been configured in order of delay values,

ranging from minimum supported timing to maximum supported timings. If the verification

test flow of a DUT have the scenarios which cover minimum and maximum timings, the

particular coverbin is treated as a hit in the coverage report. Fig. 3 shows a typical

verification model where timing coverage ensures the performance completeness of a system.

 Fig. 3: Functional and timing coverage flow

All the functionalities defined in the test plan to be tested are mapped to coverpoints in the

functional coverage model. Whenever the functionality is hit during simulation, the

functional coverage point is automatically updated – i.e.. 100% functional coverage ensures

functional specification is covered. On the other hand, with less than 100% functional

coverage, more test scenarios can be added to ensure verification is complete. Thus, the

functional coverage model discovers the uncovered cases from the implemented coverpoints

and crosspoints which covers the functional specification.

Similarly, the timing coverage model will ensure all minimum and maximum supported

timings are implemented with the help of coverpoints and crosspoints. Hence, 100% timing

coverage means that DUT has been tested for every possible timing. If 100% is not met, more

test scenarios covering the uncovered delays in timing coverage model should be added to

achieve performance completeness.

The purpose of performance driven verification is to capture the performance bottlenecks of

DUTs in addition to capturing functional holes. When 100% functional coverage and timing

coverage are not achieved, more test cases can be added to ensure functional specification

and all maximum and minimum timings have been covered. Ultimately, performance

completeness of the DUT is ensured with 100% functional coverage and 100% timing

coverage.

 Fig. 4: Timing Coverage Model Environment architecture

The whole timing coverage model Environment consists of a test module, transaction

generator, timing coverage model, and memory model. The supported minimum and

maximum timings are calculated from the memory model and mapped into coverpoints for

the minimum or maximum supported timings. The timing coverage model consists of

covergroup definition, consisting of coverpoints and crosspoints for timing delays for all the

valid configurations possible and ignore bins for the invalid values of timing delays for

different configurations. A test module consists of all the combinations of scenarios to hit all

the minimum and maximum supported timings coverage bins. Fig. 4 shows the typical timing

coverage model environment where the timing coverage model interacts with a test module

and memory module.

Fig. 5: Representing different bins in timing coverage

The covergroup consists of coverpoints and crosspoints which contains parameters called

bins as summarized in Fig. 5.

IV. METHODOLOGY

In this paper, we have used a typical case of LPDDR VIP where different timing metrics, as

shown in Fig. 6, are tested as a cover point for the timing coverage model. The timing delays

used as cover point can be categorized as follows:

 Command to command delay – In a memory architecture the bus utilization is an

important aspect for a performance calculation. Analyzing the delays, like delay

between different read commands, delay between a read to write command, active to

read delay, etc., can help in finding bottlenecks.

 Data Hit/Miss Rates - The efficiency of DRAM based architecture is based on no of

read/writes without opening a page. The timing model calculates the Read/Write

without precharge command (data hit) and precharge and activate combination (data

miss Scenarios).

 Power down time and Self refresh time – This time can be configured to check the

time during which the memory was in power down or self-refresh state.

 Refresh time – Refresh is an important parameter of a DRAM. Timings between

different Refresh per bank and Refresh all banks are also captured in the timing

coverage model.

 Setup, hold and pulse width time - As the memory design is a synchronous design, so

the timings like setup/hold/pulse width are part of the timing metrics. The timing model

covering different setup hold and pulse width time for the signals with respect to clock.

 Fig. 6: Timing coverage implementation

For LPDDR VIP, cross coverage is specified between different timing metrics and functional

cover bins like burst length, data width, latencies, etc. This helps to streamline the result with

a single coverage report for both functional and performance aspects. This report can be

analyzed to achieve better protocol mapping and capture performance holes in all the

applicable configurations in the following ways:

1. Command to Command Delays: Delays are required between different memory

commands to limit the efficiency of pipelined accesses. Delays are calculated from

one command to another command like write to read, read to read, write to write, etc.,

which are mapped into the coverpoints of covergroup as shown in Fig. 7. Then, cross

coverages are implemented for maximum/minimum delays with all the valid

configurations (Fig. 8). The covergroup is sampled based on the triggering of events

as shown in Fig. 9.

 Fig. 7: Calculating Write command to different commands delays

 Fig. 8: Cross coverage of write to write command delay with valid configurations

If (current_cmd == Write)

begin

if (next_cmd == CMD1)

 delay_1=clock_count

{ Execution syntaxes };

else if(next_cmd == CMD2)

 delay_2=clock_count

{ Execution syntaxes } ;

else if(next_cmd == CMD3)

 delay_3=clock_count

{ Execution syntaxes };

end

 Fig. 9: Sampling logic for covergroups

2. Data Hit/Miss Rates: A data hit is defined as any read or write operations to any

open bank. A typical performance model of a memory ensures increased data hit

transactions or reduced number of data miss transactions as shown in Fig. 10.

 Fig. 10: Covergroup for data hit/miss rates

3. Power down and self-refresh time: Power down and self-refresh time can be

included in timing coverage to ensure minimum timing is followed when memory is

in power down or self-refresh state to meet the performance metric.

4. Refresh timings: Refresh delays are important parameters in DRAM because the

capacitor is leaking and must be periodically refreshed in order to not lose its data. Per

bank refresh to per bank refresh different bank delay is configured in timing coverage

model as shown in Fig. 11.

fork

//Sampled when write to write event is triggered

 begin

 Forever@(write_to_write_command_event)begin
 Covergroup.sample();

 end

 end

 Fig. 11: Covergroup for refresh timings

5. Setup, hold and pulse width time: Setup, hold and pulse width time ensures reliable

sampling of data, hence it forms an important aspect of the timing coverage model. For

example, tdss (DQS falling edge to CK setup time) and tdsh (DQS falling edge hold time

from CK) in LPDDR memory can be covered in the timing model as shown in Fig. 12.

 Fig. 12.: Covergroup for setup timing in LPDDR

Better protocol mapping is achieved when cross coverages are implemented for all the timing

delays with the applicable configurations. Moreover, a streamlined data is achieved for better

performance. This performance data can be utilized to find holes in functional specification

and performance aspect as shown in Fig. 13.

 Fig. 13.: Timing coverage report generation framework

V. RESULTS

Overall, this paper focused on the functional timing coverage based on the various mode

register configurations. The coverage reports were collected using the functional coverage

model previously mentioned.

Delays for different commands get changed based on the Write/Read latencies, and these

delays are re-configurable. We provided different delays by reconfiguring these for each of

the transactions as shown in Fig. 13, and monitored each of the corresponding delays

independently in the cross coverage report.

Comparisons between functional and timing coverage were also done. Using functional

coverage only, some scenarios were missed due to limited test cases to verify each of the

timings; however, with timing coverage and appropriate directed test cases, the covered

scenarios increased by 200%. Overall, a good performance improvement.

Testing Coverage Statistics

 With functional Coverage With Timing Coverage +

Direct Test Cases

Coverage Percentage 86.57 100

Covered scenarios 187 560

Uncovered scenarios 29 0

Missing holes 29 0
 Fig. 14: Coverage statistics result

VI. SUMMARY

The timing coverage model helps to analyze the holes with respect to performance

verification. An example of LPDDR DRAM was used to explain the different possible

covergroups and then a coverage report was generated using high-dimension cross coverage

(cross coverage of more than two variables) which can be used as a feedback for both

verification test plan and DUT limitations.

We implemented the timing coverage model consisting of static timing delays, however this

approach can be extended to dynamic delay values also. Moreover, this timing coverage

report can be utilized for better protocol mapping using the spec linking technique to ensure

that both performance and functional specification aspects are covered.

REFERENCES
[1] El-Ashry, Sameh, and Khaled Salah. "A functional coverage approach for direct testing: An industrial IP as a case study." EUROCON

2015-International Conference on Computer as a Tool (EUROCON), IEEE. IEEE, 2015.

[2] Chai, Lingling, Zheng Xie, and Xin'an Wang. "A verification methodology for reusable test cases and coverage based on system

verilog." Electron Devices and Solid-State Circuits (EDSSC), 2014 IEEE International Conference on. IEEE, 2014.

[3] Yao, Aihong, Jian Wu, and Zhijun Zhang. "Functional coverage driven verification for TAU-MVBC." Internet Computing for Science

and Engineering (ICICSE), 2010 Fifth International Conference on. IEEE, 2010.

[4] http://www.es.ele.tue.nl/premadona/files/akesson01.pdf

[5] https://homepage.cs.uiowa.edu/~ghosh/4-1-10.pdf

[6] http://www.asic-world.com/systemverilog/coverage1.html

[7] http://www.testbench.in/TS_11_TYPES_OF_CODE_COVERAGE.html

[8] Cheng, An-Che, Chia-Chih Yen, and Jing-Yang Jou. "A formal method to improve SystemVerilog functional coverage." High Level

Design Validation and Test Workshop (HLDVT), 2012 IEEE International. IEEE, 2012.

http://www.es.ele.tue.nl/premadona/files/akesson01.pdf
https://homepage.cs.uiowa.edu/~ghosh/4-1-10.pdf
http://www.asic-world.com/systemverilog/coverage1.html

