Timing-Aware high level power estimation of industrial interconnect module

<u>Amal Ben Ameur¹, Antonio Genov^{1,2}, François</u> Verdier¹, Loic Leconte² (1)University of Cote d'Azur, LEAT, Sophia Antipolis, France (2)NXP SEMICONDUCTORS, Mougins, France

Outline

Context & Motivations

PwClkARCH library

Design Under Test

Simulations, Results and Correlation

Conclusion

2

3

Context and Motivations

PwClkARCH library

- C++/SystemC-TLM library inspired from the UPF standard
- Based on the co-simulation between a power model description and a SystemC-TLM based virtual prototype
- Ensures the estimation of the power metrics dynamically, and the application of hardware power management strategies (clock gating, power gating, DVFS, etc.)

LABORATOIRE D'ELECTRONIQUE

DESIGN AND VERIFICATIC

CONFERENCE AND EXHIBIT

PwClkARCH library

191

- Decomposition of the architecture 1. into different power domains and clock domains.
- 2. PMU implementation in SystemC-TLM that interfaces the functional and the power models.
- **3.** Simulation of the complete architecture and the generation of power results.
- Verification of the consistency between the 4. management properties and the power functional behavior.

PwClkARCH library

© Accellera Systems Initiative

SYSTEMS INITIATIVE

Design under test - description

- NXP i.MX8QM SoC
- Many Subsystems
 - Audio, VPU, GPU, CPU, SCU ...
- Switch Matrix Connection of all subsystems

SYSTEMS INITIATIVE

Design under test - description

- Interconnection module
- Implements multiple QoS and routing algorithms
- Contains multiple sub-blocks
- **~5** power domain
 - More than **25** clock domains

auto clock gating

power gating

SYSTEMS INITIATIVE

Design under test - testbench

- The stimuli come from generic or application-specific Traffic Generators (SystemC initiator modules)
- Two DRAM memory models

MemCopy 256KB

- 256KB DRC read accesses
- Each data access is 16 bytes
- Sequential memory accesses (prev_addr+32bytes).
- 4K interleaving applied in order to optimize the memories usage.
- The spikes come from the moments of interleaving between the two memories.
- Good power consumption silicon correlation

Display Refresh HD1080-1920x1080@60-32b with DC prefetch enabled

- One frame of transactions.
- Only one Group/QOS is used.
- Data paths are 256 bits.
- Pixel size 32 bits.
- Pixel frequency 138.5 MHz.
- Refresh rate 60Hz (Frame rate 60fps).
- Each data access is 32 bytes and we consider sequential memory accesses.
- 4K interleaving applied in order to optimize the memories usage.

 Good power consumption silicon correlation

Silicon correlation

Power distribution	Silicon/Simulation correlation
Switch Matrix dynamic power	85 - 99.5%
Switch Matrix static power	85 - 90.9%
2 DRC dynamic power	90 - 99.9%
2 DRC static power	90 - 96.1%
Total power under 1.1V	88% – 98%

Conclusion

Comparing to previous PwClkARCH utilization:

- 1. Complexity of the functional model is tripled.
- 2. The number of design elements and clock domains is significantly increased.
- 3. Timing-aware functional model Approximately-Timed (AT) Transaction Level Model (TLM) coding style.
- 4. The extracted power related metrics present a promising correlation with silicon measurements.

PwClkARCH performances:

- 1. Easily implemented on complex NXP IP.
- 2. Promising early stage power consumption silicon correlation.
- 3. Quick bugs detection/evaluation/correction.

Importance of industrial collaborators for PwClkARCH:

- 1. Industrial testing and proof-of-concept.
- 2. Maturation.
- 3. Bugs detection and correction.
- 4. Further add-on ideas.

We are searching for more collaborators interested by this new technology (PwClkARCH) Contact: <u>francois.verdier@univ-cotedazur.fr</u>

DESIGN AND VERIEI

Thank You! Q&A

