
The Process and Proof for
Formal Sign-Off –
A Live Case Study

Ipshita Tripathi, Ankit Saxena, Anant Verma,
Prashant Aggarwal

Oski Technology, Inc.

Agenda

• Introduction – Formal Sign-off
• A Live Case Study – “Break the Testbench”

challenge at DAC 2015

3/2/2022 Prashant Aggarwal, Oski Technology, Inc. All rights reserved. 2

Introduction – Formal Sign-off

3/2/2022 3Prashant Aggarwal, Oski Technology, Inc. All rights reserved.

End-to-End Formal Enables Formal
Sign-off

3/2/2022 4

Assertion-based
Verification (ABV)

Formal Apps

Automatic Formal

End-to-
End

Formal

Adoption

C
om

pl
ex

ity
 &

 B
en

ef
its

• Catch corner case bugs early
• Increase verification efficiency
• Replace block-level simulation
• Enable formal sign-off

Prashant Aggarwal, Oski Technology, Inc. All rights reserved.

What is End-to-End Formal?

3/2/2022 5

• Local Assertions: Easier to verify
– Internal RTL assertions, embedded in RTL

• Interface Assertions: Harder to verify
– Relate to inputs/outputs
– E.g. ACE, AXI4, OCP, DDR2, …

• End-to-End Checkers: Hardest to verify
– Model end-to-end functionality
– Often require Abstraction Models to

manage complexity
– Can replace simulation

RTL

Local Assertions

AXI4
AVIP

DDR2
AVIP

Interface
Assertions

End-to-End
Checkers

AXI4 DDR2

Prashant Aggarwal, Oski Technology, Inc. All rights reserved.

Designs Best Suited for
End-to-End Formal

3/2/2022 6

“Control”, “Data Transport” designer size blocks:

• Arbiters of many kinds
• Interrupt controller
• Power management unit
• Credit manager block
• Tag generator
• Scheduler

• Bus bridge
• Memory controller
• DMA controller
• Host bus interface
• Standard interface (PCIe, USB)
• Clock disable unit

Prashant Aggarwal, Oski Technology, Inc. All rights reserved.

Many SoC Blocks Can Be Verified
with End-to-End Formal

3/2/2022 Prashant Aggarwal, Oski Technology, Inc. All rights reserved. 7

MAC
AXI-AHB
BRIDGE

RF

DEC SCH EXEC

LSUINT
ARM

Mem
Ctrl

USB
Ctrl

BB
USB
PHY

GPIO I2CTIMER

DMA
Ctrl

End-to-End
Formal

Simulation

ARM-based SOC

• Planning at the micro-architectural design stage is critical
• End-to-End formal can fully replace simulation for many blocks

Oski Formal Sign-off Methodology

3/2/2022 Prashant Aggarwal, Oski Technology, Inc. All rights reserved. 8

Design Under Test
(DUT)

Constraints

End-to-End
Checkers

Coverage
(Code and
Functional)

Complexity
(Abstraction Models)

Design Under Test
(DUT)

Quality of Formal Depends on all 4 Cs!

End-to-End Formal is Complete

For End-to-End formal to be complete, ideal metrics answer:

• Constraints: Have I unintentionally over-constrained any inputs?

• Complexity: Have all my checkers reached the Required Proof Depth?

• Checkers: Does my list of checkers fully embody the specified behaviour
of the design?

3/2/2022 Prashant Aggarwal, Oski Technology, Inc. All rights reserved. 9

We will use Formal Coverage
to quantify each of these three questions

Constraints: Ensuring No
Unintentional Over-constraints

• Review the list of constraints with the designer

• Validate absence of unintentional over-constraints:
1. Instantiate of constraints as assertions in simulation
2. Use cross-proof with neighboring blocks
3. Use of formal coverage

3/2/2022 Prashant Aggarwal, Oski Technology, Inc. All rights reserved. 10

Complexity: Reaching the
Required Proof Depth (RPD)

• Use the 6-step methodology to derive the RPD*

• Use formal coverage to quantify RPD

• All End-to-End checkers need to reach the RPD

3/2/2022 Prashant Aggarwal, Oski Technology, Inc. All rights reserved. 11

*Kim, N., et al. “Sign-off with Bounded Formal Verification Proofs,” in DVCon 2014

Complexity: Using Creative
Techniques to Reduce RPD

3/2/2022 Prashant Aggarwal, Oski Technology, Inc. All rights reserved. 12

Resolving complexity challenges using Abstraction Models, or other
techniques

– Sequence, counter, reset, floating pulse ...
– Localization, datapath, memory

R

1

1

1

1

2

2

2

2
2

2

2

2

2

2

2

2

8191

8191

255. . .

Interesting
Corner-cases

Short-cuts due to
Abstraction Models

Checkers: Ensuring Completeness
of End-to-End Checkers

• Review the list of checkers with the designer
– Ensure each output has an End-to-End checker, unless

the designer determines the output does not need one
• For example no need to verify profiling signals or test signals that

are not related to design functionality

• Use negative testing (design mutation)
– Randomly/Intelligently insert design bugs manually

to make sure they are caught by existing checkers
– Verify that every bug found by simulation is also

found by existing checkers
• Use formal coverage (proof core) to ensure

100% code coverage

3/2/2022 Prashant Aggarwal, Oski Technology, Inc. All rights reserved. 13

Live Case Study –
“Break the Testbench”
Challenge at DAC 2015

3/2/2022 14Prashant Aggarwal, Oski Technology, Inc. All rights reserved.

Multicast Crossbar Design
Specifications

3/2/2022 Prashant Aggarwal, Oski Technology, Inc. All rights reserved. 15

• A client can send
request along with data
to any target

• A client request can go
to multiple targets
(multicast)

• Each target has an
arbiter that determines
which client’s request
gets forwarded

FIFO0
client_

0

target_
0

C0 C1 C6 C7

T0 T6 T7T1

client_
1

target_
1

client_
6

target_
6

FIFO3
client_

7

target_
7

…

…

…

…

Design Stats

3/2/2022 Prashant Aggarwal, Oski Technology, Inc. All rights reserved. 16

MULTICAST
XBAR

req_*
str_prio_*

high_prio_*
req_data_*
grant_*

req_out_**
req_data_out_**

client_id_**
stall_req_n_**

* Client number
** Target number

Design
Inputs 40
Outputs 32
Flops 312
Lines of RTL code 1,229
Files 6

English List of End-to-End Checkers

3/2/2022 Prashant Aggarwal, Oski Technology, Inc. All rights reserved. 17

• Arbitration checker on req_out and client_id
1. Among multiple requests, a request with highest priority type

(strict, high, normal) should be seen at output
2. Among multiple requests of the same priority, a given client

should not get a grant twice before the other client has been given a grant
• Consistency checker on req_out and client_id

– Any output from a target should have had an associated client request
(i.e. no spurious outputs are seen)

• Consistency checker on grant
– Any grant at a client should have had an associated client request

(i.e. no spurious grants are seen)
• Consistency checker on req_data_out

– Data seen at target output should be consistent with data seen at client input
(i.e. data should not be corrupted, duplicated, reordered or dropped)

• Forward progress checker on req_out
– A client request should be seen at some target output within finite time

• Forward progress checker on grant
– A client request should get a grant within finite time

English List of Design Constraints

3/2/2022 Prashant Aggarwal, Oski Technology, Inc. All rights reserved. 18

• If strict or high priority is asserted by a client,
request must be asserted by the client

• Once request is asserted by a client; request,
strict priority, high priority and data must be held
stable until grant is asserted

• Only one client will send a strict priority request
at a time

Using Symbolic Variables in Formal
Testbench

3/2/2022 Prashant Aggarwal, Oski Technology, Inc. All rights reserved. 19

MULTICAST
XBAR

##1(sym_target ==
$past(sym_target))##1(sym_client ==

$past(sym_client))

• 8 clients and 8 targets, each client can send a request to
multiple targets
– Large number of combinations need to be tracked to

fully verify the design
• Select symbolic random client and symbolic random target

– Track all requests from symbolic client to symbolic target
– All possible combinations exercised by formal tool in single run

Select
symbolic

random client

Select
symbolic

random target

Data Consistency Checking Using
FIFO-Based Scheme

3/2/2022 20

DUT

FIFO

DUT

FIFO

How FIFO based scheme works?

DUT

FIF
O

DUT

FIFO

X

DUT

FIFO

X

DUT

FIFO

X

DUT

FIFO

X

Data Drop Data Duplication

Data Reorder Data Corruption

Random data

Prashant Aggarwal, Oski Technology, Inc. All rights reserved.

Data Consistency Checking Using
Wolper Coloring Technique

3/2/2022 21

Wolper Coloring Technique Rules

0*110ω If first 1 is seen, next input/output
should be 1

If two 1’s have been seen, only 0’s should
be seen

DUT DUT

DUT

DUT

DUT

DUT

How Wolper coloring technique (0*110ω) works?

Data Drop – Rule 1 violated Data Duplication – Rule 2 violated

Data Reorder – Rule 1 violated Data Corruption – Rule 2 violated

0 1

X

X

X

X

Prashant Aggarwal, Oski Technology, Inc. All rights reserved.

Constraints: Ensuring No
Unintentional Over-constraints

• Reviewed list of constraints with the designer
• Validated using formal coverage (no over-constraints)

– Line Coverage
• Total lines: 288
• Covered lines: 288 (100%)

– Condition Coverage
• Total lines: 88
• Covered lines: 88 (100%)

3/2/2022 Prashant Aggarwal, Oski Technology, Inc. All rights reserved. 22

Complexity: Reaching the
Required Proof Depth (RPD)

3/2/2022 Prashant Aggarwal, Oski Technology, Inc. All rights reserved. 23

Checker Bound Achieved
(in 10min run-time)

Arbitration checker on req_out and client_id 95 cycles

Consistency checker on req_out and client_id Proven

Forward progress checker on req_out 15 cycles

Forward progress checker on grant 17 cycles

Consistency checker on req_data_out 15 cycles

• Deepest cover point is 5 cycles deep
• Required Proof Depth is 13 cycles

– Found using 6-step process
– Not optimistic!

No need to use
complexity reduction
techniques as Bound

Achieved > RPD

Checkers: Ensuring Completeness
of End-to-End Checkers

• List of checkers reviewed with the designer

• 73 artificial functional bugs were manually inserted
in the DAC 2015 Challenge
– Checkers found all of them!

3/2/2022 Prashant Aggarwal, Oski Technology, Inc. All rights reserved. 24

Example Bugs Inserted
During the Challenge

3/2/2022 Prashant Aggarwal, Oski Technology, Inc. All rights reserved. 25

Bug Category Original RTL Buggy RTL #Failing
checkers

Arbitration
Scheme

// arbiter.sv
60 assign high_prio_req =
(|str_prio_req) ?
{NUM_CLIENT{1'b0}} : (high_prio
& req);

// arbiter.sv
60 assign high_prio_req =
(|(str_prio_req |
high_prio_req)) ?
{NUM_CLIENT{1'b0}} : req;

4

Arbitration
Scheme

// rr_scheme.sv
56 assign shft_req = {req,
req};

// rr_scheme.sv
56 assign shft_req = {8'd0,
req};

2

Arbitration
Scheme

// rr_scheme.sv
65 for(i = 0; i < (2 *
NUM_CLIENT); i = i + 1) begin

// rr_scheme.sv
66 for(i = 0; i < (2 *
NUM_CLIENT - 1); i = i + 1)
begin

2

Connectivity // xbar_8x8.sv
274 .high_prio(high_prio_4),

// xbar_8x8.sv
274
.high_prio(high_prio_3),

4

Grant generation
// one_dly.sv
71 assign gnt_i = has_data ?
outgoing_data : 1'b1;

// one_dly.sv
71 assign gnt_i = has_data
? outgoing_data : 1'b0;

2

Wrong operator
// target.sv
89 assign t2c_grant =
{NUM_CLIENT{ext_grant_pp}} &
arb_gnt_pp;

// target.sv
89 assign t2c_grant =
{NUM_CLIENT{ext_grant_pp}}
&& arb_gnt_pp;

8

Non-bug #1: Round Robin Arbiter
Initial Value Change

3/2/2022 Prashant Aggarwal, Oski Technology, Inc. All rights reserved. 26

Original RTL:
for(i = 0; i < (2 * NUM_CLIENT); i = i + 1)

Modified RTL:
for(i = 1; i < (2 * NUM_CLIENT); i = i + 1)

i=1 makes an RTL optimization to use an n-iteration loop
instead of an n+1-iteration loop
• Makes the design slightly better, area-wise
• No functional impact

Non-bug #2: Grant is 0 After Counter
Reaches Threshold

3/2/2022 Prashant Aggarwal, Oski Technology, Inc. All rights reserved. 27

Original RTL:
assign high_prio_gnt = tmp_high_prio_gnt;
Modified RTL:
assign high_prio_gnt[0] = tmp_high_prio_gnt[0] &

~(my_bug_delay ==
1024’123456789101213);

always @ (posedge clk) begin
if (rst) my_bug_delay <= 1024’b0;
else my_bug_delay <= my_bug_delay + 1’b1;

end

• Bug was inserted with a “malicious intent”
– Used knowledge of the verification methodology to specifically change the

design, such that the defect cannot be caught by the test-bench
– Defeats the purpose of “true” verification i.e. find all "naturally occurring" bugs

• Increased the Required Proof Depth, making bug impossible for formal
(and sometimes simulation) to find, without using Abstraction Models

Summary

• Significant design blocks in SoC, processor and
networking chips can be verified with formal

• Formal sign-off offers ultimate confidence in
verification - No bug left behind

• Formal sign-off can be achieved by ensuring
1. No unintentional over-constraints
2. List of checkers is complete
3. All checkers reach Required Proof Depth

3/2/2022 Prashant Aggarwal, Oski Technology, Inc. All rights reserved. 28

	The Process and Proof for Formal Sign-Off – �A Live Case Study
	Agenda
	Introduction – Formal Sign-off
	End-to-End Formal Enables Formal Sign-off
	What is End-to-End Formal?
	Designs Best Suited for �End-to-End Formal
	Many SoC Blocks Can Be Verified with End-to-End Formal
	Oski Formal Sign-off Methodology
	End-to-End Formal is Complete
	Constraints: Ensuring No Unintentional Over-constraints
	Complexity: Reaching the �Required Proof Depth (RPD)
	Complexity: Using Creative Techniques to Reduce RPD
	Checkers: Ensuring Completeness of End-to-End Checkers
	Live Case Study –�“Break the Testbench” Challenge at DAC 2015
	Multicast Crossbar Design Specifications
	Design Stats
	English List of End-to-End Checkers
	English List of Design Constraints
	Using Symbolic Variables in Formal Testbench
	Data Consistency Checking Using FIFO-Based Scheme
	Data Consistency Checking Using Wolper Coloring Technique
	Constraints: Ensuring No Unintentional Over-constraints
	Complexity: Reaching the �Required Proof Depth (RPD)
	Checkers: Ensuring Completeness of End-to-End Checkers
	Example Bugs Inserted �During the Challenge
	Non-bug #1: Round Robin Arbiter Initial Value Change
	Non-bug #2: Grant is 0 After Counter Reaches Threshold
	Summary

