
The Top Most Common
SystemVerilog Constrained

Random Gotchas

Author: Ahmed Yehia

Presenter: Gabriel Chidolue

© Accellera Systems Initiative 1

Motivation

© Accellera Systems Initiative 2

16%

22%

23%

36%
4%

Test Planning

Testbench
Development

Creating and
Running Test

Debug

Wilson Research Group and Mentor Graphics, 2012 Functional Verification Study, Used with permission

• More time is
taken in debug
than any other
project task

• Time wasted in
debugging
constrained
random related
problems is
significant

Contribution

• Illustrates top most common SystemVerilog
and UVM constrained random gotchas

• Helps
– Eliminate/reduce unnecessary debug times when

encountering randomization failures

– Eliminate/reduce unexpected randomization
results

– Eliminate/reduce code random instability

– Ensure efficiency when coding random constraints

© Accellera Systems Initiative 3

Outline

• Introduction to Constrained Random Verification

• Randomization Failures Gotchas

• Randomization Results Gotchas

• Randomization Runtime Performance Gotchas

© Accellera Systems Initiative 4

Constrained Random Verification

• Defines stimulus at high level
of abstraction (random space)
– Random variables and their

range

– System Constraints

• More efficient than directed
tests
– Usually complemented by

directed tests to close coverage

• Requires a measurement
strategy to assess the
verification progress
– Metric Driven Verification

Device

Under

Verification

0101010101
1101101101
1011011010
0111011101
1101101110
0101101101
1101101101

1010101010
000001000
111011101
1101101101
1011011011
0001001001
001001011

Functional

Coverage

Checker

Header Payload Checksum

Constraints Are we done?

Manipulate
random space

Does it work?

How efficient is
my constrained
random stimuli?

Introduction to SystemVerilog
Constrained Random

© Accellera Systems Initiative 6

M M

Q Q Y Y
Z Z

F F

H H

G G

U U
A A x

x

x

x

x

x

x

x

x

x
x x

x
x

x

x

x
x x x x

x

x

x

x

x
x

x

x

x x

x x

x

x x
x

x

Random
Constraints

Random
Constraints RNG RNG

Random Variables

Solution

Failure

Constraints Solver

Introduction to SystemVerilog
Constrained Random

© Accellera Systems Initiative 7

• Expressions need to be held true by the Solver
when solving a randomization problem

• May include random variables, non-random state
variables, operators, distributions, literals, and
constants

• Can be hard (default) or soft

• Can be switched on/off using constraint_mode()

• special operators

– inside (set membership),

– -> (implication),

– dist (distribution/weighting),

– foreach (iteration),

– if..else (conditional),

– and solve..before (probability and distribution)

– unique,…

• Expressions need to be held true by the Solver
when solving a randomization problem

• May include random variables, non-random state
variables, operators, distributions, literals, and
constants

• Can be hard (default) or soft

• Can be switched on/off using constraint_mode()

• special operators

– inside (set membership),

– -> (implication),

– dist (distribution/weighting),

– foreach (iteration),

– if..else (conditional),

– and solve..before (probability and distribution)

– unique,…

• randomize()
– Built-in class method
– Randomizes class fields with rand/randc qualifiers

according to predefined constraints
– Accepts inline constraints using the “with” clause
– can be called to recursively randomize all random

variables of a class, or to randomize specific
variable(s)

• $urandom()
– Called in a procedural context to generate a

pseudo-random number

• $urandom_range()
– Returns an unsigned random integer value within a

specified range

• std::randomize()
– Can be called outside the class scope to randomize

non-class members.
– Can accept inline constraints using the “with”

clause.

• randomize()
– Built-in class method
– Randomizes class fields with rand/randc qualifiers

according to predefined constraints
– Accepts inline constraints using the “with” clause
– can be called to recursively randomize all random

variables of a class, or to randomize specific
variable(s)

• $urandom()
– Called in a procedural context to generate a

pseudo-random number

• $urandom_range()
– Returns an unsigned random integer value within a

specified range

• std::randomize()
– Can be called outside the class scope to randomize

non-class members.
– Can accept inline constraints using the “with”

clause.

SystemVerilog Randomization
Methods

SystemVerilog Randomization
Constraints

Constraints Solver
How it works ?(obj.randomize())

8

Start Start

pre_randomize() (top->down) pre_randomize() (top->down)

Solves random variables with
simple equality constraints

Solves random variables with
simple equality constraints

Executes Simple functions
called in constraints (with no

args, const/non-rand args)

Executes Simple functions
called in constraints (with no

args, const/non-rand args)

Updates constraints with
values generated in #2 & 3
Updates constraints with

values generated in #2 & 3

Groups rand vars and
constraints into independent

randsets

Groups rand vars and
constraints into independent

randsets

Orders randsets
(randc randsets, followed by

rand args to functions, followed
by other randsets)

Orders randsets
(randc randsets, followed by

rand args to functions, followed
by other randsets)

Remaining
randsets?
Remaining
randsets?

Solve Next randset (Take as
many iterations as required)
Solve Next randset (Take as
many iterations as required)

Randset
solved?
Randset
solved?

post_randomize() (top->down) post_randomize() (top->down)

Generate random values for
unconstrained rand variables
Generate random values for
unconstrained rand variables

Updates all rand variables with
random generated values

Updates all rand variables with
random generated values

Flags Randomization Failure
(randomize() returns 0)

Flags Randomization Failure
(randomize() returns 0)

Flags Randomization Success
(randomize() returns 1)

Flags Randomization Success
(randomize() returns 1)

End End

Yes

No

No

Yes

Outline

• Introduction to Constrained Random
Verification

• Randomization Failures Gotchas

• Randomization Results Gotchas

• Runtime Performance Gotchas

© Accellera Systems Initiative 9

My randomization attempt failed and I was not
notified !

© Accellera Systems Initiative 10

class instr_burst;

 rand bit [15:0] addr, start_addr, end_addr;

 rand bit [3:0] len;

 constraint addr_range {addr >= start_addr; addr <= end_addr – len;}

endclass

instr_burst i1 = new;

i1.randomize() with {start_addr != 0; end_addr == 16'h0008; len == 4'h8;};

if (! i1.randomize())

 $error ("Randomization of object c1 failed!");

assert(i1.randomize());

Always capture randomize() result to
avoid implicit void casting

!

What
happens

when result
of

randomize()
is NOT

captured?

I am only randomizing a single variable in a class,
yet I am encountering a randomization failure!

© Accellera Systems Initiative 11

class trans;

 rand bit [7:0] a, b, c ;

 constraint constr { b < a; }

endclass

initial begin

 trans t1 = new;

 assert (t1.randomize (b)); //Randomization failure!

end

trans t1 = new;

assert (t1.randomize);

assert (t1.randomize (b));

• Always issue at least one full randomize() before

selected variables randomize()

• Avoid (as possible) assigning other rand variables
manually without solver jurisdiction

!

All constraints
still need to be

satisfied!

I am encountering cyclic dependency errors
between random variables!

© Accellera Systems Initiative 12

class instr;

 rand bit [7:0] a ;

 constraint c { a[0] == foo (a) ;}

endclass

class instr;

 rand bit [7:0] a, b, c ;

 constraint prob{solve a before b;

 solve b before c;

 solve c before a;}

endclass

8-bits of “a” are solved first

before solver attempt to
satisfy the equality!

function void post_randomize();

 a[0] = foo (a);

endfunction

12

• Random variables passed as function arguments are
forced to be solved first by the Solver

• Solver does not look into functions contents

What is the probability
of randomization

success?

!

I am encountering cyclic dependency errors
between randc variables!

© Accellera Systems Initiative 13

class instr;

 randc bit [7:0] a ;

 randc bit [3:0] b ;

 constraint c { a == b; }

endclass

instr i = new;

assert(i.randomize());

constraint c { a[3:0] == b; }

Are “a” and “b” evaluated
together or separately?

If evaluated separately, what is
the order of evaluation?

• randc cycles operate on single variables
• randc variables are evaluated separately

• Beware equality between unmatched size randc

variables
• Because of this, cyclic nature of randc variables

can even be compromised!

!

What if “b”
was rand?

I am getting randomization failures when using
array.sum()/array.product() reduction methods in

constraints!

© Accellera Systems Initiative 14

class trans;

 rand bit descr [];

 constraint c {

 descr.sum() == 50;

 descr.size() == 100;

 }

endclass

 constraint c {

 descr.sum() with (int'(item)) == 50;

 descr.size() == 100;

 }

What is the width/precision of sum() result?

• sum()/product() results are computed with
a width/precision of array base type

• Explicitly cast the array element
 (i.e. item) to an int data type when
 needed

!

Guidelines Summary
Randomization Failures Gotchas

© Accellera Systems Initiative 15

Outline

• Introduction to Constrained Random
Verification

• Randomization Failures Gotchas

• Randomization Results Gotchas

• Randomization Runtime Performance Gotchas

© Accellera Systems Initiative 16

Random values generated change from run to run; I
could not reproduce a test failure or validate a fix!

© Accellera Systems Initiative 17

virtual task body;

 random_seq rand_s = new; //Line A

 simple_seq rw_s = new;

 fork begin

 assert (rw_s.randomize()); //Line B

 rw_s.start();

 end

 ...

 join

endtask

Does line “A” affect the random stability of line “B”?

static int global_seed = $urandom; //Static global seed

...

fork begin

 rw_s.srandom(global_seed + "rw_s"); //Reseed sequence

 assert (rw_s.randomize());

 rw_s.start();

end

• Randomize() results depends on previous state of
RNG

• Object initial RNG depends on parent’s RNG,
while it changes state after each randomize()

• Use Manual seeding to manually set
the RNG of a given thread or an
object to a specific known state

• In UVM, components are re-seeded
during their construction based on
their type and full path names, while
sequences are re-seeded
automatically before their actual
start.

!

My inline constraints are not applied

© Accellera Systems Initiative 18

class trans;

 rand bit [31:0] addr;

endclass

class seq;

 rand bit [31:0] addr;

 trans t;

 assert(t.randomize() with {t.addr == addr;});

endclass

What is the randomization result w.r.t.

the constraint intent?

assert(t.randomize() with { addr == local::addr; });

Equivalent Constraint
assert(t.randomize() with {t.addr == t.addr;});

• Unqualified names are resolved by
searching first in the scope of
the randomize() with object,
followed by a search in the local
scope.

• The local:: qualifier modifies the
resolution search order.

!

Will ‘this’
work?

My foreign language random generation is not
affected by the initial simulation seed change

© Accellera Systems Initiative 19

• Normally, the initial SystemVerilog simulation seed, does not affect foreign language code
• This can be resolved by passing the simulation initial seed to the foreign language code

!

// C/C++ side

static int sim_seed;

void set_foreign seed(int seed){

 sim_seed = seed;

}

int stimgen () {

 int desc;

 ...

 srand(sim_seed);

 desc = rand();

 ...

 return 0;

}

// SystemVerilog side

import "DPI-C" context function void

 set_foreign_seed(int seed);

int global_seed = $urandom;

initial

 set_foreign_seed (global_seed);

DPI/PLI

Unexpected negative values are generated upon
randomize!

© Accellera Systems Initiative 20

class trans;

 rand int addr;

 constraint c {

 addr < MAX_ADDR;

 }

endclass

class seq;

 rand bit [31:0] addr;

 trans t;

endclass

int, byte, and variables
declared as signed can hold

negative random values

 rand bit [31:0] start_addr;

 rand bit [5:0] length;

 bit [31:0] start_end_addr_hash [bit[31:0]];

 constraint c { //Generate Non-Overlapping address ranges
 if (start_end_addr_hash.num()) {

 foreach (start_end_addr_hash [i]) {

 !(start_addr inside {[i-length+1 :

 start_end_addr_hash [i]]});

 }

 }

 length == 6'h10;

 }...

start_end_addr_hash [start_addr] = start_addr + length - 1;

What happens when “start_addr”
of a previous randomization
attempt was picked to be smaller
than the address range “length”?

 foreach (start_end_addr_hash [i]) {

 if (i >= length) {

 !(start_addr inside {

 [i-length+1 :

 start_end_addr_hash [i]]});

 } else {

 !(start_addr inside {

 [0 : start_end_addr_hash [i]]});

 }

 }

I am getting unexpected random results when using
default constraints

© Accellera Systems Initiative 21

default constraint c1 {x < 10; y > z;}

...

constraint c2 {x < 5;}

What is the probability of getting “z” be

greater than “y”?

constraint c1 {soft x < 10; y > z;}

constraint c2 {x < 5;}

• Default constraints are not part with the
SystemVerilog standard; several simulators
allow them for legacy purposes

• Once any variable used in default
constrained is used in another constraint ,
the entire default constraint is ignored

• Do NOT use default constraints; use soft
constraints instead.

 !

Guidelines Summary
Randomization Results Gotchas

© Accellera Systems Initiative 22

Outline

• Introduction to Constrained Random
Verification

• Randomization Failures Gotchas

• Randomization Results Gotchas

• Randomization Runtime Performance Gotchas

© Accellera Systems Initiative 23

Writing Efficient Constraints

• Often users write
constraints
focusing on
functionality and
not performance

• Surprises at
runtime w.r.t.
Solver overhead

© Accellera Systems Initiative 24

class dummy_c;

 randc bit [31:0] val;

endclass

class trans;

 rand bit [31:0] addrs [];

 function void post_randomize();

 dummy_c dc = new;

 foreach (addrs[i]) begin

 assert (dc.randomize);

 addrs[i] = dc.val;

 end

 endfunction

endclass

//Dynamic array with unique elements

class trans;

rand bit [31:0] addrs [];

constraint unique_arr{

 foreach (addrs[i])

 foreach (addrs[j])

 if (j < i)

 addrs [i] != addrs [j];

}

endclass

Foreach is
performance

greedy!

Writing Efficient Constraints (cont.)

© Accellera Systems Initiative 25

constraint arith {

 b == a << 6;

 d == c >> 3;

 f == 1 << e;

 addr [1:0] == 0;

}

constraint arith {

 b == a * 64;

 d == c / 8;

 f == 2 ** e;

 addr % 4 == 0;

}

Avoid complex

operations that
overburden the

Solver

Bitwise operations
are relatively easy
to solve even with

a BDD engine

rand bit [4:0] rd;

rand bit [1:0] rd_eq_15;

constraint mode_32bit{

 mode == 32 -> rd < 15;

}

function void post_randomize();

 if (mode == 32)

 if (rd_eq_15 == 2’b11)

 rd = 5’b01111;

endfunction

rand bit [4:0] rd;

constraint mode_32bit{

 mode == 32 -> rd < 16;}

constraint rd_dist {

 mode == 32 -> rd [3:0] dist

{

 [4'b0000:4'b1110]: 3,

 4'b1111 : 1

 };

}

dist

operators
can have
runtime

overhead.
Reduce

usage as
possible

Guidelines Summary
Performance Gotchas

© Accellera Systems Initiative 26

References

• Mentor Graphics Verification Academy,
www.verificationacademy.com

• IEEE Standard for SystemVerilog, Unified Hardware Design,
Specification, and Verification Language, IEEE Std 1800-2012,
2012

• UVM User Manual, uvmworld.org.

• UVM Random Stability: Don’t leave it to chance, Avidan Efody,
DVCon 2012.

• Verilog and SystemVerilog Gotchas: 101 Common Coding Errors
and How to Avoid Them, Stuart Sutherland and Don Mills,
Springer

 © Accellera Systems Initiative 27

http://www.verificationacademy.com/
E:/Docs-LRMs/DVcon2014/uvmworld.org
http://goo.gl/71yQX
http://goo.gl/71yQX

Questions

© Accellera Systems Initiative 28

