
The Universal Translator –

A Fundamental UVM Component for Networking Protocols

David Cornfield

Sr. Principal Verification Engineer

AppliedMicro, Inc.

Kanata, Ontario, Canada

dcornfield@apm.com

Abstract – Network Protocol stacks construct a reliable

communications channel between two entities by

decomposing the problem such that higher levels of

abstraction rely on lower levels of abstraction for a service.

The UVM toolkit does not adequately provide for modeling

protocol stacks: The UVM Agent Architecture cannot be

stacked, and the Layered Sequencing approach presented by

Fitzpatrick has a variety of issues when applied to complex

protocol stacks.

This paper presents a translator class for modeling protocol

stacks and its associated concepts: semantic independence, the

Translation API; Inline Sequencing; dynamic and adaptive

translation using Orthogonal Sequencing; and the Layered

Architecture.

Keywords – adapter, converter, translator, adaptation,

conversion, translation, transform, transformation, stack,

layer, cascade, protocol, networking, UVM.

I. INTRODUCTION

The UVM Agent Architecture is very well suited to System-

on-a-Chip type devices, as the Agent is easily ported from the

unit level to the chip level. Porting is straight forward because

the I/O connected to the virtual interface of the Agent is visible in

both scopes:

Unit Level

A Agent

A
m

~

B Agent

B

Chip Level

Chip

ds

m

~ ds

A Agent

A
m

~

B Agent

B

ds

m

~ ds

Figure 1: Parallel Agents

The UVM Agent Architecture, however, cannot be cascaded,

as required by Network Protocol devices and other verification

contexts. Quite simply, this is because a virtual interface cannot

be connected to a UVM port:

Chip
A Agent

A
m

B Agent

B
ds

m

~ ds

?

Figure 2: Cascaded Agents

The Sequence based Layering Architecture advanced by

Fitzpatrick (1) addresses this critical flaw by pairing a translator

sequence sourcing from a child sequencer in the stimulus path

with a uvm_subscriber based reconstruction monitor in the

analysis path:

Chip
A Agent

A
m

B Layer

B
ds

m

~ s B2A

reconstruction monitor

child sequencer translator sequence

Figure 3: Sequence Based Layering

This promising architecture resolves the cascaded Agent

problem, but has a few architectural quirks and suffers from a

variety of issues.

A. Asymmetry

The most glaring idiosyncrasy is the asymmetry: the analysis

path is composed of a uvm_component that is connected via

ports while the stimulus path is composed of a persistent

uvm_object that is connected via a convoluted process of

pointer passing. Quite simply: the analysis path follows the

UVM component/port orthodoxy while the stimulus path does

not.

Though it is minor, this asymmetry also introduces an

inconsistency UVM messaging, as the translator sequence derives

from uvm_object and the object must use either the test or a

sequencer component as a messaging proxy.

B. Peripheral Clutter

Furthermore, it should be noted that in the case of the

stimulus path, all of the functionally relevant translation code

resides within the translator sequence. The intervening

sequencers serve no real purpose other than to provide messaging

proxies and connection pointers. Hence these sequencers just

clutter the Architecture, adding little practical value.

C. Packaging Ambiguity

A third issue that stems from this Architecture distills down

to an ambiguity in packaging. On one hand the translator

sequence should be packaged with the lower level sequencer

because that is the sequencer on which it is started and sequences

are conventionally packaged with their associated sequencers.

On the other hand, the translator sequence contains all of the

relevant translation functionally and so should be packaged with

the subscriber and child sequencer. This is not the sequencer on

mailto:dcornfield@apm.com

which it is started and thus makes for an unconventional

packaging. A packaging issue may seem trivial, but ambiguities

in architectures never scale and distribute well.

A slight variation on the packaging problem is that layers

require intimate knowledge of the inbound and outbound

transactions, in which case a layer must import the transactions of

its peers. This tethers a layer to its peers and makes it far less

portable to alternate, unanticipated contexts.

D. Semantic Dependency

A far more subtle issue with serious consequences is the

semantic dependency of the architectural pieces. The stimulus

path translates using the pull semantic while the analysis path

translates with a push semantic. The specific translations are

bound to the underlying semantics of the paths in which they

reside. What happens if we need to translate with the opposite

semantic? With the current Architecture we are left to rewrite

and maintain the same translation in two formats. For large,

complex, standards based translations, this is a serious problem.

As evidence of the need to run one translation with both

semantics, consider the case of the IEEE 802.3 10GBASE-R PCS

66b/64b encoder. At the chip level, needs dictate that MAC

packets are driven and recovered from the chip using a PCS

encoder/decoder pair:

PMA PCS MAC

ENC

DEC

SERGEN

DESMON

MAC PCS PMA

ChipVIP

Figure 4: Chip Level Needs

In this context the encoder VIP operates under a pull semantic

in the stimulus path while the decoder VIP operates under a push

semantic.

At the unit level, however, needs dictate the opposite

semantic for the encoder VIP. Though it may seem reasonable to

use the PCS decoder VIP to verify the PCS encoder device under

test, this in fact does not work:

UVM_PASSIVE

PCS

ENC

PCS

DEC
blocks

=mii

MII

mii

mii

UVM_ACTIVE

Figure 5: Unit Level Needs – Incorrect

This does not work because the PCS encoder implements a

one-way function – that is: information that is sent into the

encoder cannot always be recovered from its output. It is akin to

recovering the input to the modulo function by looking at the

output: it simply can’t be done because information is lost in the

process. What’s required instead is the following hook up:

PCS

ENC

PCS

ENC

blocks

=

blocks

MII

mii

UVM_ACTIVE

mii

UVM_PASSIVE

Figure 6: Unit Level Needs – Correct

The difference here is that now the PCS encoder VIP is in the

analysis path and hence has the push semantic. Thus at the chip

level we need a pull encoder but at the unit level we need a push

encoder. If one-way functions are not identified and mitigated

ahead of time, you may find yourself with a translation with the

wrong semantic at a time when you can’t afford to be without it.

In conclusion, the analysis path of the current UVM Layered

Architecture has an elegance consistent with the UVM

component/port orthodoxy that is completely lacking in the

stimulus path, and this introduces a variety of problems. If only

there were a uvm_component like the uvm_subscriber based

reconstruction monitor in the stimulus path, the Layered

Architecture would be considerably more symmetric:

Chip

A
m

d~ s

m

g

A

m

g

BC

B C

Figure 7: Component Based Layering

And if that uvm_component could somehow abstract out

push/pull semantics, the same translation could be used in either

the stimulus path or the analysis path (or both) as needed…

II. THE TRANSLATOR CLASS

A Translator is a uvm_component that translates a stream of

inbound items into a stream of outbound items.

This abstraction is codified in the virtual translator class,

where the inbound item type and outbound item type are

parameters. The specifics of the translation are left to the pure

virtual translate task, which must be implemented in

derivatives:

virtual class translator #(

 type t_inbound_item = uvm_sequence_item,

 type t_outbound_item = uvm_sequence_item,

) extends uvm_component;

 pure virtual task translate();

endclass

The translate task is semantically independent, meaning

that the inbound items are translated into outbound items by the

same task regardless of whether transactions are pushed or pulled

through the translator class. The benefit to this is that the

translation can be used in either the stimulus path or the analysis

path, depending on verification needs.

The push or pull semantic is dictated by the is_active bit of

the translator class. When the is_active bit is

UVM_ACTIVE the Translator is intended to operate in the

stimulus path with a pull semantic. Outbound items are pulled

out of the class via the seq_item_export, which will in turn

trigger requests for inbound items from its seq_item_port by

means of the translate task.

translate
seq_item_port

#(t_inbound_item)

seq_item_export

#(t_outbound_item)

is_active = UVM_ACTIVE

Figure 8: UVM_ACTIVE Translation

When the is_active bit is UVM_PASSIVE the Translator

is intended to operate in the analysis path with a push semantic.

Inbound items are pushed into the class via the

analysis_export, which in turn results in outbound items

being pushed out its analysis_port after translation.

translate
analysis_port

#(t_outbound_item)

analsyis_export

#(t_inbound_item)

is_active = UVM_PASSIVE

Figure 9: UVM_PASSIVE Translation

Note that the names and semantics of ports on the

translator class change depending on the setting of the

is_active bit, but that the translation is always from inbound

items to outbound items. (Incidentally the setting of the

is_active bit is not a random act, but rather a deliberate act that

depends on the usage context, so the change in port names and

semantics is only really a consideration during environment

construction, not during test execution).

A. The Translation API

A specific translation from one type of item to another type of

item is codified in an extension to the translator class where

the inbound and outbound item type parameters are specified and

the translate task is implemented using the Translation API.

The Translation API consists of the following four tasks, of

which only two are called in any implementation of the

translate task:

get_inbound_item (

 output t_inbound_item item

);

try_inbound_item (

 output t_inbound_item item

);

put_outbound_item (

 input t_outbound_item item

);

put_uncloned_outbound_item (

 input t_outbound_item item

);

To use the Translation API, the translate task is

overridden to:

(1) get inbound items using the get_inbound_item or

try_inbound_item task calls;

(2) transform one or more inbound items into one or more

outbound items, as required by the application; and then

(3) send out the outbound items using calls to either

put_uncloned_outbound_item or

put_outbound_item.

The translate task thus always follows a get-transform-put

or try-transform-put pattern.

The get_inbound_item task blocks if an item is not

available on the inbound port, while the try_inbound_item is

non-blocking and will return a null if an item is not available.

These semantics hold regardless of the is_active setting. The

put_outbound_item task will clone the item before sending it

out the outbound port, while a call to the

put_uncloned_outbound_item will not.

For a given translation, there no requirements on periodicity

and no limitations on the quantity of outbound items produced

from a quantity of inbound items. A translation can be one-to-

one, one-to-many, many-to-one or any flavor of many-to-many,

and be either periodic or aperiodic, as long as the translate task

follows the get/try-transform-put pattern. Quite simply the only

requirement is that you must always get enough input before

putting out output.

If the translation is periodic, the translate task of

derivatives need only implement one cycle, as the task invoked

on an as needed basis – i.e. when inbound items arrive in a push

scenario or when outbound items are requested in a pull scenario.

B. Inline Sequencing

Given that outbound items are an output of the translate

task, they are no longer directly controllable – that is you can

only produce a sequence of output items by sending in a sequence

of input items. Thus scenarios could arise where there is no

possible input sequence that can be provided that will produce the

desired output sequence. Though this is true in general, it is

generally only an issue for stimulus generation.

To address this situation, the translator class has an

is_sequenced bit that when set instantiates and enables the

inline sequencer, a t_outbound_item typed uvm_sequencer

named inline_sqr.

seq_item_port

#(t_inbound_item)

seq_item_export

#(t_outbound_item)

is_active = UVM_ACTIVE

inline_sqr

is_sequenced = TRUE

Figure 10: The Inline Sequencer

Enabling the inline sequencer provides direct control over the

outbound item stream. Doing so does not change the ports of the

translator class; it only changes from where the outbound

items are internally sourced – from the inline sequencer when

enabled or from the translate task when disabled. The fact

that the ports do not change implies that inline sequencing can be

done in situ on an as needed basis without changing peer

connections.

The inline sequencer is not instantiated if the is_sequenced

bit is not set.

C. Debug Hooks

In terms of debug, the translator class will: log inbound

items to a file if the inbound_log property is configured to a file

name; write inbound items out the inbound_tap analysis port if

the has_inbound_tap bit is set; log outbound items to a file if

the outbound_log property is configured to a file name; and/or

write outbound items out the outbound_tap analysis port if the

has_outbound_tap bit is set.

translate
t_inbound_item

port

t_outbound_item

port

inbound_tap

#(t_inbound_item)
outbound_tap

#(t_outbound_item)

inbound_log outbound_log

Figure 11: Debug Hooks

The translator class also issues GET, TRY and PUT info

reports if the verbosity is UVM_HIGH or higher.

Log entries and reports use the convert2string method of

the inbound and outbound items.

Tap ports are not instantiated unless the associated

has_*bound_tap bit has been set.

D. Configuration

The is_active, is_sequenced, has_inbound_tap, and

has_outbound_tap configuration bits, and the inbound_log

and outbound_log configuration strings are public and can be

set directly or by using the configuration database with like-

named identifier strings (i.e. set is_sequenced with the

“is_squenced” identifier string). The bits must be set before the

build phase while the strings must be set before the run phase.

E. Performance

The translator class is optimized for performance: no objects

within the class are instantiated unless required by the application

and/or specifically configured to be present; all reports check

verbosity levels before constructing and reporting the message;

and background threads are kick-started only when required.

Furthermore, Wilcox & D’Onofrio (2) demonstrated that

sequencers are outperformed by sequences as the instance count

grows, so the inline sequencer was designed as an optionally

instantiated component rather than inherited functionality to

mitigate this effect.

F. Limitations

A Translator is unidirectional. It cannot translate inbound

items to outbound items in one direction and translate outbound

responses back into inbound responses in the reverse direction.

This is due to the arbitrary relationship between inbound items

and outbound items, which is not necessarily one-to-one, as

required by the request/response semantic.

A Translator also cannot use the try_inbound_item API

with a push semantic (is_active is UVM_PASSIVE), as this

would initiate an infinite zero-time loop. The translator class will

issue a fatal in this context.

Inline sequencing is only available when is_active is set to

UVM_ACTIVE, despite the controllability issue existing when

the bit is set to UVM_PASSIVE.

G. Examples

As an example, the following class is the semantically

independent 10GBASE-R PCS 64-bit/66-bit encoder needed for

both unit and chip level testing:

class pcs_encoder extends translator

 #(t_mii_transfer, t_block);

 task translate();

 t_mii_transfer t1,t2;

 t_block block;

 // (1) Get inbound items:

 get_inbound_item(t1);

 get_inbound_item(t2);

 // (2) Transform the inbound items into

 // outbound items:

 block = encode(t1,t2);

 // (3) Send out the outbound item:

 put_outbound_item(block);

 endtask

 function t_block encode (

 input t_mii_transfer t1,

 input t_mii_transfer t2,

);

 // Convert two MII transfers into

 // a block according to IEEE 802.3

 // Clause 49.

 endfunction

endclass

Notice the get-transform-put pattern. Also note that the

periodicity of the translation is well defined by the IEEE – i.e. 2

inbound items (MII transfers) are translated into 1 outbound item

(a BLOCK) – so only one cycle of translation is implemented.

The following example is particularly interesting because the

periodicity of the translation is unknown and is a function of the

class parameters, which could be set to something quite aperiodic.

class gearbox #(BWI, BWO) extends translator

 #(t_bitstream_item#(BWI),

 t_bitstream_item#(BWO));

 t_bitstream_item#(BWO) ob;

 int j=0;

 task translate();

 t_bitstream_item#(BWI) ib;

 // (1) Get

 get_inbound_item(ib);

 for (int i=0;i<BWI;i++) begin

 // (2) Transform

 ob.data[j++] = ib.data[i];

 if (j == BWO) begin

 // (3) Send

 put_outbound_item(ob);

 j = 0;

 end

 end

 endtask

endclass

Again notice the get-transform-put pattern.

In this example, when BWI < BWO, several inbound items

are converted into one outbound item and the gearbox class

implements a deserialization function. When BWI > BWO, a

single inbound item is converted into several outbound items and

the gearbox class instead implements a serialization function.

Note the following subtlety when operating as a deserializer:

the put_outbound_item is not called with each invocation of

the translate task and so the outbound item itself must span

multiple invocations. This is perfectly legal because the get-

transform-put pattern is followed despite spanning multiple

invocations of translate. This highlights that and outbound

item should only go out when enough has come in.

The following example is an implementation of the G.709

OTU frame synchronous scrambler. The scrambler also happens

to be the descrambler. Though it is a trivial translation, it

demonstrates that the same Translator can be used in both the

stimulus (scrambler) and analysis (descrambler) paths if the

application requires it.

class otu_scrambler extends translator

 #(t_otu,t_otu);

 //

 // Favor memory over compute time, so

 // compute once and save the result

 //

 bit [0:130559] mask;

 function new();

 bit [1:16] lfsr;

 lfsr = 16’hffff;

 for (int i=49;i<130560;i++) begin

 mask[i] = lfsr[16];

 lfsr = {lfsr[16]^

 lfsr[12]^

 lfsr[3]^

 lfsr[1],

 lfsr[1:15]};

 end

 endfunction

 task translate();

 t_otu frame;

 // (1) Get

 get_inbound_item(frame);

 // (2) Transform

 frame.data ^= mask;

 // (3) Put

 put_outbound_item(frame);

 endtask

endclass

The final example is an IEEE Clause 46 10Gbps

Reconciliation Sublayer (RS) with deficit idle counting that

demonstrates an application of the try_inbound_item API:

class tx_rs extends translator

 #(t_packets, t_mii_transfer);

 task translate();

 t_packet pkt;

 int DIC = 0;

 //

 // The RS must create an “idle signal”

 // if no packets are ready to send

 //

 try_inbound_item(pkt);

 if (pkt == null) begin

 put_idle();

 DIC = 0;

 end else begin

 DIC += pkt.ipg

 - put_idle((pkt.ipg+DIC)>>2);

 - put_data(pkt.data);

 end

 endtask

 //

 // Transmits N idle transfers and returns the

 // number of IPG sent.

 //

 function int put_idle (int N=1);

 for(int i=0;i<N;i++)

 put_mii(4’hf,32’h07070707);

 return 4*N;

 endfunction

 //

 // Encapsulates the packet data and returns

 // the number of trailing IPG sent

 //

 function int put_data (bit [7:0] data[]);

 put_mii(4’h1,{data[3:1],8’hfb});

 // etc...

 case (data.size %4)

 0 : return 0;

 1 : return 3;

 2 : return 2;

 3 : return 1;

 endcase

 endfunction

 function void put_mii (

 bit [3:0] ctrl,

 bit [31:0] data

);

 t_mii_transfer mii;

 mii.ctrl = ctrl;

 mii.data = data;

 put_outbound_item(mii);

 endfunction

endclass

Note that put_outbound_item was not directly called from

within the translate task but that the translation still has the

try-transform-put pattern.

III. ORTHOGONAL SEQUENCING

A Translator generally produces legal outbound items from

legal inbound items. Typically, however, the stimulus path must

drive illegal items to test the error recovery of the device under

test. Inbound item types can be overloaded with control knobs to

produce illegal outbound items, but this practice introduces

control knob pollution and control knob explosion when

translators are cascaded:

Translator A

Y+Z’X to Y Y to Z

Translator B

ZX+Z’

Figure 12: Control Knob Pollution

Notice that to access the control knobs, Z’, of Translator A,

Translator B must pass the control knobs for A through its

translation. This is control knob pollution, as the X item now

contains control knobs completely unrelated to either X or Y

items. Now consider what happens when more and more

translators are chained together and/or used in multiple contexts –

the result is control knob explosion:

Y+Z’ ZX+Y’+Z’W+X’+Y’+Z’+C’

CX+C’W+X’+Y’+Z’+C’

Figure 13: Control Knob Explosion

It should be evident from the input of the shaded translator,

which is used in two relatively simple contexts, that overloading

inbound items with control knobs is not a sustainable practice.

The solution to this problem is to use orthogonal sequencing.

Orthogonal sequencing means to separate the control knobs from

the data and to source the control from an alternate “orthogonal”

sequence item port. The concept carries the term “orthogonal”

because of the way this sequencing is depicted:

X to YX Y

Y’

Figure 14: Orthogonal Sequencing

A. Dynamic Translation

Orthogonal sequencing was introduced as a means to produce

illegal outbound items, but there is no need to limit the concept to

error insertion. Orthogonal sequencing can be used for dynamic

translation, which simply means to modulate the translation of

legal items over time. Note that the modulation can be either

synchronous or asynchronous to the translation.

Encapsulation is an example of a general class of dynamic

translation, where time varying overhead is added to a payload

using orthogonal sequencing:

frame

generatorpayload frames

overhead

Figure 15: Encapsulation

B. Adaptive Translation

Dynamic translation can further blossom into the advanced

area of adaptive translation by using the orthogonal response

channel to feed information from the Translator back into the

orthogonal sequence:

X to YX Y

Figure 16: Adaptive Translation

An example application of this might be to request inter-

packet gap between MAC packets via an orthogonal sequence

and feedback the actual inter-packet gap inserted in order to

model the oscillating effect of back-pressure loop time.

C. Package Isolation

Orthogonal sequencing is a powerful complement to the

Translator. It can be used inject errors, and/or modulate and/or

adapt a translation. And it can be synchronous or asynchronous

to the flow of translated items.

But it can also help with a packaging problem alluded to in

the introduction – and that is the tethering of a layer to its peers

via imported transaction types. If absolutely everything other

than data is pushed into orthogonal sequences, then layer

interfaces distill down to a very small set of simple and

interchangeable data ports.

In fact at AppliedMicro our suite of VIP all interoperate on

one of four fundamental data classes, each with a parameterized

property called data:

 a packet (bit [7:0] data[]);

 a frame (bit [0:FL-1][7:0] data);

 a bitstream (bit [DW-1:0] data); and

 a bundle (bit [0:LC-1][DW-1:0] data) which used for

lane based protocols like CAUI or Interlaken and is simply

an array of bitstreams, one bitstream per lane.

IV. THE LAYERED ARCHITECTURE

Given that we have covered Translators and the concept of

orthogonal sequencing, we now are ready to construct a formal,

component based Layered Architecture.

A. Layers

A Layer (L) is defined as a uvm_component with an

is_active bit that: translates inbound items arriving in the high

abstraction interface into outbound items departing the low

abstraction interface; and translates inbound items arriving in the

low abstraction interface into outbound items departing the high

abstraction interface.

The device under test generally resides closer to the low

abstraction interface, so that the high abstraction to low

abstraction direction forms the stimulus path while the low

abstraction to high abstraction direction forms the analysis path.

The high abstraction interface is implemented as a

seq_item_port-analysis_port pair, while the low

abstraction interface is implemented as a seq_item_export-

analysis_export pair.

stimulus

path
seq_item_port

#(t_high_abstraction)

seq_item_export

#(t_low_abstraction)

is_active

analysis_export

#(t_low_abstraction)

analysis_port

#(t_high_abstraction)

analysis

path

Figure 17: A Layer, (L)

The stimulus path is implemented by cascading one or more

Translators, each with one or more optional orthogonal

sequencers. The analysis path is implemented by cascading one

or more Translators, each with one or more optional analysis taps.

Ports of the first and last Translators in each path are “wired-out”

of the Layer.

s s s

one or more

optional

optional

is_active

Figure 18: Layer Implementation

Like an Agent, the analysis path is always present and the

stimulus path is present only if the the is_active bit is set to

UVM_ACTIVE.

In general Layers should be as symmetric as possible, in that:

(1) the number of Translators required to convert between high

abstraction items and low abstraction items is generally the same

in both paths; (2) if orthogonal sequences are used to insert

information into the flow of data in the stimulus path, then there

is a corresponding translation in the analysis path that is used to

extract that information and optionally send it out an analysis tap;

and (3) the port types on the high and low abstraction interfaces

should be the same. This last point implies that a Layer can be

self-tested by looping back the low abstraction interface.

As an example, the following is an IEEE 10GBASE-R layer

that converts between packets and a bitstream:

TX RS

RX RS

ENC BER

link state + ipg

packets bitstream

DEC SHA

slip/skip/flip

ordered sets

mii blocks

block lock

Figure 19: 10GBASE-R Layer

Note that occasionally the constituent Translators must be

restructured in different contexts, as evidenced by the PCS

64b/66b encoder example previously discussed. But also note

that Layers imply a semantic on the constituent Translators but

they do not impose it, so that restructuring, although rare, is not as

onerous as recoding the translation.

B. Attachment Agents

Given that Layers do not have virtual interfaces, they cannot

directly connect to a device under test. This connection is made

via an Attachment Agent.

An Attachment Agent (AA) is defined an Agent (in the not-

layered sense) that does not have a sequencer connected to the

driver:

low abstraction

virtual interface

is_active

Driver

analysis_port

#(t_low_abstraction)

Monitor

seq_item_port

#(t_low_abstraction)

Figure 20: An Attachment Agent, (AA)

Like an Agent, the monitor is always present and the driver is

only present if the is_active bit is set to UVM_ACTIVE.

C. Chains

A Chain is defined as a uvm_component with an

is_active bit that connects a sequencer to an Attachment Agent

and has zero or more intervening Layers.

low abstraction

virtual interface

is_active

analysis_port

#(t_high_abstraction)
LLL

SQR

zero or more

AA

Figure 21: A Chain, (C)

 A Chain is a Simple Chain (SC) if it has only one

intervening Layer and a Chainable Agent (CA) if it has no

intervening Layers. Note that a Chainable Agent is the

degenerate case, as the only difference between a Chainable

Agent and the traditional Agent is that the driver and monitor are

first bundled into an Attachment Agent:

low abstraction

virtual inteface

is_active

Attachment

Agent

Sequencer

analysis_port

#(t_low_abstraction)

Figure 22: A Chainable Agent, (CA)

Like an Agent, the sequencer and connection are absent if the

is_active bit is set to UVM_ACTIVE. The is_active bit of

the Attachment Agent and all intervening Layers, if any, are

bound to the is_active bit of the Chain.

V. USAGE CONTEXTS

Layers and Attachment Agents are the fundamental units

of portability between unit level testing and chip level testing.
Chains and Chainable Agents are structural integrations of Layers

and Attachment Agents and are generally used in only one scope.

An edge unit is a design under test that is verified at the unit

level where the low abstraction I/O at the unit level is also

exposed at the chip level. Edge units are tested with a Chainable

Agent at the unit level and the Attachment Agent is ported to a

Chain at the top level.

LLL AA EU

EU
s

AA
Unit

Level

Chip

Level

CA

C
s

Figure 23: Edge Units

An internal unit is a design under test that is verified at the

unit level but does not have I/O exposed at the chip level.

Internal units are tested with a Simple Chain at the unit level and

the Layer is ported to a Chain at the top level.

LLL AA IU

IUL
s

AA
Unit

Level

Chip

Level

SC

C
s

Figure 24: Internal Units

If an edge unit is also an internal unit some other mode of

operation, the unit level environment must favor the internal unit

mode and use a Simple Chain instead of a Chainable Agent. This

may make the unit level Attachment Agent trivial, but a Layer is

required in at least one top level context.

An end unit is a design under test that is verified at the unit

level where the high abstraction interface is adjacent to the

protocol divide, which is the point at where no higher protocols

exist and the data flow crosses over from being received to being

transmitted. The end unit is very much an internal unit, as all

other units serve to bring data to it. End units are tested with a

Simple Chain at the unit level and the Layer and Sequencer is

ported to the top level.

LLL AA

EUL
s

AA
Unit

Level

Chip

Level
EU

SC

C
s

rx tx

Figure 25: End Units

VI. IMPLEMENTATION GUIDELINES

As Layers and Attachment Agents are the fundamental units

of portability between unit and top level, care should be taken to

isolate material targeted for porting from material targeted for a

single scope when packaging.

Layers should be favored over Attachment Agents where

possible, as Layers are more adaptable to new usage contexts.

For maximum portability and usability, Layers and

Attachment Agents should behave in a legal fashion with minimal

configuration.

Chain configuration objects must instantiate Layer and

Attachment Agent configuration objects using the factory to

allow for randomized control over those components in the

Chain.

Layer and Attachment Agent configuration should be

designed so that if no configuration object is passed or if a newly

created, but unrandomized configuration object is passed that all

translations are valid and legal. This implies that all

configuration variables in a configuration object have valid, legal

default values set within the new function.

Translators with orthogonal sequences must use the

try_next_item interface and implement a valid, legal

translation when either no orthogonal sequence is started or all

orthogonal sequences have completed. Failure to use the

try_next_item interface causes the translation to stall unless an

orthogonal sequence is started. This burdens Chain designers,

forcing them to find, create start persistent orthogonal sequences

when in most top level contexts the valid, legal option is all that is

required.

Lastly, a translate task must never call disable fork.

Doing so not only disables the current translation but all cascaded

translations that feed into the current translation, including any

threads they may have started. Calling disable fork in your

Translator will waste the better part of 3 days of someone else’s

time, since a translation some layers away will appear to suddenly

no longer work. (The corollary is that if you’ve spent 3 days

pouring over why your translation suddenly no longer works in

some context, suspect a disable fork by someone else).

VII. CONCLUSION

The Layered Architecture and the translator class upon

which it is built were deployed at AppliedMicro in the spring of

2012, resulting in a suite of 16 Layers, 3 Attachment Agents and

2 utility Translators that are powering the unit level and chip

level verification of our next generation of Datacom devices. The

translator class now has over 400 extensions and seen over

240,000 simulation runs across upwards of 16,000 tests, so is

very much a key component in the AppliedMicro verification

arsenal. Much of the success resides in the familiarity of the

UVM component/port connection orthodoxy, the simplicity of the

Translation API in constructing new translations, and the power

of Orthogonal Sequencing.

VIII. REFERENCES

1. Fitzpatrick, Tom. Layered Sequences. Mentor Graphics

Verification Academy. [Online] [Cited: June 30, 2014.]

https://verificationacademy.com/cookbook/sequences/layering.

2. Conscious of Streams - Managing Parallel Stimulus.

Wilcox, Jeffrey and D'Onofrio, Stephen. San Jose : DVCon,

2012. DVCon.

