
There’s something wrong between Sally Sequencer 
and Dirk Driver – why UVM sequencers and drivers 

need some relationship counselling 

Mark Peryer  

Mentor Graphics (UK) Ltd., 
Rivergate, London Road 

Newbury, Berkshire, England 
mark_peryer@mentor.com 

 
 

Abstract One of the drivers behind verification 
methodology is to allow engineers to solve complex problems with 
simple methods. However, the pace of technological change 
means that a system that is considered complex today will be 
viewed as a simple building block in a few years time. In order to 
keep up with this ever increasing complexity verification 
methodology has to evolve to ensure that working products can 
continue to be delivered by the electronics industry. The 
development of the Universal Verification Methodology (UVM) 
has been a welcome development and should enable a more 
coherent verification ecosystem. At the core of the UVM is a 
legacy stimulus generation architecture based on the use of 
sequence objects with sequencer and driver components. This 
paper makes a critical examination of this architecture and 
proposes an alternative based on TLM2 non-blocking transfers 
which have the potential to cope better with future verification 
needs. 

Keywords-UVM; stimulus; sequences; drivers; testbench 
architecture; TLM;  

I.  INTRODUCTION 

The growing use of Transaction Level Modeling (TLM) in 
testbenches is one means by which verification engineers have 
been able to solve ever more complex problems by abstracting 
themselves away from the detail of signal level activities. 
TLM is used for both stimulus and observation, but the focus 
of this paper is on stimulus. There are various ways in which 
TLM stimulus can be implemented, but they all have the same 
characteristics: 

 

 A pin level transfer is abstracted as a transaction data 
object 

 A driver component receives transactions and 
converts them into patterns of pin level activity 

 The stimulus process involves streaming transaction 
data objects to the driver 
 

The measure of a good TLM methodology is that the 
stimulus writer should not need to know the detail of how the 
driver is implemented and that there is a clear and 
unambiguous API which, once learnt, can be reused across all 
environments. The only thing the stimulus writer should have 
to concern themselves with is the content of the transaction 
object and how that relates to the protocol. Unfortunately, with 

the UVM stimulus generation architecture this is not 
necessarily the case.  

II. UVM STIMULUS GENERATION ARCHITECTURE 

In the UVM class library, the uvm_driver component is 
responsible for converting abstract transactions into concrete 
patterns of pin level transfers on an interface of the DUT. The 
transactions that the driver receives are generated by a 
uvm_sequence and are referred to as sequence items. A 
sequence is a class which is generated on the fly and executes 
a time consuming task that either creates and starts other 
sequences or it generates sequence items. A sequence 
communicates with the driver through an intermediate 
component called the sequencer. The sequencer implements 
various TLM interfaces which the driver and the sequence use 
to communicate. 

 

 
Figure 1 - UVM Stimulus Generation Architecture 

The sequencer contains an arbitration mechanism that 
allows several sequences to be running concurrently, each one 
sending sequence items to the driver. 

Historically, this stimulus generation architecture has its 
roots in the eRM[1] sequence architecture which was 
transposed to the OVM[2] and then inherited by the UVM[3]. 
As with all legacies, this architecture should be regularly 
challenged to determine whether there are better alternatives 
available. This paper will examine the architecture and its use 
models and then conclude with a discussion of an alternative 
based on TLM 2. 

III. STIMULUS USE MODELS 

In order to analyze the UVM stimulus architecture it is 
necessary to understand the sequence-sequencer-driver API 
and to explore a number of use cases. 

A. The Sequence-Driver API 

The UVM sequence-driver API probably provides 
adequate semantics for generating stimulus for around 80% of 
the interfaces that users encounter in practice. The API has 
two halves, the sequence side and the driver side. The 

sequencersequence driver
sequence

items

signal

pins



sequence uses two blocking methods to transfer request 
sequence items to the driver: 

 

 start_item(<item>) – This requests the sequencer to have 
access to the driver for the sequence item and returns 
when the sequencer grants access. 

 finish_item(<item>) – This results in the driver receiving 
the sequence item. When the finish_item() method 
unblocks is determined by an API between the driver and 
the sequencer. 
 

The sequence handles responses in one of three ways: 
 

 Using the handle to the <item> - since this is shared by 
the driver and the sequence 

 get_response(<item>) – This is a blocking call which 
returns a response item explicitly returned by the driver 

 response_handler() – A call-back that can be enabled to 
handle response items returned by the driver 

 
The driver has a TLM uvm_sequence_item_pull_port 

which is connected to a corresponding export in the sequencer. 
The driver-sequencer API has a number of methods which are 
used to pull request transactions from the sequence via the 
sequencer and to return response transactions: 

 

 get_next_item() – From the drivers perspective this is a 
blocking call which returns with a sequence item which it 
then translates into a pin level transfer. A get_next_item() 
call must be followed by an item_done() 

 item_done() – The driver uses this non-blocking call to 
signal to the sequencer that it can unblock the sequences 
finish_item() method, either when the driver accepts the 
sequences request or it has executed it, or at some other 
point convenient to the driver. 

 try_next_item() – This is a non blocking variant of the 
get_next_item() method. If there is a sequence item 
available it will return with its handle, otherwise it will 
return with a null handle. 

 get() – This is a blocking call which has the same effect 
as calling get_next_item() and item_done() in one go. It 
unblocks the sequences finish_item() method 
immediately. 

 put(<item>) – This is a non-blocking call which returns a 
response item to the sequence. 

 
The sequence, sequencer and driver API is quite 

complex and knowing which call to use requires the user to be 
familiar with the underlying implementation of the driver and 
the sequencer.  

B. Use Cases For the Sequence Driver API 

The sequence driver API works fine for two use cases 
which probably allow users to model about 80% of the 
interface protocols that they will encounter – unidirectional 
and bidirectional transfers. 

1) Unidirectional Transfers 
In this use case, the sequence sends sequence items to 

the driver and the driver executes pin level transfers which 
require no response information to be returned to the 

sequence. The code example shows how the sequence uses 
start_item() and finish_item() to send sequence items to the 
driver and how the driver throttles the generation of further 
sequence items by the sequence by not calling item_done() 
until it has completed the transfer. This use model works well 
for simple interfaces. 

Figure 2 - Unidirectional Sequence and Driver Code 

2) Bidirectional Transfers 
With bidirectional transfers, the overall control flow for 

the use model is the same as for the unidirectional use case, 
but the difference is that there is response data that needs to be 
transferred from the driver back to the sequence. In order to 
get to the response information, the sequence waits until the 
finish_item() method has unblocked and then accesses the 
properties within the sequence item which the driver has 
updated. 

Figure 3 - Bidirectional use case sequence driver API control flow 

Another implementation variant for the bidirectional 
use model is to use get() and put() in the driver to get the 
request sequence item and to return a response sequence item 
to and from the sequence. This approach requires the code in 
the sequence to an have additional get_response() call which 
blocks until the put() call is made by the driver. In order to 
accommodate the possibility that there might be multiple 
sequences running concurrently, the driver code also has to 

// Unidirectional sequence example 

class unidir_seq extends uvm_sequence #(uni_item); 

 

task body; 

  uni_item req = uni_item::type_id::create(“req”); 

 

  start_item(req); // Blocks until sequencer ready 

  if(!req.randomize()) begin 

    `uvm_error(“body”, “Randomization failure”) 

  end 

  finish_item(req); // Blocks until item_done()** 

endtask: body 

endclass: unidir_seq 

 

// Unidirectional driver example 

class unidir_driver extends uvm_driver #(uni_item); 

 

task run_phase(uvm_phase phase); 

  uni_item req; 

 

  forever begin 

    get_next_item(req); // Item from sequence via sequencer 

    // do something with req 

    item_done(); // ** Unblocks finish_item() in sequence 

  end 

endtask: run_phase 

endclass: unidir_driver 

finish_item(req) get_next_item(req)

item_done()

finish_item(req) get(req)

put(req)

get_response(rsp)

Unblock, 

use contents of req

Process req,

assign response

fields of req

Unblock, 

use contents of rsp

Process req,

assign 

response

fields of req

sequence driver



clone() the original response item from the request item and 
set the sequence item id to ensure that it is returned to the right 
sequence. This adds complexity to the driver, but at least it is 
not evident to the sequence writer. 

The salient point here is that there are multiple ways in 
which drivers can be implemented, and this means that the 
sequence writer has to know which use model to follow, 
violating the principles of TLM encapsulation 

C. Use Cases That Stretch The Sequence Driver API 

There are a number of more advanced use cases that are 
difficult to support using the blocking API between the UVM 
Sequence, Sequencer and Driver. These include pipelined 
transfers and pipelined transfers with out of order responses, 
examples of common protocols with these characteristics are 
the AMBA AHB bus and the AMBA AXI bus.  

1) Modelling Pipelined Transfers 
A pipelined transfer protocol is designed to maximise 

the bandwidth of an interface by executing multiple bus 
phases in parallel, it also has the advantage that it relaxes the 
timing requirements for a target to respond to a request. In the 
case of the AHB bus, the address phase for one bus cycle 
overlaps the data transfer for the previous one, but other 
pipelined protocols could have several phases overlapping 
each other. 

Figure 4 - Unpipelined vs. pipelined bus transfers 

It is possible to model a single pipelined transfer using 
the same approach as a bidirectional transfer, by sending a 
sequence item to the driver and using item_done() when the 
bus cycle completes. However, this has the major 
disadvantage that the pipelined bus is effectively unpipelined 
since only one transfer can occur at a time. In order to fill the 
pipeline and have more than one sequence item being 
processed by the driver a change to the established UVM 
sequence, sequencer and driver use model has to take place. 

Figure 5 - Pipelined sequence and driver processes 

The driver has to be changed so that it can get and 
handle the execution of multiple sequence items in parallel. 
An implementation that facilitates this is for the driver to have 
a bus_cycle() method that implements a complete bus transfer 
as represented by a sequence item, and then for the driver to 
spawn multiple threads executing that method concurrently.  

The method uses the get() method to acquire the next sequence 
item, this allows the sequences finish_item() method to 
unblock in order to send the next sequence item to keep the 
pipeline full. The bus_cycle() method uses a semaphore to 
lock access to the get() method, and to the bus resources 
associated with the initial phase of the protocol. The number 
of parallel bus_cycle() methods that the driver needs to run is 
equal to the number of pipeline stages in the protocol. 

The sequence implementation also has to be modified, 
to have two loops – one for stimulus generation and the other 
for handling responses. In the stimulus loop, each 
finish_item() call will be unblocked as soon as the driver calls 
its get() method and the loop repeats to generate a new 
sequence item for the next bus cycle to keep the pipeline full. 
Note that a new sequence item does need to be generated since 
reusing the original sequence item will result in both the driver 
methods and the sequence working with the same object. In 
parallel, the response_handler() call-back can be used to 
handle responses.  

Figure 6 - Code example for  pipelined sequence and driver implementation 

So far, the normal UVM API has sufficed, albeit with 
some careful implementation. However, the fundamental 
problem is that the sequence does not know when the driver 
has completed a bus cycle and that it is safe to retrieve 
response information from the handle to the relevant sequence 
item. This can only be achieved by using the put() method in 
the driver to return responses and to signal the completion of 

Address

Data

Address 1 Address 2

Data 1

Address 3

Data 2 Data 3

Address

Data

Unpipelined Transfers Pipelined Transfers

// From the pipelined sequence: 

task body; 

 

mbus_seq_item req =                                   

mbus_seq_item::type_id::create("req"); 

 

  // Enable response handler call-back: 

  use_response_handler(1); 

  // Generate Stimulus: 

  for(int i=0; i<10; i++) begin 

    assert($cast(req_c[i], req.clone())); 

    start_item(req_c[i]); 

    assert(req_c[i].randomize() with {…}); 

    finish_item(req_c[i]); 

  end 

endtask: body 

 

function void response_handler(uvm_sequence_item response); 

  mbus_seq_item rsp; 

 

  if(!$cast(rsp, response)) begin 

    `uvm_error("response_handler",  

    "Failed to cast response to mbus_seq_item") 

    return; 

  end 

  // Handle the response 

 

endfunction: response_handler 

 

// From the pipelined driver: 

semaphore pipeline_lock = new(1); // Intialised as unlocked 

 

// Spawn two threads – one for each pipeline stage 

task run_phase(uvm_phase phase); 

  fork 

    do_pipelined_transfer; 

    do_pipelined_transfer; 

  join 

endtask 

 

task automatic do_pipelined_transfer; 

  mbus_seq_item req; 

 

  forever begin 

    pipeline_lock.get(); 

    seq_item_port.get(req); 

    // Do command phase 

    // - unlock pipeline semaphore 

    pipeline_lock.put(); 

    // Complete the data phase 

    // Return the request as a response 

    seq_item_port.put(req); 

  end 

endtask: do_pipelined_transfer 

Request Loop

response_handler()
Driver pipeline loops

(One for each stage)

finish_item() get()

put()

driversequence



the bus cycle. Any number of pipeline stages can be modeled 
this way, but at the cost of an increasingly more complex 
implementation. 

An alternative way to support further phases is to 
extend the sequence item by adding events to it. The events 
are then used to signal between the driver and the sequence 
that a particular phase is complete.  

  

2) Modelling Pipelined Out Of Order Transfers 
More advanced bus protocols, such as AMBA AXI, 

support pipelining with out of order responses. In other words, 
an initiating master makes a request for a transfer, but does not 
wait for the response before making other requests. The target 
slave responds when it is ready and the order in which the 
responses occur is not necessarily the same as the request 
order. 

In the case of the AXI bus, there are separate channels 
for read and write transfers. This means that at any one time 
there could be a read request, a write request, a write data 
transfer, a write response and a read response phase all 
occurring in parallel.  

Most of the techniques used for handling pipelined 
transfers are applicable to out of order transfers. However, an 
ID field is added to the bus so that responses can be tallied 
against their originating requests. The ID field is added to the 
sequence item for generation and this property helps the driver 
and the sequence track responses. 

The driver implementation has to be enhanced with 
extra methods to implement the read and write request cycles, 
and the read and write response cycles. These are run in 
parallel threads with multiple read and write request cycle 
methods, according to the number of phases in the bus 
protocol. Request sequence items are put into a data structure 
once they have been executed on the bus. The read and write 
response methods monitor the response channels of the bus 
and retrieve the request sequence item from the data structure 
based on the ID of the response. They populate the response 
fields based on the bus response data and then send the 
response to the sequence. 

As with the pipelined use model, the sequence is 
organised into a generation loop and a response handling loop. 
The generation loop does not change, but the response loop 
has to keep track of responses using an array of expected 
response sequence items since there are no guarantees about 
the order of the responses.  

3) Real Breakdown – Handling The Unexpected 
So far, the UVM Sequence, Sequencer and Driver API 

has been shown to work with the various use cases, albeit by 
requiring the sequence writer to have to understand how the 
driver is implemented or by extending the API to cope with 
the decoupled responses of pipelined protocols. However, the 
implicit assumption has been that the transfers are error free 
and suffer no disruptive events. In practice, a DUT may 
contain a protocol error or the verification plan may call for 
certain protocol errors to be modelled in order to check that 
the DUT can cope with them. In the case of a hardware reset 
or a protocol error, there may be a need for the driver to abort 
a bus cycle during execution and for the sequence to be able to 
handle this eventuality. In time, developments in UVM 

phasing may also introduce further requirements to handle 
disruptive changes during phase transitions. 

Handling these events is not necessarily easy to 
implement and they need to be considered when the sequence 
and the driver are designed. Adding the capability to cope with 
these features to the pipelined use model implementations can 
be particularly problematic. The sequencer does contain 
methods which allow a sequence to be aborted, but these can 
easily create a dead-lock with a driver attempting to return 
responses to a sequence that the sequencer no longer 
recognizes, and a sequence which has become disconnected 
from the driver expecting responses. 

Essentially, the only way that disruptive events can be 
handled is for the driver to contain code that handles them as 
an exception to be layered on top of the API by encoding a 
response status field in sequence items to indicate that a reset 
or a protocol error has resulted. The sequence also has to 
contain exception code to handle an aborted transfer. This 
adds further complexity to the API.  

IV. AN ALTERNATIVE STIMULUS GENERATION 

ARCHITECTURE 

Since the whole point of using sequences to send 
transaction level sequence items to drivers is to abstract 
difficult behavior for testbench users, the arcane nature of the 
UVM sequence-driver API suggests that there may simpler 
ways to approach the problem. In this section, an alternative 
implementation using TLM 2 is considered. 

A. Using A TLM 2 Implementation 

The UVM implements the TLM 2 protocol originally 
developed by OSCI for SystemC[4]. In SystemC TLM 2 
differs from TLM 1 in several ways, the most important of 
which is that transfers are bidirectional since it is a reference 
to the transaction that is passed between the initiator and target 
socket. In SystemVerilog it is a handle to a transaction object 
that is passed, so even in TLM 1 there is an implicit return 
path via the handle to the transaction. 

Figure 7 - TLM 2.0 Non-blocking sequence-driver implementation model 

As part of its bidirectional transfer semantic, TLM 2 
supports blocking and non-blocking transfers. Using blocking 
transfers as the basis of a sequence-driver implementation 
would require less implementation and user overhead for the 
basic use models. However, TLM 2 blocking transfers would 

driversequence

send_request(ph 1)

send_request(ph 2)

get_request(ph 1)

end_phase(ph 1)

get_request(ph 2)

end_phase(ph 2)

end_phase(ph 3)

get_request(ph 3)
send_request(ph 3)

handle_response(ph 3)

nb_transport_fw

nb_transport_bw



still suffer from the same draw-backs as the current UVM 
sequence, sequencer and driver API implementation since they 
rely on the unblocking of the method to indicate completion. 

Using TLM 2 non-blocking transfers offers an 
alternative approach whereby it is possible to transfer a 
transaction between initiator and target sockets several times 
using phase and response fields to indicate a progression 
through a series of states. There is a forward transport method 
implemented in the target socket, and a backward transport 
method implemented in the initiator socket. The target can call 
the backward transport method independently of the initiator 
multiple times and can return different phase and status flags 
depending on the nature of the protocol, effectively 
implementing a state machine. This capability gives scope to 
handle more complex protocols. 

 

 
 

Figure 8 - Experimental TLM 2 Sequence, Sequencer, Driver 
Code 
 

Unfortunately, there are several issues with the current 
UVM (UVM 1.1a) implementation of TLM 2. The first is that 
the initiator and target sockets are uvm_components and 
therefore have to be created during the build phase and have to 
be bound together during the connect phase. The second is that 
the target backward transport method has to be implemented 
inside a component. This means that for a particular protocol, 
the backward transport method would have to be implemented 
inside the equivalent of the existing sequencer, and an 
alternative API implemented between the sequence and the 
sequencer so that the sequence can use the initiator socket. 

The example code in figure 8 illustrates how a pipelined 
protocol might be modelled using TLM 2 in the UVM given 
the current limitations of the implementation. For the sake of 
brevity and clarity, the example has been constrained to only 
support the execution of a single sequence stream on the 

// From TLM2 sequence base class: 

virtual class tlm2_nb_seq_base #(type T = uvm_tlm_generic_payload) 

extends uvm_object; 

 

// Initiator Socket Handle 

uvm_tlm_nb_initiator_socket #(tlm2_nb_sequencer #(T), T) 

initiator_skt; 

 

// Sequencer handle: 

tlm2_nb_sequencer #(T) m_sequencer; 

// Start method 

virtual task start(tlm2_nb_sequencer #(T) parent_sequencer); 

  m_sequencer = parent_sequencer; 

  parent_sequencer.source_sequence = this; 

  initiator_skt = m_sequencer.initiator_skt; 

  body(); 

endtask: start 

 

// For sending a transaction to the driver 

virtual task do_item(T item); 

  uvm_tlm_time delay = new; 

  uvm_tlm_phase_e phase ; 

  uvm_tlm_sync_e sync; 

 

  sync = initiator_skt.nb_transport_fw(item, phase, delay); 

  m_sequencer.cmd_lock.get(); // End of cmd phase 

endtask: do_item 

 

// For handling responses 

virtual function void response_handler(uvm_object t); 

 
endfunction: response_handler 

// From TLM2 sequencer – T is the type parameterization 

semaphore cmd_lock = new(0); 

semaphore data_lock = new(0); 

T respQ[$]; 

uvm_object rspQ[$]; 

 

tlm2_nb_seq_base #(T) source_sequence; 

 

uvm_tlm_nb_initiator_socket #(tlm2_nb_sequencer #(T), T) 

initiator_skt; 

 

// Called from target 

function uvm_tlm_sync_e nb_transport_bw(T t, 

             ref uvm_tlm_phase_e p, uvm_tlm_time delay); 

  case(p) 

    END_REQ: cmd_phase_ended(); 

    END_RESP: data_phase_ended(t); 

  endcase 

 

  return UVM_TLM_ACCEPTED; 

endfunction: nb_transport_bw 

 

function void tlm2_nb_sequencer::cmd_phase_ended(); 

  cmd_lock.put(); 

endfunction: cmd_phase_ended 

 

function void tlm2_nb_sequencer::data_phase_ended(T t); 

  respQ.push_back(t); 

  data_lock.put(); 

endfunction: data_phase_ended 

 

task tlm2_nb_sequencer::run_phase(uvm_phase phase); 

  uvm_object rsp; 

  forever begin 

    data_lock.get(); 

    wait(respQ.size > 0); 

    rsp = respQ.pop_front(); 

    source_sequence.response_handler(rsp); 

  end 
endtask: run_phase 

// From the driver: 

virtual class tlm2_nb_driver #(type T = uvm_tlm_generic_payload) 

extends uvm_component; 

 

// Item Queue: 

T itemQ[$]; 

 

// Target socket using defaults: 

uvm_tlm_nb_target_socket #(tlm2_nb_driver #(T), T) target_skt; 

// Called to accept a command: 

function uvm_tlm_sync_e tlm2_nb_driver::nb_transport_fw(T t, ref 

uvm_tlm_phase_e p, uvm_tlm_time delay); 

  itemQ.push_back(t); 

  p = BEGIN_REQ; 

  return UVM_TLM_ACCEPTED; 

endfunction: nb_transport_fw 

 

// Called to signal command completion 

function void tlm2_nb_driver::request_done(T t); 

  uvm_tlm_phase_e p = END_REQ; 

  uvm_tlm_time delay = new(); 

  uvm_tlm_sync_e sync; 

 

  sync = target_skt.nb_transport_bw(t, p, delay); 

endfunction: request_done 

 

// Called to return a response: 

function void tlm2_nb_driver::return_response(T t); 

  uvm_tlm_phase_e p = END_RESP; 

  uvm_tlm_time delay = new(); 

  uvm_tlm_sync_e sync; 

 

  sync = target_skt.nb_transport_bw(t, p, delay); 

endfunction: return_response 

 

// Called to get a request: 

task tlm2_nb_driver::get_request(output T t); 

  wait(itemQ.size > 0); 

  t = itemQ.pop_front(); 
endtask: get_request 

// From the sequence: 

task body(); 

  repeat(8) begin 

    assert($cast(req_c, req.clone())); 

    assert(req_c.randomize()); 

    req_c.id = wr_id; 

    req_c.address = current_address; 

    wr_req[wr_id] = req_c; 

    do_item(req_c); 

    case (req_c.opcode) 

      SINGLE: current_address += 4; 

      BURST4: current_address += 16; 

      BURST8: current_address += 32; 

    endcase 

    wr_id++; 

  end 

 

function void response_handler(uvm_object t); 

  // Cast object to sequence_item 

  // Handle response 

endfunction 



driver. Nether the less, this experimental implementation 
shows that the API can be simplified for the sequence and the 
driver writer to just a few methods with a consistent interface.  

With more complex protocols the sequencer will most 
likely require an extended implementation to take into account 
additional phases and transfers. The handling of disruptive 
events such as resets, protocol errors and UVM phase changes 
could be coded into the non-blocking transfer protocol so that 
the driver could enter a recovery state whilst returning an 
exception response status to the sequences from which it is 
currently processing transactions. An exception handler in the 
sequences could then flush their event queues and safely 
decouple themselves from the driver. The VIP developer 
would handle this additional complexity, leaving the sequence 
writer with a straight-forward API. 

A more elegant way to code the transfer protocol 
between the sequence and the driver would have been for the 
sequence to have an initiator socket that could be bound 
directly to the drivers target socket. This implies that the 
sequences initiator socket could be created and bound 
dynamically during any phase, something which is not 
currently possible with the UVM. The sequence side initiator 
socket backward transport method would handle the protocol 
and the relevant methods would be in a TLM 2 sequence base 
class. 

 
Figure 9 - TLM2 Sequence-Driver Architecture 

In practice, there will also be a requirement for several 
concurrent sequences to be communicating with the driver. 
This implies a need for an intermediate sequencer-like 
component to act as a multiplexor. The multiplexor would 
contain an initiator socket that is bound to the driver target 
socket, and a dynamic array of target sockets. With this 
architecture, when a sequence started, it would create its 
initiator socket and add a target socket to multiplexors target 
socket array and then bind the two together.   The multiplexor 
would be responsible for arbitrating between, and routing, the 
sequence items to the driver and returning any backward 

response back to the sequence via the various intermediate 
sockets. The arbitration algorithm used by the multiplexor 
could be defined using a policy class. In order to generate 
stimulus for a layered protocol, sequences could be layered 
using layers of TLM 2 intermediate sockets which modify or 
pack sequence item content into alternative sequence items. 

The TLM 2 functionality in the UVM is relatively 
immature and is not completely aligned with SystemC in 
terms of socket functionality. Since the UVM TLM2 base 
classes have not been widely adopted by users, there is some 
justification for reconsidering their implementation and that of 
TLM (1 & 2) ports generally. This would allow the proposed 
sequence, multiplexor, driver architecture to be implemented 
as proposed. 

V. CONCLUSION: 

Although adequate for most stimulus generation 
problems to date, the UVM sequence generation architecture 
is complex and requires that the sequence writer has to 
understand the way in which the driver has been implemented. 
Some of the inevitable confusion and complexity could be 
taken away by an alternative approach based on TLM 2 non-
blocking transfers which simplifies the stimulus generation 
API and improves the modularity of the code. This all 
anticipates some future work by the UVM developers which 
would allow TLM2 sockets to be dynamically created and 
bound in any phase. 

 

ACKNOWLEDGMENTS 

I should like to thank my colleagues Adam Rose, Adam 
Erickson, Rich Edelman and Gordon Allan of the Mentor 
Graphics Verification Methodology Team for their tolerance 
and encouragement of a healthy debate about alternative 
stimulus architectures. 

 

REFERENCES 

[1] e Reuse Methodology (eRM) Developer Manual – Version 4.3.1 – 
Verisity Design Inc - 2004 

[2] OVM 2.1.2 Users Guide. Mentor Graphics and Cadence Design Systems 
– 2011 

[3] UVM 1.1a Users Guide. Accellera – 2011 

[4] OSCI TLM 2.0 Language Reference Manual – Software Version 2.0.1 
OSCI - July 2009 

[5] Meyer, A., 2009. Overview of Sequence Based Stimulus Generation in 
OVM 2.0 – Application note. Mentor Graphics Corporation 

[6] Edelman, R., 2008. Sequences in SystemVerilog – Proceedings DVCon 
2008 

[7] OVM/UVM Methodology Cookbook – Mentor Graphics Corporation – 
2011 - http://verificationacademy.com/uvm-ovm 

 

 

TLM 2 Sequence-Driver implementation – allowing multiple 

sequences to bind dynamically with a TLM2 multiplexor – This 

requires an updated UVM TLM2 implementation

driver
signal

pins

sequence

sequence

TLM 2 Multiplexor


