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• More time is 
taken in debug 
than any other 
project task 

 

• Time wasted in 
debugging 
constrained 
random related 
problems is 
significant 
 

 

 



Contribution 

• Illustrates top most common SystemVerilog 
and UVM constrained random gotchas  

• Helps 
– Eliminate/reduce unnecessary debug times when 

encountering randomization failures 

– Eliminate/reduce unexpected randomization 
results 

– Eliminate/reduce code random instability 

– Ensure efficiency when coding random constraints 
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Outline 

• Introduction to Constrained Random Verification 

• Randomization Failures Gotchas 

• Randomization Results Gotchas 

• Randomization Runtime Performance Gotchas 
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Constrained Random Verification 
 

• Defines stimulus at high level 
of abstraction (random space) 
– Random variables and their 

range 

– System Constraints 

• More efficient than directed 
tests 
– Usually complemented by 

directed tests to close coverage 

• Requires a measurement 
strategy to assess the 
verification progress 
– Metric Driven Verification 
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How efficient is 
my constrained 
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Introduction to SystemVerilog 
Constrained Random 
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Introduction to SystemVerilog 
Constrained Random 
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• Expressions need to be held true by the Solver 
when solving a randomization problem 

• May include random variables, non-random state 
variables, operators, distributions, literals, and 
constants 

• Can be hard (default) or soft 

• Can be switched on/off using constraint_mode()  

• special operators 

– inside (set membership),  

– -> (implication),  

– dist (distribution/weighting),  

– foreach (iteration),  

– if..else (conditional),  

– and solve..before (probability and distribution) 

– unique,… 
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variables, operators, distributions, literals, and 
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• Can be hard (default) or soft 
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• special operators 
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• randomize() 
– Built-in class method 
– Randomizes class fields with rand/randc qualifiers 

according to predefined constraints 
– Accepts inline constraints using the “with” clause 
– can be called to recursively randomize all random 

variables of a class, or to randomize specific 
variable(s) 

• $urandom() 
– Called in a procedural context to generate a 

pseudo-random number 

• $urandom_range() 
– Returns an unsigned random integer value within a 

specified range 

• std::randomize() 
– Can be called outside the class scope to randomize 

non-class members.  
– Can accept inline constraints using the “with” 

clause. 
 

• randomize() 
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• $urandom() 
– Called in a procedural context to generate a 

pseudo-random number 

• $urandom_range() 
– Returns an unsigned random integer value within a 

specified range 

• std::randomize() 
– Can be called outside the class scope to randomize 

non-class members.  
– Can accept inline constraints using the “with” 

clause. 
 

SystemVerilog Randomization 
Methods 

SystemVerilog Randomization 
Constraints 



Constraints Solver 
How it works ?(obj.randomize())  
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Outline 

• Introduction to Constrained Random 
Verification 

• Randomization Failures Gotchas 

• Randomization Results Gotchas 

• Runtime Performance Gotchas 
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My randomization attempt failed and I was not 
notified ! 
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class instr_burst; 

  rand bit [15:0] addr, start_addr, end_addr; 

  rand bit [3:0]  len; 

  constraint addr_range {addr >= start_addr; addr <= end_addr – len;} 

endclass 

instr_burst i1 = new; 

i1.randomize() with {start_addr != 0; end_addr == 16'h0008; len == 4'h8;}; 

 

if (! i1.randomize()) 

  $error ("Randomization of object c1 failed!"); 

 

assert(i1.randomize()); 
 

Always capture randomize() result to 
avoid implicit void casting  

! 

What 
happens 

when result 
of 

randomize() 
is NOT 

captured? 



I am only randomizing a single variable in a class, 
yet I am encountering a randomization failure! 
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class trans; 

  rand bit [7:0] a, b, c ; 

  constraint constr { b < a; } 

endclass 

initial begin  

  trans t1 = new; 

  assert (t1.randomize (b)); //Randomization failure! 

end 

 

trans t1 = new; 

assert (t1.randomize); 

assert (t1.randomize (b)); 

 
• Always issue at least one full randomize() before 

selected variables randomize()  
 

• Avoid (as possible) assigning other rand variables 
manually without solver jurisdiction 
 

! 

All constraints 
still need to be 

satisfied! 



I am encountering cyclic dependency errors 
between random variables! 
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class instr; 

  rand bit [7:0] a ; 

  constraint c { a[0] == foo (a) ;} 

endclass 

class instr; 

  rand bit [7:0] a, b, c ; 

  constraint prob{solve a before b; 

                  solve b before c; 

                  solve c before a;} 

endclass 

  
8-bits of “a” are solved first 

before solver attempt to 
satisfy the equality! 

  

function void post_randomize(); 

  a[0] = foo (a); 

endfunction 

 

12 

• Random variables passed as function arguments are 
forced to be solved first by the Solver 

• Solver does not look into functions contents 

What is the probability 
of randomization 

success?  

! 



I am encountering cyclic dependency errors 
between randc variables!  
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class instr; 

  randc bit [7:0] a ; 

  randc bit [3:0] b ; 

  constraint c { a == b; } 

endclass 

instr i = new; 

assert(i.randomize()); 

  

 

 

constraint c { a[3:0] == b; } 

 

Are “a” and “b” evaluated 
together or separately?  

If evaluated separately, what is 
the order of evaluation? 

• randc cycles operate on single variables 
• randc variables are evaluated separately 

 
• Beware equality between unmatched size randc 

variables 
• Because of this, cyclic nature of randc variables 

can even be compromised! 

! 

What if “b” 
was rand? 



I am getting randomization failures when using 
array.sum()/array.product() reduction methods in 

constraints!  
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class trans; 

  rand bit descr []; 

  constraint c { 

    descr.sum()  == 50; 

    descr.size() == 100; 

  } 

endclass 

  

 

 constraint c { 

    descr.sum() with (int'(item)) == 50; 

    descr.size() == 100; 

  } 

 

What is the width/precision of sum() result?  

• sum()/product() results are computed with 
a width/precision of array base type 
 

• Explicitly cast the array element 
      (i.e. item) to an int data type when 
      needed 

! 



Guidelines Summary 
Randomization Failures Gotchas 

© Accellera Systems Initiative 15 



Outline 

• Introduction to Constrained Random 
Verification 

• Randomization Failures Gotchas 

• Randomization Results Gotchas 

• Randomization Runtime Performance Gotchas 
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Random values generated change from run to run; I 
could not reproduce a test failure or validate a fix!  
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virtual task body; 

  random_seq rand_s = new;       //Line A 

  simple_seq rw_s   = new;  

  fork begin 

      assert (rw_s.randomize()); //Line B 

      rw_s.start();  

  end 

    ... 

  join 

endtask 

 
Does line “A” affect the random stability of line “B”? 

 

static int global_seed = $urandom; //Static global seed 

... 

fork begin 

  rw_s.srandom(global_seed + "rw_s"); //Reseed sequence 

  assert (rw_s.randomize());  

  rw_s.start(); 

end 

  

 

• Randomize() results depends on previous state of 
RNG 

• Object initial RNG depends on parent’s RNG, 
while it changes state after each randomize() 

• Use Manual seeding to manually set 
the RNG of a given thread or an 
object to a specific known state 

• In UVM, components are re-seeded 
during their construction based on 
their type and full path names, while 
sequences are re-seeded 
automatically before their actual 
start. 

! 



My inline constraints are not applied 
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class trans; 

  rand bit [31:0] addr; 

endclass 

class seq; 

  rand bit [31:0] addr; 

  trans t; 

  assert(t.randomize() with {t.addr == addr;}); 

endclass 

  

 
What is the randomization result w.r.t. 

the constraint intent? 

assert(t.randomize() with { addr == local::addr; }); 

  

 

Equivalent Constraint 
assert(t.randomize() with {t.addr == t.addr;}); 

• Unqualified names are resolved by 
searching first in the scope of 
the randomize() with object, 
followed by a search in the local 
scope. 
 

• The local:: qualifier modifies the 
resolution search order. 

! 

Will ‘this’ 
work? 



My foreign language random generation is not 
affected by the initial simulation seed change 
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• Normally, the initial SystemVerilog simulation seed, does not affect foreign language code 
• This can be resolved by passing the simulation initial seed to the foreign language code 

! 

// C/C++ side 

static int sim_seed; 

void set_foreign seed(int seed){ 

  sim_seed = seed; 

} 

int stimgen () { 

  int desc; 

  ...         

  srand(sim_seed); 

  desc = rand(); 

  ... 

  return 0; 

} 

 
// SystemVerilog side 

import "DPI-C" context function void  

                 set_foreign_seed(int seed); 

int global_seed = $urandom; 

initial 

  set_foreign_seed (global_seed); 

  

 

DPI/PLI 



Unexpected negative values are generated upon 
randomize! 
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class trans; 

  rand int addr; 

  constraint c { 

    addr < MAX_ADDR; 

  } 

endclass 

class seq; 

  rand bit [31:0] addr; 

  trans t; 

endclass 

 

int, byte, and variables 
declared as signed can hold 

negative random values 

  rand bit [31:0] start_addr; 

  rand bit [5:0] length; 

  bit [31:0] start_end_addr_hash [bit[31:0]]; 

  constraint c {   //Generate Non-Overlapping address ranges 
    if (start_end_addr_hash.num()) { 

      foreach (start_end_addr_hash [i]) { 

        !(start_addr inside {[i-length+1 :  

                              start_end_addr_hash [i]]}); 

      } 

    } 

    length == 6'h10; 

  }... 

start_end_addr_hash [start_addr] = start_addr + length - 1; 

 

What happens when “start_addr” 
of a previous randomization 
attempt was picked to be smaller 
than the  address range “length”?  

      foreach (start_end_addr_hash [i]) { 

        if (i >= length ) { 

          !(start_addr inside { 

              [i-length+1 :  

               start_end_addr_hash [i]]}); 

        } else { 

          !(start_addr inside { 

            [0 : start_end_addr_hash [i]]}); 

        } 

      } 

 



I am getting unexpected random results when using 
default constraints  
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default constraint c1 {x < 10; y > z;} 

... 

constraint c2 {x < 5;} 

  

 
What is the probability of getting “z” be 

greater than “y”? 

constraint c1 {soft x < 10; y > z;} 

constraint c2 {x < 5;} 

  

 

• Default constraints are not part with the 
SystemVerilog  standard; several simulators 
allow them for legacy purposes 
 

• Once any variable used in default 
constrained is used in another constraint , 
the entire default constraint is ignored 
 

• Do NOT use default constraints; use soft 
constraints instead. 

 ! 



Guidelines Summary 
Randomization Results Gotchas 

© Accellera Systems Initiative 22 



Outline 

• Introduction to Constrained Random 
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• Randomization Failures Gotchas 

• Randomization Results Gotchas 
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Writing Efficient Constraints 

• Often users write 
constraints 
focusing on 
functionality and 
not performance 

• Surprises at 
runtime w.r.t. 
Solver overhead 
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class dummy_c; 

  randc bit [31:0] val; 

endclass 

class trans; 

  rand bit [31:0] addrs []; 

  function void post_randomize(); 

     dummy_c dc = new; 

    foreach (addrs[i]) begin 

      assert (dc.randomize); 

      addrs[i] = dc.val; 

    end 

  endfunction 

endclass 

 

//Dynamic array with unique elements 

class trans; 

rand bit [31:0] addrs []; 

constraint unique_arr{ 

  foreach (addrs[i]) 

    foreach (addrs[j]) 

      if (j < i)  

        addrs [i] != addrs [j]; 

} 

endclass 

 

Foreach is 
performance 

greedy! 



Writing Efficient Constraints (cont.) 
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constraint arith { 

  b == a << 6; 

  d == c >> 3; 

  f == 1 << e; 

  addr [1:0] == 0; 

} 

 
constraint arith { 

  b == a * 64; 

  d == c / 8; 

  f == 2 ** e; 

  addr % 4 == 0; 

} 

 
Avoid complex 

operations that 
overburden the 

Solver  

Bitwise operations 
are relatively easy 
to solve even with 

a BDD engine 

rand bit [4:0] rd; 

rand bit [1:0] rd_eq_15; 

constraint mode_32bit{ 

  mode == 32 -> rd < 15; 

} 

function void post_randomize(); 

 if (mode == 32)  

   if (rd_eq_15 == 2’b11) 

     rd = 5’b01111; 

endfunction 

 
rand bit [4:0] rd; 

constraint mode_32bit{ 

  mode == 32 -> rd < 16;} 

constraint rd_dist { 

  mode == 32 -> rd [3:0] dist 

{ 

    [4'b0000:4'b1110]: 3,  

     4'b1111         : 1 

  }; 

} 

 
dist 

operators 
can have 
runtime 

overhead. 
Reduce 

usage as 
possible 



Guidelines Summary 
Performance Gotchas 
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Questions 
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