The Top Most Common
SystemVerilog Constrained
Random Gotchas

Author: Ahmed Yehia
Presenter: Gabriel Chidolue

Menlor . .
raphics osveso

SYSTEMS INITIATIVE

* Moretimeis
taken in debug
than any other
project task

e Time wasted in
debugging
constrained

random related

problems is
significant

Motivation

ﬁ

M Test Planning

M Testbench
Development

M Creating and
Running Test

M Debug

Wilson Research Group and Mentor Graphics, 2012 Functional Verification Study, Used with permission

3008/[9['3 © Accellera Systems Initiative 2

SYSTEMS INITIATIVE

2014

DESIGN AND VERIFICATION

DVLCLOIN

Contribution

* [llustrates top most common SystemVerilog
and UVM constrained random gotchas

* Helps
— Eliminate/reduce unnecessary debug times when
encountering randomization failures

— Eliminate/reduce unexpected randomization
results

— Eliminate/reduce code random instability
— Ensure efficiency when coding random constraints

.....................
accellera o DV
© Accellera Systems Initiative 3 cONERENCEANDEXHETION

SYSTEMS INITIATIVE

* Introduction to Consteaine

B

ERp——
d Ra :WVerifie ior

- - -

e Randomization Failures
e Randomization Results Gotchas
e« Randomization Runtime Perfesm

accellera

Constrained Random Verification

* Defines stimulus at high level
of abstraction (random space)

— Random variables and their
range

— System Constraints
e More efficient than directed
tests

— Usually complemented by
directed tests to close coverage
* Requires a measurement
strategy to assess the
verification progress
— Metric Driven Verification

SYSTEMS INITIATIVE

0101010101
1101101101
1011011010
0111011101
1101101110
0101101101
1101101101

Constraints

How efficient is
my constrained
random stimuli?

Device
Under I8
Verification

b

hd

Functional
Coverade

Header

Payload Checksum

h 4

h

|

|
1010101010
000001000
111011101
1101101101
1011011011
0001001001
001001011

DESIGN AND VERIFICATION

DVLCOIN

CONFEREMNCE AND EXHIBITION

Introduction to SystemVerilog
Constrained Random

Random Variables

n &

Constraints Solver
°
£y \
=
NV,

h—

Random
Constraints

accellera - DVCOIN
© Accellera Systems Initiative 6 CONFERENCE AND EXHISITION
SYSTEMS INITIATIVE

Introduction to SystemVerilog
Constrained Random

omization
Methods
* randomize() « Expressions need to be held true by the Solver
— Built-in class method when solving a randomization problem
— Randomizes class fields with rand/randc qualifiers))
according to predefined constraints * May include random variables, non-random state
— Accepts inline constraints using the “with” clause variables, operators, distributions, literals, and
— can be called to recursively randomize all random constants
variables of a class, or to randomize specific
variable(s) * Can be hard (default) or soft
* $urandom() * Can be switched on/off using constraint_mode()
— Called in a procedural context to generate a .
pseudo-random number * special operators
e Surandom_range() — inside (set membership),
— Returns an unsigned random integer value within a — ->(implication),
speaﬁed' range — dist (distribution/weighting),
* std::randomize() h (iteration)
— Can be called outside the class scope to randomize = e (),
non-class members. — if..else (conditional),
- Clan accept inline constraints using the “with” — and solve..before (probability and distribution)
clause.
— unique,...

DESIGN AND VERZIFLI::]ﬁLﬂ':DN
accellera - DVCOIN

© Accellera Systems Initiative 7 CONFERENCE AND EXHIBITION
SYSTEMS INITIATIVE

Constraints Solver ‘
How it works ?(obj.randomize()) \?\

pre_randomize() (top->down)
Solves random variables with
simple equality constraints

Executes Simple functions
called in constraints (with no
args, const/non-rand args)

Updates constraints with
values generated in #2 & 3

Groups rand vars and

constraints into independent [

SYSTEMS INITIATIVE

Orders randsets
(randc randsets, followed by

rand args to functions, followed
by other randsets)

No

Remaining

randsets?

Yes

\4
Solve Next randset (Take as
many iterations as required)

4

Yes Randset

solved?

vNO

Flags Randomization Failure
(randomize() returns 0)

.
U'H\ B

Updates all rand variables with
random generated values

Generate random values for
unconstrained rand variables

post_randomize() (top->down)

Flags Randomization Success
(randomize() returns 1)

DESIGN AND VERIFICATION

DVLCOIN

CONFEREMNCE AND EXHIBITION

EUROPE

Outline

* Introduction to Constrained Random
Verification

e Randomization Failures Gotchas
e Randomization Results Gotchas
e Runtime Performance Gotchas

g SIGN AND WV lgEQlﬁ
accellera - DVCOIN
© Accellera Systems Initiative 9

svsTems mmAve EUROPE]

My randomization attempt failed and | was not
notified !

class instr burst; °

What

happens
rand bit [15:0] addr, start addr, end addr; when result
rand bit [3:0] len; of
constraint addr range {addr >= start addr; addr <= end addr - 1len;}
endclass - N - randomIZE()
instr burst il = new; is NOT

il.randomize ith {start addr !'= 0; end addr == 16'h0008; len == 4'h8;};
il.r ize() with { _ nd_addr ! captured?

if (! il.randomize()) 0

$error ("Randomization of object cl failed!"); |

Always capture randomize() result to

avoid implicit void casting
assert(il.randomize()) ; 0

accellera - DVCOIN
© Accellera Systems Initiative 10 CONFERENCE AND EXHISITION

SYSTEMS INITIATIVE

| am only randomizing a single variable in a class,
yet | am encountering a randomization failure!

rand bit

endclass

trans tl

end

constraint constr { b < a;
initial begin

assert (tl.randomize (b))

class trans;

[7:0] a, b, c ;
}

= newy;

//Randomization failure!

All constraints
still need to be
satisfied!

trans tl =
assert (tl.
assert (tl.

new;
randomize) ;
randomize (b)) ;

SYSTEMS INITIATIVE

© Accellera Systems Initiative

Always issue at least one full randomize() before A
selected variables randomize()

Avoid (as possible) assigning other rand variables
manually without solver jurisdiction

DESIGN AND VERIFICATION

DVLCOIN

1 1 CONFEREMNCE AND EXHIBITION

| am encountering cyclic dependency errors
between random variables!

class instr; ° class instr; °

rand bit [7:0] a, b, c ; rand bit [7:0]

constraint prob{solve a before b;
solve b before c;
solve c before a;}

a g
constraint ¢ { a[0] == foo (a) ;}
endclass

endclass

What is the probability 8-bits of “a” are solved first
of randomization before solver attempt to
success? satisfy the equality!

 Random variables passed as function arguments are n function void post randomize () ; 0

forced to be solved first by the Solver al0] = foo (a); ‘
endfunction

* Solver does not look into functions contents

accellera - DVCOIN
© Accellera Systems Initiative 1212 CONFERENCE AND EXHISITION

SYSTEMS INITIATIVE

| am encountering cyclic dependency errors
between randc variables!

Are “a” and “b” evaluated
together or separately?

class instr;
randc bit [7:0] a ;

randc bit [3:0] b ; If evaluated separately, what is
constraint ¢ { a == b; } the order of evaluation?
endclass
instr 1 = new;

assert(i.randomize()) ;

randc cycles operate on single variables
randc variables are evaluated separately

constraint ¢ { a[3:0] =1. . |

® Beware equality between unmatched size randc
variables

L Because of this, cyclic nature of randc variables
What if “b

can even be compromised!
was rand?

accellera - DVCOIN
_— © Accellera Systems Initiative 13 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

| am getting randomization failures when using

array.sum()/array.product() reduction methods in
constraints!

class trans; °

rand bit descr [];
constraint c {

descr.sum () == 50; What is the width/precision of sum() result?
descr.size () == 100;

}

endclass

sum()/product() results are computed with
a width/precision of array base type n

constraint c {
descr.sum() with (int' (item)) == 50; -
descr.size() == 100; Explicitly cast the array element
(i.e. item) to an int data type when
needed

}

DESIGN AND VER2IFQ¢11%N
accellera - DVCOIN
_— © Accellera Systems Initiative 14 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Guidelines Summary
Randomization Failures Gotchas

2014
h 1 AND VERIFICATION
accellera ﬁcs AND EXHIBITION

v

SYSTEMS INITIATIVE

= rmuvuvilivia \JyOLUIIIQ 1nuuanve 1V

Outline

* Introduction to Constrained Random
Verification

e Randomization Failures Gotchas
e Randomization Results Gotchas
e Randomization Runtime Performance Gotchas

(2014
accellefﬁ © Accellera Systems Initiative 16 DVDDN

svsTems mmAve EUROPE]

Random values generated change from run to run; |
could not reproduce a test failure or validate a fix!

static int global seed = Surandom; //Static global seed

fork begin
rw_s.srandom(global seed + "rw s"); //Reseed sequence
assert (rw s.randomize());
rw_s.start();

end

accellera .
© Accellera Systems Initiative 17

SYSTEMS INITIATIVE

+
0 * Use Manual seeding to manually set

virtual task body; ° . AP .f. . upno
random_seq rand s = new; Jrine A Does line “A” affect the random stability of line “B”:
simple seq rw_s = new;
fork begin . .
assert (rw_s.randomize()); //Line B Randomize() results depends on previous state of
rw_s.start(); RNG
end Object initial RNG depends on parent’s RNG,
Join while it changes state after each randomize()
endtask

the RNG of a given thread or an
object to a specific known state

In UVM, components are re-seeded
during their construction based on
their type and full path names, while
sequences are re-seeded
automatically before their actual

start. ﬂ

DESIGN AND VERIFICATION

DVLCOIN

CONFEREMNCE AND EXHIBITION

My inline constraints are not applied

class trans;
rand bit [31:0] addr;
endclass
class seq;
rand bit [31:0] addr;
trans t;
assert (t.randomize () with {t.addr == addr;});
endclass

What is the randomization result w.r.t.
the constraint intent?

assert (t.randomize () with {

* Unqualified names are resolved by
searching first in the scope of
the randomize() with object,

assert(t.randomize () with { addr == local::addr; }); 0 .
o | followed by a search in the local

_@

scope.

The local:: qualifier modifies the
resolution search order.

DESIGN AND VERIFICATION

CoN
accell_eca © Accellera Systems Initiative 18 R;{"C“”D T

SYSTEMS INITIATIVE

My foreign language random generation is not
affected by the initial simulation seed change

* Normally, the initial SystemVerilog simulation seed, does not affect foreign language code A
* This can be resolved by passing the simulation initial seed to the foreign language code

// C/C++ side 0

static int sim seed;

void set foreign seed(int seed) {
sim seed = seed;

}

int stimgen () {
int desc;

srand(sim_seed) ;
desc = rand() ;
return 0O;

}

// SystemVerilog side 0

import "DPI-C" context function void
set_foreign_seed(int seed);

int global seed = $urandom;

initial

set_foreign_seed (global_seed);

aceellera)

SYSTEMS INITIATIVE

© Accellera Systems Initiative

DESIGN AND VERIFICATION

DVLCOIN

CONFEREMNCE AND EXHIBITION

Unexpected negative values are generated upon
randomize!

° rand bit [31:0] start addr; °

rand bit [5:0] length;
bit [31:0] start end addr hash [bit[31:0]];
constraint c { //Generate Non-Overlapping address ranges
if (start end addr hash.num()) {
foreach (start_end addr hash [i]) ({
! (start_addr inside {[i-length+l
start _end addr hash [i]]}):

class trans;
rand int addr;
constraint c {

addr < MAX ADDR;

}

endclass

class seq;
rand bit [31:0] addr;

trans t;)
dcl
enac-ass lengj 6'h10;
boo.
int, byte, and variables start addr hash [start addrl_= start addr + length - 1;

declared as signed can hold
negative random values

foreach (start end addr hash [i]) {
if (i >= length) {
! (start_addr inside ({
[i-length+l

What happens when “start_addr” start_end_addr_hash [i]]});

. . . } else {
of a previous randomization | (start addr inside {
attempt was picked to be smaller [0 : start_end_addr_hash [i]]});
than the address range “length”? } 014

} FicaTion

accellera o v JN
© Accellera Systems Initiative 20 CONFERENCE AND EXHISITION

SYSTEMS INITIATIVE

| am getting unexpected random results when using
default constraints

default constraint cl {x < 10; y > z;} ° . - . oy
What is the probability of getting “z” be

constraint c2 {x < 5;} greater than “y”?

* Default constraints are not part with the
SystemVerilog standard; several simulators

allow them for legacy purposes
constraint cl {soft x < 10; y > z;} 0
constraint c2 {x < 57} ‘ Once any variable used in default
constrained is used in another constraint ,

the entire default constraint is ignored

Do NOT use default constraints; use soft

constraints instead. ﬂ
DESIGMN AND WERIFICATIOMN

accellera - DVETIN
© Accellera Systems Initiative 21 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Guidelines Summary
Randomization Results Gotchas

2014
h GN AND VERIFICATION
accellera MCE AND EXHIBITION

v

SYSTEMS INITIATIVE

& ALLCIICIA OYDLTIHTID TTluauve LL

Outline

e Randomization Runtime Performance Gotchas

DESIGN AND VEgFQliN
accellera - DVCOIN
© Accellera Systems Initiative 23 CONFERENCE AND EXHISITION

SYSTEMS INITIATIVE

Writing Efficient Constraints

Often users write
constraints
focusing on
functionality and
not performance

Surprises at
runtime w.r.t.
Solver overhead

© Accellera Systems Initiative

SYSTEMS INITIATIVE

//Dynamic array with unique elements °
class trans;

rand bit [31:0] addrs [];
constraint unique arr({
foreach (addrs[i])
foreach (addrs[]j])

if (3 < 1)
addrs [i] != addrs [J];

Foreach is
performance
greedy!

}

endclass

PR L L L L L L L L L L L L L L T

e e e e e e L L D L L S L

class dummy c;
randc bit [31:0] wval;
endclass
class trans;
rand bit [31:0] addrs []:
function void post randomize() ;
dummy c dc = new;
foreach (addrs[i]) begin
assert (dc.randomize) ;
addrs[i] = dc.val;

end
endfunction
endclass DESIGN AND VERIFICATION
24 CONFERENCE AND EXHIBITION

Writing Efficient Constraints (cont.)

Avoid complex —— a2 * 64;

operations that d ==

overburden the
Solver

dist
operators
can have
runtime

overhead.
Reduce

usage as
possible

SYSTEMS INITIATIVE

constraint arith { °

c / 8;
== 2 %% o;
$ 4 == 0;

rand bit [4:0] rd;
constraint mode 32bit({

mode == 32 -> rd < 16;}
constraint rd dist ({
mode == 32 -> rd [3:0] dist

{
[4'"b0000:4"'b1110]: 3,
4'pb1111 : 1
}s

© Accellera Systems Initiative 25

constraint arith { 0

b == a << 6;

d == c > 3;

f ==1<< e;

addr [1:0] == O;
}

Bitwise operations
are relatively easy
to solve even with

a BDD engine

rand bit [4:0] rd;

rand bit [1:0] rd eq 15;

constraint mode 32bit({
mode == 32 -> rd < 15;

}

if (mode == 32)

rd = 5'b01111;
endfunction

function void post_randomize() ;

if (rd_eq 15 == 2’'bll)

DESIGN AND VERIFICATION

DVLCOIN

CONFEREMNCE AND EXHIBITION

Guidelines Summary
Performance Gotchas

2014

o SIGN AND VERIFICATION
accellera - VI
— © Accellera Systems Initiative 26

svsTems mmAve EUROPE]

References

* Mentor Graphics Verification Academy,
www.verificationacademy.com

* |EEE Standard for SystemVerilog, Unified Hardware Design,
Specification, and Verification Language, |EEE Std 1800-2012,
2012

e UVM User Manual, uvmworld.org.

« UVM Random Stability: Don’t leave it to chance, Avidan Efody,
DVCon 2012.

* Verilog and SystemVerilog Gotchas: 101 Common Coding Errors
and How to Avoid Them, Stuart Sutherland and Don Mills,
Springer

DESIGN AND VER?FQJG&N
accellera o DV LN
© Accellera Systems Initiative 27 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

http://www.verificationacademy.com/
E:/Docs-LRMs/DVcon2014/uvmworld.org
http://goo.gl/71yQX
http://goo.gl/71yQX

L

SYSTEMS INITIATIVE

Questions

(2014

DESIGMN AMD VERIFICATION

DVLCOIN

CONMFERENCE AND EXHIBITION

EURCOPE

