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Traditional Agents
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• Unit I/O exposed in both scopes

• Agent shared across both scopes
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Cascaded Usage
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• Unit I/O not exposed in both scopes

• Can’t connect virtual interface to a port
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Sequence Layering
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• Advanced by Tom Fitzpatrick of Mentor
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Sequence Layering
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• Asymmetry

• Peripheral Clutter

• Packaging Ambiguity

• Semantic Dependency



Semantics – Top Level
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• PCS ENC VIP has PULL Semantic at Top Level

• PCS DEC VIP has PUSH Semantic at Top Level
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Semantics – Unit Level
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• Encoder DUT reversed by Decoder VIP

• Decoder VIP has PUSH Semantic

– Same Semantic as Top Level Context

• WRONG – The DUT is a one-way function!
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Semantics – Unit Level – Correct
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• Encoder DUT compared against Encoder VIP

• Encoder VIP has PUSH Semantic

– Opposite Semantic as Top Level Context

• One function, two semantic contexts!!
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If Only …
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• Component based Architecture

• Connected with Ports

• Semantic Independence
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The Translator Class
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The Translator Class

• A Translator is a uvm_component that translates a 
stream of inbound items into a stream of outbound 
items.

virtual class translator #(

type t_inbound_item = uvm_sequence_item,

type t_outbound_item = uvm_sequence_item

) extends uvm_component;

pure virtual task translate();

endclass
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UVM_ACTIVE Translation
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• Outbound items are PULLED out the seq_item_export

• Inbound items are PULLED in the seq_item_port

• Translate from inbound to outbound

translate
seq_item_port 

#(t_inbound_item)

seq_item_export 

#(t_outbound_item)

is_active = UVM_ACTIVE



UVM_PASSIVE Translation
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• Inbound items are PUSHED in the analysis_export

• Outbound items are PUSHED out the analysis_port

• Translate from inbound to outbound

translate
analysis_port 

#(t_outbound_item)

analsyis_export

#(t_inbound_item)

is_active = UVM_PASSIVE



The Translation API

• Derivatives implement the translate task calling:

get_inbound_item ( output t_inbound_item item );

try_inbound_item ( output t_inbound_item item );

put_outbound_item ( input t_outbound_item item );

put_uncloned_outbound_item (

input t_outbound_item item );

• Always follow a get-transform-put pattern

• Can be periodic 1:1, 1:M, M:1, M:N or aperiodic

• Same task called in both semantic contexts
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class pcs_encoder extends 

translator #(t_mii_transfer, t_block);

task translate();

t_mii_transfer t1,t2;

t_block block;

get_inbound_item(t1);

get_inbound_item(t2);

block = encode(t1,t2);

put_outbound_item(block);

endtask

endclass
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Get

Transform

Put

From t_mii_transfers To t_blocks

2 :1 Periodicity



Inline Sequencing
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• Outbound items no longer directly controllable

• No possible input sequence to result in the 
desired output sequence

• Generally only an issue for stimulus generation

seq_item_port 

#(t_inbound_item)

seq_item_export 

#(t_outbound_item)

is_active = UVM_ACTIVE

inline_sqr

is_sequenced = TRUE



Debug Hooks
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• Optional Inbound/Outbound item analysis taps

• Optional Inbound/Outbound item logging

translate
t_inbound_item 

port

t_outbound_item

port

inbound_tap

#(t_inbound_item)
outbound_tap

#(t_outbound_item)

inbound_log outbound_log



Orthogonal Sequencing
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Control Knob Pollution
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• Control knobs, Z’, for Z items show up in X items

• A Z’ has nothing to do with an X item

• Translator B must be Z’ aware to pass them through

Translator A

Y+Z’X to Y Y to Z

Translator B

ZX+Z’



Control Knob Explosion
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• Control Knobs accumulate with each link and with 
each usage context

Y+Z’ ZX+Y’+Z’W+X’+Y’+Z’+C’

CX+C’W+X’+Y’+Z’+C’



Orthogonal Sequencing
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• Control sequenced separately from Data

• X timed, Y timed or independent

X to YX Y

Y’



Dynamic Translation
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frame

generatorpayload frames

overhead

• Why be limited to Control Knobs for Error 
Insertion?

• Example: Encapsulation



Adaptive Translation

© Accellera Systems Initiative 23

X to YX Y

• Response Channel used to tune the 
Dynamic translation.

• Example: IPG requested vs IPG actual



Package Isolation

• Helps resolve package dependency

• Package boundaries have are one of four data types:

– A packet bit [7:0] data[];

– A frame bit [0:FL-1][7:0] data;

– A bitstream bit [BW-1:0] data;

– A bundle bit [0:LC-1][BW-1:0] data;
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The Layered Architecture
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Layers
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• A Layer translates from low abstraction to high 
abstraction in the analysis path, AND from high 
abstraction to low abstraction in the stimulus path

stimulus

path
seq_item_port 

#(t_high_abstraction)

seq_item_export 

#(t_low_abstraction)

is_active

analysis_export 

#(t_low_abstraction)

analysis_port 

#(t_high_abstraction)

analysis

path



Layer Implementation
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Layer Example – Ethernet PCS
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Attachment Agents
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• An Attachment Agent is a Traditional Agent 
without a sequencer

low abstraction

virtual interface

is_active

Driver

analysis_port 

#(t_low_abstraction)

Monitor

seq_item_port 

#(t_low_abstraction)



Chains
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• A Chain connects a sequencer to an Attachment 
Agent and has zero or more intervening Layers.

• A Chain is simple if it has only one layer.

low abstraction

virtual interface

is_active

analysis_port 

#(t_high_abstraction)
LLL

SQR

zero or more

AA



Chainable Agents
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• A Chainable Agent is a Chain with no Layers

• Degenerate case similar to a Traditional Agent

low abstraction
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Usage Contexts
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Edge Unit Context
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• An Edge Unit has I/O exposed in both scopes

• The Attachment Agent is ported
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Internal Unit Context
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• An Internal Unit has no I/O exposed at the Chip

• The Layer is ported
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End Unit Context
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• An End Unit is the Internal Unit adjacent to the 
protocol divide

• The Layer and Sequencer is ported

LLL AA

EUL
s

AA
Unit 

Level

Chip

Level
EU

SC

C
s

rx tx



Conclusion
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It’s in the Numbers

• 300 lines of code

• ~400 extensions

• 16 Layers, 3 Attachment Agents, 2 utility Translators

• ~240,000 simulation runs

• ~16,000 tests

• The work horse of Unit and Chip level tests for ~2½ 
years
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Questions
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