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Abstract- With the advances in formal technology and the introduction of Formal Sign-off Methodology in 

recent years, it has become possible to create a formal testbench that can find all bugs in a design. However, this 
is a very new concept that most design and verification teams do not know well enough to adopt and leverage for 
sign-off. The paper explains in detail the process to achieve Formal Sign-off, focusing on End-to-End checkers, 
constraints, complexity and formal coverage. In addition, we present a live case study as proof that Formal Sign-
off is possible. 
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I.   INTRODUCTION 
     Simulation has been used for verification sign-off in the industry for several decades.  It is relatively 
easy to understand the simulation processes, track metrics and measure progress to achieve sign-off, which 
is often defined as the point when all the pre-determined coverage goals are reached. However, it is also 
well known that reaching the simulation sign-off point does not guarantee that there is no bug left in the 
design. Often corner case bugs are discovered after tapeout, simply because it is not possible to simulate 
today’s complex IC designs exhaustively.  
    Formal technology has increasingly been adopted in the verification flow in recent years to complement 
simulation, because of its ability to exhaustively verify the design-under-test (DUT).  Based on state space 
search algorithms, formal can cover all state transitions, and can thus exhaustively prove the functional 
correctness of designs, by finding complex corner case scenarios that are often harder to cover with 
simulation. However, formal technology is not without challenges. Earlier attempts to apply formal 
verification to real world designs have been hindered by the size and complexity of the designs formal tools 
can handle. Without a sound methodology to overcome complexity challenges and offer a way for sign-off, 
formal application is limited to automatic formal check, formal apps and assertion-based-verification 
(ABV) [1] for bug hunting.  
    End-to-End formal verification [2] and the introduction of Formal Sign-off Methodology brought about a 
turning point in formal application – formal can now be used for sign-off. Designs signed off using formal 
verification offer much higher quality assurance compared to those that used simulation sign-off, due to 
formal’s exhaustive nature. However, the process of Formal Sign-off is complex and highly iterative. It 
takes dedicated effort and requires specific skills to make an executable formal test plan, implement the 
formal testbench, resolve complexity, and measure formal progress to reach sign-off. The benefit of the 
extra effort to achieve Formal Sign-off is the guarantee that, when done properly, a formal testbench 
catches all bugs in a design. To provide a live case study that formal sign-off is indeed possible, we hosted 
the “Break the Testbench” challenge at DAC 2015 where we invited DAC 2015 attendees to insert 
functional bugs in a design, chosen beforehand, and watch the bugs being caught by a formal testbench 
developed earlier by the Oski team. The results demonstrated that it is possible to achieve Formal Sign-off 
guaranteeing zero bugs in a design. For this paper, we use the term “DAC challenge” to refer to the “Break 
the Testbench” challenge at DAC 2015. 
   In this paper, we describe the process of achieving Formal Sign-off using the DAC challenge design and 
formal testbench as a case study. The paper is organized as follows. Section II presents the Formal Sign-off 
Methodology and discusses the requirements for Formal Sign-off.  Section III describes the design we used 
in the challenge. Section IV discusses the formal testbench implementation including End-to-End checkers, 
constraints used and the complexity solution. Section V includes some bugs that were introduced during the 
DAC challenge. Section VI offers concluding remarks. 



 
 

Figure 1. Oski Formal Sign-off Methodology 
 

II. FORMAL SIGN-OFF METHODOLOGY 
A methodology is a set of system of methods, principles, and rules for regulating a given discipline. The 

Formal Sign-off Methodology specifically is a set of systematic methods and procedures applying formal 
technology to verify the functional correctness of integrated circuit design blocks in order to achieve sign-
off.  

A Formal Sign-off Methodology centers on 4 Cs – Checkers, Constrains, Complexity and Coverage [4], 
as shown in Figure 1. All formal sign-off projects follow three distinct stages – formal test planning, formal 
testbench implementation and formal sign-off. Each stage involves all four components in different ways.  

 
A. Formal test planning	

This is the first and a critical step in the methodology. The formal test planning processes include 1) 
IDENTIFYing the right blocks to apply formal on, 2) EVALUATing the design metrics to determine 
formal verification effort on the chosen blocks, and 3) PLANning English list of important checkers and 
constraints to write, with estimates of rough target for the Required Proof Depth [3], while identifying 
where one might need to use complexity resolving techniques to overcome complexity challenges, and how 
one will measure coverage to achieve sign-off. Each of the IDENTIFY, EVALUATE and PLAN processes 
require not just formal skills, but also intimate design knowledge, and most importantly experiences from 
past Formal Sign-off applications. A good formal test plan leads the subsequent testbench execution on a 
path that uses the least amount of time & resources, avoids potential problems, and obtains the best return-
on-investment (ROI) for the project. The effort spent in thorough and thoughtful formal test planning 
cannot be overestimated.  

 
B. Formal Testbench Implementation	
   This is the execution phase of the defined formal test plan and requires the bulk of the formal verification 
effort. It involves implementing the End-to-End checkers and corresponding constraints, debugging 
counter-examples, refining the Required Proof Depth based on observed failures and coverage data, 
crafting complexity-solving techniques if needed, and tracking formal progress. This is where good formal 
skills in writing clean and efficient formal test bench codes (in Verilog, SystemVerilog and SystemVerilog 
Assertions [5]), understanding in-use formal tool features, capabilities and limitations, and knowing where 
certain complexity techniques can be applicable become extremely helpful.  

A formal testbench implementation process is very iterative in nature, much more so than simulation 
because of two factors: 1) Formal verification is exhaustive and one checker can find more than one failure 
scenario in the design; 2) Formal reports shortest-distance failures first so debugging effort can be reduced 
and focused. As a result, it is not uncommon for one specific checker failure to be fixed before another 
failure is reported for the same checker, but at a deeper depth. However, the debugging process is 
invaluable as it enables a deeper understanding of the design, revealing all corner-case bugs and sometimes 
leading to a refinement of checkers and constraints.  

On a weekly basis, formal progress should be tracked to record the number of checkers and constraints 
implemented, as well as the percentage of those implemented to the planned list of checkers and 
constraints; the passing, bounded-pass (those reached the Required Proof Depth and those that did not) and 
failing checker percentage; the number of over-constraints; and formal coverage. While all the tracked data 
will demonstrate the trend of formal testbench development, it is important to note that many factors will 
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affect the trend, especially if formal testbench development parallels RTL development effort. Such factors 
include:  
• RTL code changes, such as when new features are added, or when an RTL bug is fixed; 
• Formal testbench changes, such as when new checkers are implemented, or certain over-

constraints are relaxed, or when an Abstraction Model is added; 
• Changes in formal run setup, such as using a different proof engine, running for longer time. 
As a result, it is not uncommon to see dips in a generally upward trend. Despite these factors, the 

tracking of formal progress is important to gauge how far away the formal testbench is from sign-off. 
 

C. Formal sign-off	
This is the final stage that ties everything together to determine if the formal testbench has reached sign-

off status. For formal testbench to be complete, one must answer three basic questions: 
1. Is my list of End-to-End checkers complete?  
2. Do I have unintentional over-constraints? 
3. Have all my checkers reached the Required Proof Depth? 
The answers to the three questions should have been gathered throughout the previous stages. Ensuring a 

complete list of End-to-End checkers involves reviewing the list with designers, making sure each output 
has a corresponding End-to-End checker, reaching 100% formal coverage and making use of negative 
testing to ensure any functional changes can be caught with the existing set of the checkers. Ensuring no 
unintentional over-constraint involves reviewing the list of constraints with designers, as well as using 
techniques such as cross proof with neighboring blocks, instantiating constraints in simulation and formal 
coverage. Ensuring all checkers reached the Required Proof Depth involves calculating the correct 
Required Proof Depth based on a 6-step methodology (this number should have been refined throughout 
the previous stages) and solving complexity so all checkers either pass, or reach, a bounded pass with 
bound greater than the Required Proof Depth. If the list of End-to-End checkers is complete, there are no 
un-intentional over-constraints, and all checkers have reached the Required Proof Depth, then the formal 
testbench has reached sign-off quality.  

The following sections explain the Formal Sign-off process using a multicast crossbar design for the 
DAC challenge.  

 
III. CHALLENGE DESIGN OVERVIEW 

The design used during the DAC challenge is a parameterized multicast crossbar.  Data transport design 
blocks like this one are very common in real world IC designs and are good candidates for formal 
verification. To achieve faster turnaround time live at DAC 2015, we parameterized the design to have 8 
clients and 8 targets, as shown in Figure 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

    
 

Figure 2. Multicast Crossbar Block Diagram 
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The requests at each client have one of three priorities attached to it – strict, high or normal. These 
priorities indicate that given two requests with different priorities for the same target, which request is 
expected to be served before the other. Based on the priority of the request, the appropriate client is 
processed and corresponding data is transferred to the desired target(s). Strict priority requests are serviced 
first, followed by high priority and normal priority requests are served the last.  
 
 
 
 
 
 
 

 
 
 
 

 
Figure 3. Multicast Crossbar Port List 

There can be only 1 strict priority request at a time for a target. There can be multiple high priority 
requests from different clients, which are served in a round robin fashion. If the request from a client is 
neither strict priority nor high priority, then it is a normal priority request. Similar to high priority requests, 
multiple normal priority requests are granted in a round-robin fashion. 
   The latency of the crossbar is 1 cycle i.e. a granted request is seen at the desired target 1 cycle after it was 
seen at the client. 
   A grant is given to each client after the request has been transferred to all the desired target(s). Thus only 
one request can be outstanding for a target from a given client at a time. The upstream blocks can apply 
backpressure to stall data transfer to target(s). 
Figure 3 shows the port list of the multicast crossbar. The inputs are: 

• Client inputs (* refers to client number and varies from 7 to 0): 
o req_*: vector indicating target(s) to which client requests to send data; vector bit-width is 

8 i.e. number of targets  
o str_prio_*: indicates whether client has strict priority or not; only one client can have 

strict priority at a time 
o high_prio_*:  indicates whether client has higher priority or not; more than one client can 

have higher priority at a time 
o req_data_*: data associated with the client. It is vector and has parameterized bit-width. 

• Target input (** refers to client number and varies from 7 to 0): 
o stall_req_n_**: active low external backpressure from upstream blocks for stalling data 

to a target 
The outputs are: 

• Target outputs (** refers to target number and varies from 7 to 0): 
o req_out_**: indicates target has valid data 
o req_data_out_**: data at the target interface; corresponding to req_out_** 
o client_id_**: indicates the client id which has sent the data 

• Client output (* refers to client number and varies from 7 to 0): 
o grant_*: indicates completion of request(s) i.e. all the targets for which the request was 

initiated have received the data 
 

IV. FOMAL TESTBENCH IMPLEMENTATION 
We followed the three stage process for Formal Sign-off the multicast crossbar design, explained in 

Section II. During the planning stage, we identified that the important design functionalities are: 
• Arbitration correctness – When multiple clients are requesting to send data to the same target, we 

need to verify that different priority requests are granted in accordance to the arbitration scheme. 
• Grant correctness – We need to verify that a grant for a client is only generated once all the 

desired targets receive the data. Also, we need to prove that no (spurious) grant is generated for a 
client, unless the client has a pending request. 
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• Data correctness – We need to verify that the data is correctly transferred to the desired target i.e. 
data is not modified while it is transferred from a client to a target. And also we need to ensure 
that no (spurious) data is transferred to the target unless there is a request for a target. 

 

A. End-to-End Formal Checkers 

In order to verify the identified functionalities, we implemented the following list of End-to-End 
checkers: 
1. Arbitration checker: The checker was implemented as a combination of two checkers which verified 

the arbitration scheme of the crossbar: 
• The first checker verifies that among multiple requests for a target, a request (from a client) with 

highest priority type (following the order - strict, high, normal) should be seen at the target. This 
checker ensures that there is never a scenario where a lower priority request gets served before a 
(pending) higher priority request. 

• The second arbitration checker verifies that among multiple requests of same priority for a target, 
a given client should not get grant twice before other clients have been granted. This checker 
ensures that the arbitration is fair and no request is starved of grant. 

2. Consistency checker on req_out and client_id, grant: In order to verify that no spurious data is sent to 
a target and no spurious grant is given to client, we have the following checkers: 
• A data valid at a target (req_out_**) should have a corresponding request at client side.  
• A grant at a client (grant_*) should have corresponding request at the client 
An SVA implementation for consistency checker for grant is shown in Appendix. 
 

3. Consistency checker on req_data_out: The checker verifies that the data is correctly transferred from 
the client to the desired target i.e. data is not corrupted, duplicated, reordered or dropped. Data 
consistency checker can be implemented using the following two methods: 
1. FIFO based method: In the FIFO based method, as shown in Figure 4, the data corresponding to a 

request for a watched target is stored in a FIFO in the testbench. When the output is seen at the 
watched target, the FIFO is read and the data is compared against the DUT data. If there has been 
any data corruption, drop or duplication inside the crossbar, the outputs will not match. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Data Consistency Checker using FIFO  
 

2. Wolper Coloring Technique: While the FIFO based method is very useful in verifying data 
consistency, it can add to formal complexity by increasing sequential depth and state–space 
because of FIFO depth and registers for storing data. In such situations, we can use another 
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method, which adds very little complexity to the formal testbench, termed as Wolper Coloring 
technique. This method uses a coloring technique proposed by Wolper [6]. In this technique, input 
data at DUT is “colored” such that a sequence of 0*110ω  or 1*001ω is sent. At the outputs of DUT, 
we verify if we received the same sequence that is been sent at input. The rules for generating and 
verifying 0*110ω sequence are: 
• Rule 1: If the first 1 is seen, next input/output should be 1 
• Rule 2: If two 1’s are seen, only 0’s should be seen 
By replacing 1 by 0 and 0 by 1 in the above rules, we can generate and verify 1*001ω sequence. 
Figure 5 below illustrates the Wolper Coloring technique for 0*110ω sequence. The SVA 
implementation of contraints and checkers required for Wolper Coloring technique is in the 
Appendix.  
 

 
Figure 5: Data Consistency Checker using Wolper Coloring technique 

Apart from the above mentioned End-to-End checker, we had two forward progress checkers to ensure 
the design does not hang or in a deadlock. 
       1.  Forward progress checker on req_out: The checker verifies that a request is seen at the desired 
target output within finite time. 
      2.  Forward progress checker on grant: This checker verifies that a request gets a grant within a finite 
time after the data has been transferred to the desired target. This check ensures that once the data is 
transferred to the target output, a grant is correctly generated at the client side so that the crossbar is ready 
to accept the next input from that client. 
 
B. Constraints 

In order to ensure that we allow legal inputs to the design, we added the following constraints:  
1. If a strict priority request is seen from a client, then there should be a request from that client 
2. If a high priority request is seen from a client, then there should be a request from that client 
3. If a request is waiting for grant, then request and corresponding priority (strict & high priority) and 

data should hold their value 
4. For a target, no more than one client should send strict priority request at a time 
 

C. Required Proof Depth 

After implementing the above set of checkers and constraints, we need to ensure that our checkers are 
reaching the Required Proof Depth in order to achieve Formal Sign-off. 

To determine the Required Proof Depth for the 8x8 configuration, we followed a number of steps as 
outlined in [2], which includes micro-architectural analysis, latency analysis, and interesting corner case 
analysis etc. The following is the analysis we did for our DUT which are collected during formal testbench 
implementation to determine the Required Proof Depth: 
• Latency Analysis: The latency for DUT is 1 cycle 
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• Micro-architectural Analysis: The important micro-architectural structure is the arbiter. In order to 
see that the arbiter is functioning correctly, we need to see at least 8 requests of the same priority being 
processed by the arbiter.  
• Interesting Corner Cases: This step involves brain-storming the interesting scenarios to exercise 

different corner cases of RTL. However, we need to carefully filter out the corner-cases not relevant to the 
RTL. For the crossbar design, we would like to see that the different types of requests are correctly granted 
as per priority. Thus the interesting corner cases that would cover all the above scenarios are: 

1. 1 strict priority request, 8 high priority request, 1 normal priority request 
2. 1 strict priority request, 8 normal priority request, 1 high priority request 

Adding 1 cycle for backpressure and 1 cycle for safety net, our Required Proof Depth was 13 cycles. 
 

The cycle counts above refer to the minimum number of cycles that it takes for the sequence of inputs to 
be seen at the target. Thus, in the above case, the strict priority request will be seen at the target after 2 
cycles, and the last request (normal priority for corner case 1 and high priority for corner case 2) will be 
seen at the target at 11 cycles, after all the other requests have been processed and seen at the output. It is 
also important to note that even though additional requests can be seen at the target beyond 13 cycles, these 
input sequences will not represent any new scenario which cannot already be covered within the 13 cycles.  

Since formal will report the shortest possible path to failure, any failure associated with such inputs 
sequences will already have been seen at a lower depth, and no new interesting case can be covered beyond 
this depth. Thus 13 cycles is sufficient to cover all interesting scenarios for the crossbar. 
 

In order to ensure formal sign-off, it is critical for all our checkers to either reach or cross the Required 
Proof Depth. It is important to note that if the configuration is changed to allow different numbers of clients 
or targets, then we would again need to estimate Required Proof Depth. For 8x8 configuration, we found 
that 13 cycles sufficient and necessary to ensure Formal Sign-off.  

 
D. Complexity & Abstraction Models  

We used symbolic variable to reduce the formal testbench implementation effort. In the formal 
verification setup, we used symbolic variables to select a client and target. We implemented all of checkers 
for the symbolic client and target pair. Since formal tool assigns random non-deterministic values to 
symbolic variable while making sure that none of checkers show failure, all client and target pairs got 
verified. If we had not used symbolic variables, we would have written checkers for 64 different pairs of 
client and targets, which could have been substantial testbench effort and prone to errors. 

 
   In order to reach the Required Proof Depth for all checkers, the temptation is to increase run time. 
However, often in real designs we observe that increasing run time does not help in proof depth of 
checkers, as formal analysis hits the exponential curve. In such scenarios we add Abstraction Models, or 
use other complexity solving techniques to reduce the state space of the design. Since all of our checkers 
for the crossbar design were reaching the Required Proof depth in reasonable time, we were not required to 
add Abstraction Models. 
 
E. Coverage 

During formal verification of the crossbar design, we ran coverage analysis to track progress as well as to 
measure Formal Sign-off. Formal coverage is a relatively new feature added in some formal tools in recent 
years. The reachability analysis from formal coverage gives us a measure of the code coverage targets that 
are hit. The following are the results of the coverage analysis run for the crossbar when the formal 
testbench is completed: 
• Line Coverage 
• Total lines: 288 
• Covered lines: 288 
• Deepest line cover point: 5 

• Condition Coverage 
• Total lines: 88 



• Covered lines: 88 
• Deepest condition cover point: 5 

Since all the cover points are below our Required Proof Depth, it serves as a validation that our Required 
Proof Depth is not optimistic. From the above results we can see that we have met the goal of 100% 
coverage for the DUT, also indicating that there are likely no over-constraint in the testbench.    
 

Throughout the process of formal testbench building, we evaluate our testbench and formal results in the 
light of the 3 questions required for sign-off. We know our list of checkers is complete, there are no over-
constraints and all our checkers reached the Required Proof Depth. When formal coverage analysis shows 
100% coverage, as a final measure we know that we have reached sign-off and that our testbench can face 
any functional design mutations (at DAC 2015 in this case). 

 
V. DAC CHALLENGE BUG EXAMPLES 

A final validation step for the claim of completeness of the formal testbench is to see if, empirically, all 
bugs have been shown to be detectable by the formal testbench.  Towards this end, at DAC 2015, 73 
different functional bugs were inserted by attendees. Some examples of the bugs are given below, as along 
with the End-to-End checkers that caught the bug: 

1. Incorrect connection of inputs of different targets: While internally connecting requests from 
different clients to different targets, the high priority port for target 2 was left hanging. Arbitration and 
forward progress checkers failed. 

2. Data corruption by accidental inversion of output: A bug was introduced at one of the target 
outputs which inverted the data output. Consistency checker on req_data_out failed. 

3. Changing priority type: The high priority input of one of the targets was internally tied to 1. 
Arbitration checker failed.  

4. Incorrect sizing of loop leading to unfair arbitration: The loop which performed round robin 
arbitration was starting at a higher count than minimum value. As a result a request was not given grant and 
was unfairly starved. Arbitration and Forward progress checkers failed. 

5. Grant to client tied to 0: This bug ensured that while all the outputs were correctly transferred to 
the respective targets, the grant was never sent back to the client. Thus, no new input request was coming 
and a deadlock scenario was created. Forward progress checkers failed. 

The fact that all the inserted functional bugs triggered failures of one or more checkers offered a live 
proof that our formal testbench was complete. Table 1 has most popular bug categories inserted in the DAC 
challenge, original and modified RTL and number of failing checkers. 

TABLE 1 
BUG CATEGORY WITH ORIGINAL AND BUGGY RTL CODES AND NUMBER OF FAILING CHECKERS 

Bug Category Original RTL Buggy RTL Number of 
failing checkers 

Arbitration scheme 

// arbiter.sv 
 60 assign high_prio_req =            
(|str_prio_req) ?   
{NUM_CLIENT{1'b0}} : (high_prio & 
req); 
 

// arbiter.sv 
 60 assign high_prio_req = 
(|(str_prio_req | high_prio_req)) ?  
{NUM_CLIENT{1'b0}} : req; 
 

4 
 

Arbitration scheme // rr_scheme.sv 
 56 assign shft_req = {req, req}; 

// rr_scheme.sv 
 56 assign shft_req = {8'd0, req}; 2 

Arbitration scheme 
// rr_scheme.sv 
 65     for(i = 0; i < (2 * 
NUM_CLIENT); i = i + 1) begin 

// rr_scheme.sv  
65     for(i = 0; i < (2 * 
NUM_CLIENT - 1); i = i + 1) begin 
 

2 
 

Connectivity // xbar_8x8.sv 
274     .high_prio(high_prio_4), 

// xbar_8x8.sv 
274     .high_prio(high_prio_3), 4 

Grant generation 
// one_dly.sv 
 71 assign gnt_i = has_data ? 
outgoing_data : 1'b1; 

// one_dly.sv 
 71 assign gnt_i = has_data ? 
outgoing_data : 1'b0; 

2 

Wrong operator 
// target.sv 
 89 assign t2c_grant = 
{NUM_CLIENT{ext_grant_pp}} & 
arb_gnt_pp; 

// target.sv 
 89 assign t2c_grant = 
{NUM_CLIENT{ext_grant_pp}} && 
arb_gnt_pp; 

8 



Mask generation 
logic 

// client.sv 
 65         c2t_req_mask <= 
c2t_req ^ t2c_grant;                               
 

// client.sv 
65         c2t_req_mask <= c2t_req 
^ {t2c_grant[7:5], 1'b0, 
t2c_grant[3:0]}; 

3 

Datapath 

// one_dly.sv 
 62     else if(incoming_data) 
begin                                                                                       
 63         has_data <= 1'b1; 
 64     end 
 65     else if(outgoing_data) 
begin 
 66         has_data <= 1'b0; 
 67     end 

// one_dly.sv 
 62     else if(outgoing_data) 
begin 
 63         has_data <= 1'b0; 
 64     end 
 65     else if(incoming_data) 
begin                                                                                       
 66         has_data <= 1'b1; 
 67     end 

5 

 
Apart from these 73 functional bugs, there were two more design changes made during the challenge for 

which none of our checkers failed. We are considering each of these non-bugs for the following reasons. 
1.  One change was to modify the initial value of parameter for round robin arbiter from 0 to 1.  
Original RTL code: 
  for(i = 0; i < (2 * NUM_CLIENT); i = i + 1)  
Modified RTL code: 

for(i = 1; i < (2 * NUM_CLIENT); i = i + 1) 
After examining the RTL, we realized that making i=1 makes an RTL optimization to use an n-iteration 

loop instead of an n+1-iteration loop. The optimization makes the design slightly better area-wise but had 
no functional impact.  As a result, no checker failed.  

2. In the second change, a counter was added to the design and a grant signal gets tied to 0 after 
counter reaches a certain threshold. 

Original RTL code:  
assign high_prio_gnt = tmp_high_prio_gnt; 

Modified RTL code: 
assign high_prio_gnt[0] = tmp_high_prio_gnt[0] &  

~(my_bug_delay == 1024’123456789101213); 
always @ (posedge clk) begin 
    if (rst) 
      my_bug_delay <= 1024’b0; 
  else  
     my_bug_delay <= my_bug_delay + 1’b1; 
end 

   This bug was inserted with a "malicious" intent, i.e. to specifically change the design so that the defect 
cannot be caught by the verification methodology; we believe that this can always be done, and defeats the 
purpose of true verification to find all "naturally occurring" bugs. Hence, we labelled this as a non-bug. 
This change increased the Required Proof Depth and it would be impossible for formal (and sometimes 
simulation) without using Abstraction Models to reach increased Required Proof Depth. 
 

VI. CONCLUSION 
The experiment conducted in the DAC 2015 challenge is significant because for the first time, a live case 

study showed that formal technology, when used properly and systematically, can be used for sign-off. The 
paper outlines the process for formal sign-off using a common data-transport design, the multicast crossbar.  
Different designs will require different End-to-End checkers, constraints, complexity solving techniques 
and a different Required Proof Depth to target for sign-off, but the process remains the same and can be 
learnt. It is our hope that through our work and demonstration, formal will become one of the verification 
techniques routinely used for verification sign-off.  
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APPENDIX 
In this section we have attached snippets of the code for some of our constraints and checkers. The 

consistency checker on grant is written in SVA as shown below. The checker tracks a single symbolic 
client at a time. As explained in Section III, formal tool assigns random non-deterministic values to 
symbolic variables and thus in this case it proves the checker for all clients in the design. 

e2e__xbar2cl_no_gnt_at_client_if_no_req : assert property( 
   @ (posedge clk) disable iff(rst) 
      (!(|req[sym_client])) |-> (!grant[sym_client]) 
); 
 

Following is SVA implementation of the constraints required for Wolper Coloring technique for 0*110ω  
sequence. first_one_seen and second_one_seen are two sticky flags which are asserted when the first and 
second “1” is seen at input (client) data respectively. Similar to symbolic client and target, we are coloring 
only one symbolic bit at input. 

cl2xbar_1st_1_seen_next_input_should_be_1: assert property ( 
   @ (posedge clk) disable iff(rst) 
      (first_one_seen && !second_one_seen &&  
       input_data_valid) |->  
      (colored_input == 1'b1) 
); 
cl2xbar_2nd_1_seen_at_input_0_input_forever: assert property ( 
   @ (posedge clk) disable iff(rst) 
      (second_one_seen && input_data_valid) |->  
      (colored_input == 1'b0) 
); 

Similarly, we implemented checkers for output (target) data and the SVA implementation is as follows. 
Please note that colored_output has same symbolic value as been assigned to colored_input. 

e2e__xbar2tgt_1st_1_seen_implies_next_output_is_1 : assert 
property ( 
   @ (posedge clk) disable iff(rst) 
      (first_one_seen_at_output && !second_one_seen_at_output && 
       output_data_valid) |-> 
      (colored_output == 1'b1) 
); 
e2e__xbar2tgt_2nd_1_seen_implies_0_at_output_forever : assert 
property ( 
   @ (posedge clk) disable iff(rst) 
   (second_one_seen_at_output && output_data_valid) |-> 
   (colored_output == 1'b0) 
);	
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