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I.  INTRODUCTION 

Designs are becoming more complex and require advanced verification to cover each aspect 

of the specification. While trying to achieve comprehensive verification of a complex design, 

repetitive testing of the same functionality can waste a lot of time. This repetition can be 

avoided using coverage to achieve comprehensive verification. Functional coverage is a 

method used to find holes in verification with respect to the functional specification of a 

design; however, due to the increasing complexity of designs, it may not be sufficient for 

plugging all the verification holes. It is also equally as important to check if performance 

critical aspects of a design have been verified. This paper proposes a timing coverage model 

for measuring performance verification closure. We will use LPDDR (Low Power Double 

Data Rate) Verification IP (VIP) as an example to demonstrate timing coverage driven 

verification for finding performance verification holes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1: A functional coverage model 

 

The most common coverage metrics in a verification flow are code coverage and functional 

coverage. Code coverage helps with identifying the values, sub-expressions in conditional 

statements, and evaluation of decision statements. It also helps to ascertain whether or not a 

line or block has been executed. It cannot however, provide detailed information about the 

functional correctness of design logic. To cover correctness of features in any design, 

functional coverage metrics are implemented as part of verification cycles and the result 

predicts the functional completeness of verification. 
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The functional coverage can determine the verification completeness, but does not guarantee 

whether performance bottlenecks have been tested or covered in the design. Fig. 1, 

demonstrates a generic functional coverage model where different functional features of a 

design have been implemented as covergroups/coverpoints. An event transaction defines the 

point in the design where the corresponding covergroup is sampled. In this example, we have 

proposed a new area, or subdomain, in functional coverage, referred to as timing coverage, 

which helps in testing the design against different timing variations and ensures all the 

performance critical testing has been completed for the design under test (DUT). 

 

II.  UVM ARCHITECTURE WITH FUNCTIONAL COVERAGE 
 

 
 Fig. 2: UVM VIP architecture with functional coverage points 

 

The LPDDR VIP model in Fig. 2 is implemented with different functional coverage models, 

with various coverage points at different components. 

 F1: Functional coverage points are very near the randomization. 

 F2: Functional coverage points are sampled at input interface of DUT. 

 F3: Functional coverage points which sample internal DUT states. 

 F4: Functional coverage points which sample output interface of DUT. 

 

III.  MODELING OF TIMINGS WITH TIMING COVERAGE 

As previously discussed, the timing coverage model is a subset of the functional coverage 

model, which is designed to capture the performance centric holes. In the timing coverage 

model, the covergroups and coverpoints have been configured in order of delay values, 

ranging from minimum supported timing to maximum supported timings. If the verification 

test flow of a DUT have the scenarios which cover minimum and maximum timings, the 

particular coverbin is treated as a hit in the coverage report. Fig. 3 shows a typical 

verification model where timing coverage ensures the performance completeness of a system. 

 

 



 
 Fig. 3: Functional and timing coverage flow 

 

All the functionalities defined in the test plan to be tested are mapped to coverpoints in the 

functional coverage model. Whenever the functionality is hit during simulation, the 

functional coverage point is automatically updated – i.e.. 100% functional coverage ensures 

functional specification is covered. On the other hand, with less than 100% functional 

coverage, more test scenarios can be added to ensure verification is complete. Thus, the 

functional coverage model discovers the uncovered cases from the implemented coverpoints 

and crosspoints which covers the functional specification.  

 

Similarly, the timing coverage model will ensure all minimum and maximum supported 

timings are implemented with the help of coverpoints and crosspoints. Hence, 100% timing 

coverage means that DUT has been tested for every possible timing. If 100% is not met, more 

test scenarios covering the uncovered delays in timing coverage model should be added to 

achieve performance completeness. 

 

The purpose of performance driven verification is to capture the performance bottlenecks of 

DUTs in addition to capturing functional holes. When 100% functional coverage and timing 

coverage are not achieved, more test cases can be added to ensure functional specification 

and all maximum and minimum timings have been covered.  Ultimately, performance 

completeness of the DUT is ensured with 100% functional coverage and 100% timing 

coverage. 

 



 
 Fig. 4: Timing Coverage Model Environment architecture 

 

The whole timing coverage model Environment consists of a test module, transaction 

generator, timing coverage model, and memory model. The supported minimum and 

maximum timings are calculated from the memory model and mapped into coverpoints for 

the minimum or maximum supported timings. The timing coverage model consists of 

covergroup definition, consisting of coverpoints and crosspoints for timing delays for all the 

valid configurations possible and ignore bins for the invalid values of timing delays for 

different configurations. A test module consists of all the combinations of scenarios to hit all 

the minimum and maximum supported timings coverage bins. Fig. 4 shows the typical timing 

coverage model environment where the timing coverage model interacts with a test module 

and memory module. 

 

 
Fig. 5: Representing different bins in timing coverage 

 

The covergroup consists of coverpoints and crosspoints which contains parameters called 

bins as summarized in Fig. 5. 

 

 

 

 



IV.  METHODOLOGY 

In this paper, we have used a typical case of LPDDR VIP where different timing metrics, as 

shown in Fig. 6, are tested as a cover point for the timing coverage model. The timing delays 

used as cover point can be categorized as follows: 

 Command to command delay – In a memory architecture the bus utilization is an 

important aspect for a performance calculation. Analyzing the delays, like delay 

between different read commands, delay between a read to write command, active to 

read delay, etc., can help in finding bottlenecks. 

 Data Hit/Miss Rates - The efficiency of DRAM based architecture is based on no of 

read/writes without opening a page. The timing model calculates the Read/Write 

without precharge command (data hit) and precharge and activate combination (data 

miss Scenarios). 

 Power down time and Self refresh time – This time can be configured to check the 

time during which the memory was in power down or self-refresh state. 

 Refresh time – Refresh is an important parameter of a DRAM. Timings between 

different Refresh per bank and Refresh all banks are also captured in the timing 

coverage model. 

 Setup, hold and pulse width time - As the memory design is a synchronous design, so 

the timings like setup/hold/pulse width are part of the timing metrics. The timing model 

covering different setup hold and pulse width time for the signals with respect to clock. 

  

 
 Fig. 6: Timing coverage implementation 

 

For LPDDR VIP, cross coverage is specified between different timing metrics and functional 

cover bins like burst length, data width, latencies, etc. This helps to streamline the result with 

a single coverage report for both functional and performance aspects. This report can be 

analyzed to achieve better protocol mapping and capture performance holes in all the 

applicable configurations in the following ways: 



 

1. Command to Command Delays: Delays are required between different memory 

commands to limit the efficiency of pipelined accesses. Delays are calculated from 

one command to another command like write to read, read to read, write to write, etc., 

which are mapped into the coverpoints of covergroup as shown in Fig. 7. Then, cross 

coverages are implemented for maximum/minimum delays with all the valid 

configurations (Fig. 8). The covergroup is sampled based on the triggering of events 

as shown in Fig. 9.  

 

 

 

    

 

 

 

 

 

 

 

 

 
 

 Fig. 7: Calculating Write command to different commands delays 

 

 
 Fig. 8: Cross coverage of write to write command delay with valid configurations 

 

 

 

 

If (current_cmd == Write)  

begin  

if (next_cmd == CMD1)  

  delay_1=clock_count 

{ Execution syntaxes };  

 

else if(next_cmd == CMD2)  

  delay_2=clock_count 

{ Execution syntaxes } ;  

 

else if(next_cmd == CMD3)  

  delay_3=clock_count 

{ Execution syntaxes };  

end 



 

 

 

 

 

 

 
 Fig. 9: Sampling logic for covergroups 

 

2. Data Hit/Miss Rates: A data hit is defined as any read or write operations to any 

open bank. A typical performance model of a memory ensures increased data hit 

transactions or reduced number of data miss transactions as shown in Fig. 10.  

 

 
 Fig. 10: Covergroup for data hit/miss rates 

 

3. Power down and self-refresh time: Power down and self-refresh time can be 

included in timing coverage to ensure minimum timing is followed when memory is 

in power down or self-refresh state to meet the performance metric. 

 

4. Refresh timings: Refresh delays are important parameters in DRAM because the 

capacitor is leaking and must be periodically refreshed in order to not lose its data. Per 

bank refresh to per bank refresh different bank delay is configured in timing coverage 

model as shown in Fig. 11. 

 

 

fork 

//Sampled when write to write event is triggered 

  begin 

   Forever@( write_to_write_command_event)begin 
     Covergroup.sample(); 

    end 

   end 



 
 Fig. 11: Covergroup for refresh timings 

 

5. Setup, hold and pulse width time: Setup, hold and pulse width time ensures reliable 

sampling of data, hence it forms an important aspect of the timing coverage model. For 

example, tdss (DQS falling edge to CK setup time) and tdsh (DQS falling edge hold time 

from CK) in LPDDR memory can be covered in the timing model as shown in Fig. 12.  

 

 
 Fig. 12.: Covergroup for setup timing in LPDDR 

 

Better protocol mapping is achieved when cross coverages are implemented for all the timing 

delays with the applicable configurations. Moreover, a streamlined data is achieved for better 

performance. This performance data can be utilized to find holes in functional specification 

and performance aspect as shown in Fig. 13. 

 



 
 Fig. 13.: Timing coverage report generation framework 

 

V.  RESULTS 

Overall, this paper focused on the functional timing coverage based on the various mode 

register configurations. The coverage reports were collected using the functional coverage 

model previously mentioned. 

 

Delays for different commands get changed based on the Write/Read latencies, and these 

delays are re-configurable. We provided different delays by reconfiguring these for each of 

the transactions as shown in Fig. 13, and monitored each of the corresponding delays 

independently in the cross coverage report.  

 

Comparisons between functional and timing coverage were also done. Using functional 

coverage only, some scenarios were missed due to limited test cases to verify each of the 

timings; however, with timing coverage and appropriate directed test cases, the covered 

scenarios increased by 200%. Overall, a good performance improvement. 

 

 

 

 

Testing Coverage Statistics 

 With functional Coverage  With Timing Coverage + 

Direct Test Cases 

Coverage Percentage 86.57 100 

Covered scenarios 187 560 

Uncovered scenarios 29 0 

Missing holes 29 0 
 Fig. 14: Coverage statistics result 

 

VI.  SUMMARY 

The timing coverage model helps to analyze the holes with respect to performance 

verification. An example of LPDDR DRAM was used to explain the different possible 



covergroups and then a coverage report was generated using high-dimension cross coverage 

(cross coverage of more than two variables) which can be used as a feedback for both 

verification test plan and DUT limitations. 

 

We implemented the timing coverage model consisting of static timing delays, however this 

approach can be extended to dynamic delay values also. Moreover, this timing coverage 

report can be utilized for better protocol mapping using the spec linking technique to ensure 

that both performance and functional specification aspects are covered. 
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