
February 28 – March 1, 2012
There’s something wrong between Sally

Sequencer and Dirk Driver
(Why UVM sequencers and drivers need some relationship counseling)

by
Mark Peryer

Verification Methodologist
Mentor Graphics

Your logo
here, if desired

Overview
• The UVM Stimulus generation architecture

– Sequencer, Driver, Sequences, Sequence Items
– Dates from the eRM, OVM, now UVM

• Is it still fit for purpose?
• Is it time for an update?

• As an alternative
– Would TLM2 be a better starting point?

Your logo
here, if desired

Agent

How The UVM Is Positioned
• Consistent API enables reusability

– Interoperability between components

• Test cases written by engineers with design domain knowledge
– Rather than detailed testbench (UVM) knowledge
– Working at a higher level of abstraction (TLM)

Sequencer Driver

Signal level
interface

Sequence

itemitemitem

Transactions
(High level
Transfer description)

Your logo
here, if desired

Where The Cracks Appear
• Writing sequences

– API is confusing with too many choices
– Implementation has to match the driver

• Methodology is about “freedom from choice”
– Abstraction can be powerful

• But not if it’s complicated

Your logo
here, if desired

Agent

Stimulus Generation In The UVM

• Sequence_items (aka transactions)
– Generated by sequences

• Sequencer
– Arbitrates between multiple sequencers
– Implements TLM 1 port proxy for sequences connecting to drivers

Sequencer Driver

Signal level
interface

Sequence

itemitemitem

Transactions
(High level
Transfer description)

Your logo
here, if desired

TLM 1 API -Producer, Consumer
• Simple API

– transport(), put(), get()
– Unidirectional flow
– Point to point connection

transport(req, rsp)

put(req)

get(req)

put(rsp)

get(rsp)

Producer Consumer

rsp

req

Your logo
here, if desired

Bidirectional Transfer

start_item(req)

finish_item(req)

item_done()

get_next_item(req)

sequence sequencer driver

item_done() API implementation

start_item(req)

get (req)

finish_item(req)

put(rsp)

get_response(rsp)

sequence sequencer driver

put() API implementation

Your logo
here, if desired

Observations
• There are at least two implementation models

• Departure from TLM principles
– The sequence writer has to understand something about

the driver implementation

Your logo
here, if desired

Fully Pipelined Transfers

Driver

get()

processput()

Sequence

start_item() finish_item()

response_handler
()

get()

processput()

get()

processput()

Separate stimulus and response threads Thread for each pipeline stage

Your logo
here, if desired

Handling Disruptive Events

• Disruptive Events:
– Hard or soft resets
– Errors

• Deliberately injected
• DUT error

– UVM Phase change

• Very easy to deadlock
• Up-front thought required

start_item(req)

get (req)

finish_item(req)

put(rsp)

get_response(rsp)

sequence sequencer driver

?
?

Sequence waits
for response

Driver returns response
But sequencer has
deleted sequence

Your logo
here, if desired

Alternative Using TLM 2

• TLM 2 Initiator and Target Sockets support both:
– Blocking transports

• Single method, returns when response ready
• Equivalent to item_done()

– Non-blocking transports
• Initiator calls nb_transport_fw() method
• Target calls nb_transport_bw() method independently
• Phase and status information passed together with data

Initiator socket Target socket

Your logo
here, if desired

Non-Blocking Transport
Implementation

• Target can call nb_transport_bw() any number of times
• Transaction always passed with status and phase
• Allows state tracking on either side

Initiator socket Target socket

FSM FSM

nb_transport_fw()

nb_transport_bw()

Your logo
here, if desired

DriverSequencer

Alternative Sequence Driver API

Initiator socket Target socket

FSM FSM

nb_transport_fw()

nb_transport_bw()

Sequence API:

transport()

handle_response()

exception()

Well defined and
simple API Protocol specific initiator and target state machines

handle protocol complexity

Your logo
here, if desired

Sequence - Driver API
• transport()

– Can be blocking or non-blocking
• Depending on the protocol FSM implementation

– Response may or may not be valid on completion
• handle_response()

– Call back to process pipelined or out of order responses
• exception()

– Call back to handle disruptive events

Your logo
here, if desired

Envisaged Implementation

Driver

sequence

sequence

sequence

Sequencer

Sequence API
implemented around
initiator socket

Sequencer creates target sockets on fly,
hooks them into n to 1 switch.
Has initiator socket bound to driver target
socket with protocol policy object.

Driver has target socket and
implements driver side part of
protocol FSM

Your logo
here, if desired

UVM Implementation Issues
• Current (UVM 1.1a) TLM 2 implementation Issues

– Sockets are components and can only be constructed
during the build_phase

• They don’t need to be
– Separate blocking and non-blocking sockets

• This is not compliant to TLM 2
– Socket _bw transport method registration is per parent

rather than per socket
• This can be worked round, but is awkward

Your logo
here, if desired

Conclusions
• UVM Sequence – Driver API

– Inconsistent and difficult to understand
– Struggles at the extremes of protocol behaviour

• TLM2 based alternative
– Consistency and ease of use
– Proven state model for VIP side to handle complex protocols
– Currently stymied by UVM implementation issues

• Whatever happens
– The eRM/OVM legacy will be with us for some time
– There is work to be done to implement the TLM 2 solution

• The TLM2 solution could solve today’s and tomorrow’s problems
– Particularly cross platform/engine communication

February 28 – March 1, 2012

Thank You!

	There’s something wrong between Sally Sequencer and Dirk Driver� �(Why UVM sequencers and drivers need some relationship counseling)
	Overview
	How The UVM Is Positioned
	Where The Cracks Appear
	Stimulus Generation In The UVM
	TLM 1 API -Producer, Consumer
	Bidirectional Transfer
	Observations
	Fully Pipelined Transfers
	Handling Disruptive Events
	Alternative Using TLM 2
	Non-Blocking Transport Implementation
	Alternative Sequence Driver API
	Sequence - Driver API
	Envisaged Implementation
	UVM Implementation Issues
	Conclusions
	Thank You!

