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Abstract—The semiconductor industry is developing smaller transistors and succeeding in increasing their on-chip 

integration density. Therefore, the computing power of modern Integrated Circuits (IC) is constantly increasing and 

their application domains are becoming countless. However, the increasing complexity leads to higher power 

consumption and more challenging designs. In order to address these issues and to differentiate themselves in the 

market, manufacturers and System-On-Chip (SoC) engineers are devoting tremendous effort to researching new 

development strategies. Numerous studies have shown that one of the essential steps to be taken is to review the early 

stages of the design flow and in particular to integrate simulation-based modeling and verification at higher level of 

abstraction.  

In this paper we address this gap and present a proof of concept of an academic power estimation and management 

methodology, called PwClkARCH, on an NXP intellectual property (IP). Memory power estimation has been improved 

using DRAMPower. The results prove that with PwClkARCH, we are able to perform mixed 

performance/power/energy modeling on Approximately Timed (AT) SystemC models, which are widely used for 

architecture exploration and optimization. Our methodology allows to dynamically extract power metrics and allows 

to apply power management and reduction strategies, while considering the functional model activity, the power 

management and reduction strategies and the memory systems consumption. 

Keywords—power modeling; virtual prototyping; intellectual property; Approximately-Timed TLM models; 

PwCLKARCH  

I.  INTRODUCTION  

The problem of CMOS power consumption has been discussed for decades. Designing devices that consume a 

minimum amount of power was and remains an important effort to consider. It is not enough to know how to 

calculate power consumption, it is also necessary to understand the impact of each factor, such as the clock 

frequency and the capacitance, on the device power consumption. There are several tools and methodologies for 

power estimation and management. The common abstraction level of these tools is the Register Transfer Level 

(RTL) since the standard Unified Power Format (UPF) already exist for RTL power-aware verification [1]. 

Nevertheless, RTL is no longer suitable for efficient design space explorations for complex systems. RTL 

simulations are very time consuming due to the multitude of blocks and signals to be considered in a SoC. However, 

it is very important to maintain a short time-to-market and to develop competitive products. The UPF committee 

has followed the trend to start designing SoCs from abstract models above RTL and has provided an updated version 

3.0 that can be used at Electronic System Level (ESL). However, the standard is still missing for clock tree modeling 

and control or what we call the Clock Intent Specification which is mandatory for power optimization. Therefore, 

the UPF does not cover all the needs to support easy performance/power system design space exploration where 

power/performance tradeoffs need to be investigated, and where overall power management strategies need to be 

defined and validated. Synopsys, one of the companies involved in the implementation of UPF standard, has 

integrated UPF 3.0 in their tool Platform Architect MCO and Ultra [2]. Other companies prefer to use their internal 

tools and methodologies to solve power issues. Industrialized ESL solutions focus on power estimation capabilities 

and not on the implementation of power management mechanisms. 

 

The solution presented in this paper is in line with the idea of integrating hardware power management at the 

ESL level as it allows exploring low-power design optimizations and their impact on different architectural options 

earlier in the design flow. 
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II.  PWCLKARCH 

A. Library overview 

PwClkARCH is a C++/SystemC-TLM library [3] [4] enabling the early stage Integrated Circuits (IC) power 

consumption estimation. The methodology of PwClkARCH is based on the co-simulation between a power model 

description and a SystemC-TLM based virtual prototype [5]. Thus, it dynamically extracts power metrics, asserts 

power/functional coherency and makes it possible to apply power management strategies and observe their impact 

on energy consumption. This library is inspired from the UPF standard in terms of power domains decomposition, 

power states tables, operating points tables, supply nets and other features. In addition, it includes clock tree 

description to support a clock domains management strategy [6]. The concept of Design Element (DE) has been 

adopted in PwClkARCH from the UPF standard. Design Elements can be compared to “shadows” of the IPs in the 

functional model. Each IP instantiated in the platform and included in a Clock/Power domain is associated with a 

DE. The parameters necessary for power computation, such as capacitance and leakage current, are specified during 

the instantiation of the Design Element (Figure 1).  

 
Figure 1. IP and counterpart DE 

DE observes the activity of its functional counterpart hardware module using a reference or a pointer. Each DE 

class dynamically compute some generic power equations based on the component activity and physical data. These 

equations are based on the sum of static power (𝑃𝑠𝑡𝑎𝑡 = 𝑉 ∗ 𝐼𝑙𝑒𝑎𝑘𝑎𝑔𝑒) and dynamic power (𝑃𝑑𝑦𝑛 = 𝛼𝐶𝑉2𝐹) 

consumptions. A Power Management Unit (PMU) module is used to establish the communication between the 

functional model and the power model. The PMU dynamically controls all clock/power state changes and applies 

the power management after checking if all the following configurations are valid. 

B. Methodology behind PwClkARCH 

The approach of PwClkARCH is represented in the Figure 2.  

 

Figure 2. Overall approach of PwClkARCH based methodology 
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Three sequential steps are required to implement the power model. In the first step, the designers analyze how 

data are exchanged between the components of the functional model in order to understand when and how often 

each component has been activated in different use cases. Next, they organize the components into different power 

and clock domains. This is done by instantiating the appropriate objects from the PwClkARCH library: clock 

sources, generated clocks, power switches, and supply nets. At this stage, power management strategies can be 

defined using clock/power state tables and operating performance point (OPP) table [6]. Then, the PMU that 

interfaces between the functional and power models is implemented in SystemC-TLM. The PMU module is the 

only power-related component that has to be added to the functional model. However, this component already exists 

in the PwClkARCH library, so we just need to configure it following the structure of our model. The third step is 

the simulation of the complete architecture, including the power model and the generation of power results. At the 

end of this step, the values of static and dynamic power consumption and energy can be plotted in different 

configurations (static power per hardware module, total static power, static power per power domain, etc.). The 

approach includes a verification throughout the previous steps to check the consistency between the power 

management properties and the functional behavior.  

The power models of the cited tools (see Table I), except for PwClkARCH, are mainly based on Power State 

Machines (PSM). With these tools, the only way to apply power management techniques (Clock/Power gating, 

DVFS, Voltage clustering, etc.) is to integrate them into the functional models, thus breaking the functional/power 

separation of concerns. 

Table I. Comparison with industrial ESL-based tools 

Tool Simulation model Power estimation Power Management 

Platform Architect MCO and Ultra [7] SystemC-TLM YES NO 

Intel CoFluent Studio [8] SystemC-TLM NO NO 

Intel Docea Power Simulator [9] 
Internal simulator with possible connection 

with vcd files extracted from SystemC-TLM 

functional models 

YES NO 

Mentor Graphics Vista [10] SystemC-TLM YES NO 

PwClkARCH SystemC-TLM YES YES 

C. Comparison with previous PwClkARCH based works 

In this paper, we focus on four new areas of application of the PwClkARCH methodology, in comparison with 

previous works [5] [11] [6]. First, we have tripled the complexity and size of the functional model and we have 

considerably increased the number of design elements and clock domains. This broadens the size of the tables used 

to control the power and clock states and proves that PwClkARCH is suitable for larger and more complex designs. 

The second area of novelty is that the architecture used is a Approximately-Timed (AT) Transaction Level Model 

(TLM) of industrialized hardware, as opposed to the Loosely-Timed (LT) models used for prior application of the 

PwClkARCH library. This proves that PwClkARCH is suitable for architectural exploration on high-level 

platforms. The third area of novelty is that in addition to the PwClkARCH/DRAMPower LT co-simulation module, 

we have created a new one allowing the connection between PwClkARCH/DRAMPower and a functional AT 

model. The fourth and main focus of this publication is that we present an important case-study on an industrialized 

interconnection module with one generic multi-tasking and two more complex single-tasking use cases. 

III. APPLICATION 

To evaluate our methodology, we use NXP i.MX8QM SoC [12] which is a member of the i.MX8 series [13] 

developed for automotive and industrial applications. This SoC contains a variety of digital and analog modules, 

such as Core processing unit (CPU) clusters, Graphics processing units (GPU) and Video processing units (VPU), 

Display Controllers (DC), and other advanced features. For the sake of simplicity, we will refer to all these features 

under the common name – subsystems or IPs. Each subsystem is composed of multiple blocks and interconnects 

in order to match a concrete structure and application. There is one subsystem, which we will call Switch Matrix 

(SM) and which will be the main object of this study. The SM subsystem provides the connection and the 

communication between more than 15 subsystems and 2 external Dynamic Random-Access Memories (DRAM). 
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A. Switch Matrix (SM) module description 

SM is a highly granular interconnection module with multiple QoS and routing algorithms. Like the other 

subsystems, SM also contains multiple blocks (Figure 3) and each block serves to translate, treat, isolate or schedule 

specific transaction or entire bursts of transactions. The internal application of several QoS algorithms, enables the 

prioritization of certain subsystems traffic and contributes to the optimization of performance and memory usage. 

The entire SM has its own power domain and more than 20 clock domains. The clock can be turned off for inactive 

blocks and kept only for the active blocks. In order to apply this dynamic power reduction technique, we use 

hardware auto clock gating. In addition, when the whole subsystem is inactive, we can apply the power gating and 

cut the static power consumption. 

 

Figure 3. Switch Matrix simplified structure, Blocks` names are hidden for confidentiality concerns 

B. Switch Matrix (SM) functional model 

1. Communication protocol 

The protocol modeling can be error prone and time consuming if we code it separately in each IP. For this 

reason, we separated the communication part from the behavioral part and created two reusable interface modules 

(Figure 4). 

• AXI initiator – IP internal module attached to its corresponding initiator TLM socket. It uses TLM initiator 

socket to communicate with other IPs and callback functions to communicate with its parent IP. 

• AXI target – IP internal module attached to its corresponding target TLM socket. It uses TLM target socket 

to communicate with other IPs and callback functions to communicate with its parent IP. 

At each transaction transmission/reception through the socket, the protocol interface triggers a callback process 

(CbProcess()) that “wakes up” the behavioral model for treatment. In reality, these two AXI [14] reusable modules 

are based on generic protocol initiator and target skeletons. We instantiate the generic protocol modules within the 

IP functional model and define the specific communication protocol when we instantiate the IP in question in the 

platform under simulation. The subsystem clock frequency is also passed as construction parameter and is used by 

the interface modules and the behavioral SystemC models. We can use these skeletons and follow the same 

approach to create and test other communication protocols without significant changes on the functional prototype. 

 

Figure 4. AXI interface modules 

2. Behavior 

In behavioral model it is very important to model the entire transactions treatment process in order to maintain 

functional accuracy and to respect the timing and deadlines. From a developers’ point of view, it is also important, 

if possible, to maintain a fixed common structure for all IP components and add additional processing threads if 

necessary. With this in mind, we have created a skeleton that can be reused when coding a new IP. Each IP model 

contains at least two Accept[Read/Write]PEQ payload event queues (PEQ) which are FIFO-based queues 

containing a pair of transaction and its receive time stamp. These PEQs are notified when a read/write transaction 
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is received. PEQs are used in two Accept[Read/Write]Thread() processes of type SC_THREAD that execute the IP 

specific request processing. These threads await notification from the Accept[Read/Write]PEQ and execute their 

IP-specific request acceptance processing. Once accepted, these threads wake up their corresponding transfer 

methods using the forward[Rd/Wr]Event events. The timing and number of these events notifications depends on 

the specific IP functional model. The forwarding methods Forward[Read/Write]Method() checks whether the 

forward AXI channel is free and if so, they transfer the scheduled read/write transaction. Intermediate processes 

can be easily added, which guarantees the interoperability of the behavioral skeleton. All SM blocks, including the 

bridges and AXI interconnections, are based on this skeleton. 

C. Testbench 

During the simulation, the platform or IP under test, must be stimulated by transactions to be activated. The 

stimuli come from Traffic Generators (TG), which are regular SystemC initiator modules, initiating transactions in 

a specific way. We have developed multiple generic configurable TGs that can be used to simulate simple use cases 

and some application-specific ones. In this study, we analyze memory accesses through an intermediate 

interconnection module. Therefore, we also need an accurate memory module that communicates with the TGs 

through the SM module. Figure 5 shows a very simplified overview of our testbench containing several TGs, our 

Design Under Test (DUT) and two DRAM memory models. Using PwClkARCH components [5] we build the 

power model of our DUT and connect it to the functional model via a PMU block. The detailed power intent 

implementation is given in [15]. Since we are not involved in the creation of an accurate functional memory model, 

we prefer to use existing solutions. 

 

Figure 5. Testbench structure 

Academic and industrial tools are available for performance and power estimation of DRAM memory. It has 

already been proven that PwClkARCH and DRAMPower [16] can be used in a single framework in to obtain an 

accurate estimate of the power consumption of a given DRAM memory taking into account all memory operations 

[11]. Considering that the accuracy of the memory model has an important impact on the interconnect power 

estimation accuracy, we made two observations at two different levels of abstraction for the memory system and 

compared the results. The first one was performed with simple DRAM blocks accepting and executing 

READ/WRITE commands and initiating transaction phase changes. The configurable parameters in these models 

are memory READ/WRITE accept and response delays, memory size and width and the power contribution for 

different states, like clock gated, IO down and PLL down states. We automate the states evolution by using a simple 

module activity monitoring and hysteresis counting. The second observation was made using DRAMPower. 

DRAMPower performs high-precision modeling of the power consumption of different DRAM operations, state 

transitions and power-saving modes at ESL level. The connection between DRAMPower and PwClkARCH has 

been established in such a way that we obtain the most accurate power consumption values while maintaining 

optimal simulation speed. For this purpose, DRAMPower is invoked by the SystemC-TLM functional model only 

once per read/write transactions window (in our case we use windows of 10 transactions). It then returns the average 
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power consumed by the memory for this window and updates the overall power consumption computed by 

PwClkARCH (Figure 6). We have also enhanced the DRAMPower tool to calculate the average response time per 

transaction for each window in order to improve the functional model timing accuracy.  

 

Figure 6. Connection of DRAMPower with a SystemC-TLM model augmented with PwClkARCH 

IV. SIMULATIONS, RESULTS AND CORRELATION 

We have applied the clock/power domains distribution and the defined power management strategy on our 

model, and we have tested multiple use cases starting with generic ones and moving to more application-specific 

ones. Our power model essentially contains more than 25 DEs and clock domains and about 5 power domains. In 

order to replicate the clock management used in real hardware, we have enhanced the PwClkARCH library to 

support hardware auto clock gating capabilities. We consider each IP clock to be activated when transactions are 

received/treated/kept/initiated and deactivated if there is no traffic for a period of 32 cycles. In this section we will 

give a quick overview of some of the tested use cases and the total power consumption (SM+DRAM). Axis scales 

are masked for confidentiality reasons. 

A. Generic simulations with multiple active traffic generators (Figure 7) 

These generic-level simulations were extremely useful during the functional model development, as the power 

related curves gave us a clear view of each module activity and simplified the debugging and analysis stage. 

Moreover, we had our first power estimates and promising silicon correlation. This can be a good first step when 

developing new platforms and we do not have IP models for traffic generation (like CPU, GPU, Display 

Controllers….). In Figure 7, we illustrate a comparison between identical simulations with the only difference that 

for the first one we use a simple memory model and for the second one we use DRAMPower with MICRON-16Gb-

LPDDR3-1600_32bit specification. 

 

Figure 7. Overall Power consumption without/with DRAMPower 
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During the high activity phase, all traffic generators and both DRAMs are activated, thus the maximum power 

consumption is reached. During the medium and low activity phases, we activate several (but not all) traffic 

generators, but most of them access only one memory. There are small fractions of time when both memories are 

activated simultaneously. The non-activity phase is a rest phase added to test the clock gating mechanisms. Silicon 

correlation has shown us that the maximum and average power consumptions are 99% accurate. The dynamically 

obtained simulation results have been successfully correlated with the extrapolation of silicon measurements. We 

can clearly observe the differences between the two simulations. The PwClkARCH simulation with DRAMPower 

uses more realistic and variable response timing values (by considering refresh rates, banks and ranks interleaving 

and more), while the simple memory module uses constant values inferred and approximated from previous 

hardware measurements. The red rectangle shows a chosen time stamp in the simulation and highlights the timing 

error introduced by the constant values methodology. Thus, the combination PwClkARCH/DRAMPower improves 

our functional model and therefore it increases the power and performance estimation accuracy. In Figure 8, we 

illustrate the overall energy consumed during both simulations.  

The [index] represents a fixed value 

used to compare the two energy 

consumptions. It can be distinguished 

that the simulation using 

DRAMPower executes the same 

number of transactions in less time 

than the simple memory one. As a 

result, the slope of its curve is steeper. 

At this level, with these generic 

traffic generators we can have a good 

correlation for the maximum, 

average and minimum power 

consumption (with or without 

DRAMPower). However, if we want 

a real use case simulation, we need 

more application-specific traffic 

generators. 

B. 256KB Memcopy use case (Figure 9) 

In this use case, we have only one active application-specific traffic generator that executes 256KB DRAM read 

accesses performed by a CPU cluster. Each data access is 16 bytes and we consider sequential memory accesses. 

In order to optimize the memory usage, we apply 4K interleaving between our two DRAM memories. 

 

Figure 9. 256KB MEMCOPY - Total Power w/o DRAMPower (+ zoom on spikes) 

 

Figure 8. Overall energy consumption comparison without/with DRAMPower 
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 On Figure 9  we can observe the constant activity due to the continuous memory accesses. The spikes come 

from the moments of interleaving between the two memories. The simulation with DRAMPower ignorew some of 

the spikes due to the interleaving, because we use windows of multiple transactions and the memory power 

consumption is normalized (Figure 9) for the whole window. The correlation with silicon power related 

measurements is approximately 95% accurate. 

C. Display Refresh HD1080-1920x1080@60-32b use case (Figure 10) 

In this use case we consider a HD display with 1920x1080 screen resolution and we execute one frame of 

transactions. The data paths are 256 bits and each pixel is 32 bits, so we have 8 pixels per transaction. 

An active display data 

line is 1920 pixels, 

which means 240 

transactions. We have 

a total of 1080 lines, so 

a total of 259200 

transactions for one 

frame. We consider a 

multiple lines 

prefetching 

mechanism, the 

horizontal and vertical 

blanking periods, pixel 

frequency and refresh rate. Each data access is 32 bytes and we consider sequential memory accesses 

(prev_addr+32bytes). In Figure 10 we can observe the activity variation. During the display traffic, the generator 

periodically sends bursts of transactions (catching lines) and there are certain moments of inactivity between these 

bursts. Once again, the spikes are due to the interleaving between the two memories. The silicon correlation is about 

90% accurate. We are also able to extract the static and dynamic power consumption, clock activity and operating 

points for each component of our platform. It is important to mention that the simulation time for these use cases 

takes between 10 seconds to 10 minutes, which is between 10-1000 times faster than RTL simulation. 

V. CONCLUSION 

The purpose of this study is to present our proof of concept of a high-level timing-aware power estimation 

library, called PwClkARCH, on an AT SystemC-TLM2.0 model with an accurate DRAM model provided by 

DRAMPower. We are also contributing to an interesting and significant case study on a complex interconnection 

system. The extracted power metric has a good correlation with silicon measurements and tends to be reliable for 

more complex use cases, such as the display refresh one. The next step is to generate a GPU-based use case to test 

the model accuracy on a more complex workload. We are currently working on the functional model 

interoperability test and we have been able to easily reuse the SM functional model for another SoC of the NXP 

i.MX8 family. We are also reusing the power intent definition with minor changes. The effort required to integrate 

PwClkARCH into the functional model is minor if we have already defined some of the architectural options and 

corresponding power management strategies that we want to test. In order to connect the power model and the 

functional one, we simply need to define the design elements for each IP and associate them with clock/power 

domains, clock state tables, power state tables and operating points, which is done outside the functional model. 

The Hardware auto clock gating implementation is the only part that had to be added in the functional code, but it 

is not intrusive at all. We have a power observer instantiated in the constructor of the IP model and we use two 

SystemC events to indicate the module activity. The effort required to create the IP functional models using our 

skeletons is significantly reduced. We need to enrich our library of reusable IPs with SystemC models from IP 

vendors. One way to do this is to support the integration of PwClkARCH into an industrial EDA tool or to further 

develop our internal models and framework. 

 

Figure 10. Display Refresh - Total power 
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