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ABSTRACT  

The Accellera Verification IP Technical Subcommittee (VIP-TSC) 
has spent the past year-and-a-half developing an interoperability 
class library to allow OVM- and VMM1-based VIP to work together 
in a single environment. This paper will describe the primary 
obstacles we encountered while bridging these two independently-
developed methodologies. It will then provide examples of how best 
to apply the resulting adapters, converters and other infrastructure 
comprising the VIP Interoperability reference library to enable OVM 
users to incorporate VMM-based IP in their environments and vice-
versa. Since the VIP-TSC has published a Best Practices 
Document[1], this paper will not rehash the contents of that 
document. Rather, it will attempt to provide some broader context in 
which to examine the choices made in developing the library. 

The paper will also describe how the library can be easily extended 
to accommodate even tighter integration among OVM and VMM-
based components. Example uses of these extensions in the area of 
stimulus generation and VMM env reuse in an OVM environment 
are discussed. 

1. INTRODUCTION  
As testbenches comprise increasing numbers of verification IP (VIP) 
to meet the demands of shrinking schedules and the growing scale of 
system-level verification environments, the key to verification reuse 
is the ability to easily integrate VIP developed from multiple 
independent sources. A well-designed verification methodology 
provides guidelines that allow components to be developed 
independently yet work together when integrated within a larger 
testbench environment. The Open Verification Methodology (OVM) 
provides such guidelines and a supporting library that help ensure 
any OVM-based VIP will work with any other OVM IP. Similarly, 
the Verification Methodology Manual (VMM), encourages the 
development of VIP that can be used with other VMM-based IP. 

A challenge for users arises when a testbench environment requires a 
mixture of both OVM-based and VMM-based IP. Preserving the 
reuse potential enjoyed by components deployed in homogeneous 
environments requires a reliable and standard mechanism for 
integrating such components in a mixed environment. 

2. INTEGRATION ISSUES 
When integrating OVM and VMM VIP, there are a number of issues 
that must be considered. In general, both OVM and VMM support 
similar concepts, such as phasing, transaction-based communication, 
configuration, messaging and so on, but there are important 
differences in the implementation of these concepts. 

                                                 
1 All work done by the VIP-TSC was done using OVM 2.0[.*] and VMM 
1.1[.*] 

2.1. Phasing Differences 
Both OVM and VMM partition test execution into a series of 
predefined phases. However, there are differences in the number of 
phases, the roles they are intended to perform, and the manner in 
which they are executed. 
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Figure 1.  OVM and VMM Predefined Phases 

In OVM, the ovm_component base class—from which all user-
defined components derive—defines a set of virtual methods 
corresponding to each phase. Users can override any or all of them in 
their derived component classes. The test flow is started by calling 
run_test(), which automatically calls all the phase methods in all 
components in the proper order. The next phase isn’t started until  all 
components have completed the previous phase.  

In VMM, the concept of phasing via virtual method overrides exists 
only in the vmm_env class, of which there may be at most one 
instance in simulation. Phasing of the user’s environment is managed 
by its vmm_env base class, but it is up to the user to manually 
initialize, configure, and start any children components in  overrides 
of the env’s phase methods. 

There is some—but not complete—alignment between the set of 
OVM and VMM phases (see Figure 1. ). Certain phases in OVM 
have no corresponding phase in VMM and vice versa. Where there is 
correspondence, there can be semantic differences, such as whether 
the phase is a task or a function and whether it is executed top-down 
or bottom-up in the hierarchy. Critically, the manner in which the 
time-consuming phases are executed are quite different between 
OVM and VMM. These differences in phasing lead to integration 
issues when instantiating, connecting and executing the environment. 

For example, VMM envs define a gen_cfg and task-based report 
phase, neither of which are present in OVM. To enable VMM env 
integration in an OVM environment, the interoperability library’s 
avt_ovm_vmm_env adapter uses OVM’s flexible phasing 



mechanism to register two new custom phases, vmm_gen_cfg and 
vmm_report, whose default implementations call the underlying 
VMM env’s gen_cfg() and report() methods, respectively. 
Thus, whenever the avt_ovm_vmm_env adapter is used—that is, 
whenever a VMM env is integrated in an OVM environment—the 
VMM-specific phases are added to the list of phases that OVM will 
execute during simulation.  

In both OVM and VMM, it is a rule that no phase may be executed 
before completion of the previous phase. In OVM, when a parent's 
build() method returns after creating one or more new child 
components, the phasing mechanism will recognize the new children 
and cycle them through any user-defined phases leading up to the 
build phase, such as the custom vmm_gen_cfg phase. Essentially, 
new children are "caught up" before OVM proceeds with the rest of 
the build phase. Thus, even when integrated in an OVM 
environment, the VMM env’s gen_cfg() method will always be 
called before its build() method.  

2.2. Testbench Construction Differences 
Both OVM and VMM prescribe a process for assembling a 
verification environment whereby a parent component (which may 
be the top-level testbench) instantiates one or more children 
components, and then configures and connects each of them. 

In OVM, the build process is partitioned into two phases, build and 
connect. These phases are implemented in the virtual build() and 
connect() methods in every OVM component.  

The build() method performs child component instantiation and 
configuration, and the connect() method makes the connections 
that enable them to communicate with each other and with other 
components external to the parent. 

Configuration is fetched and components are created in the build 
phase to allow users to override the types and number of components 
created without changing the parent container class. It doesn't have to 
be this way. A component may create children components in its 
constructor, but then testbench topology construction is less flexible 
overall, which limits reuse. 

 The following is a typical implementation of the build() and 
connect() phase methods.  

class child extends ovm_component; 
  ... 
  int max_trans = 10; // default=10 

  virtual function void build(); 
    // get user config, if any 
    get_config_int(“max_trans”, max_trans); 
  endfunction 

endclass 

class parent extends ovm_component; 
  ... 
  child c[$]; 

  virtual function void build(); 
    int num_child = 5; 
    string name; 

    // get config for this object 
    get_config_int(“num_child”,num_child); 
 
    // instantiate, based on config 
    for (int i=0;i<num_child;i++) begin 
      name = $sformatf(“c%0d”,i); 

      c[i] = child::type_id::create(name, this); 
    end 

    // configure 
    set_config_int(“c1”,”max_trans”,3); 
  endfunction 

  virtual function void connect(); 
    // connect 
    child1.put_port.connect(child2.put_export); 
  endfunction 

endclass 
______________________________________________ 

class my_child extends child; 
  // any user extensions of child class 
endclass 

class my_test extends ovm_component; 

  parent my_env; 

  virtual function void build(); 
    child::type_id::set_type_override( 
                         my_child::get_type()); 
    set_config_int(“env”,”num_child”,10); 
    my_env = parent::type_id::create(“env”,this); 
  endfunction 
  ... 
endclass 

The create() method in the parent is a call to the OVM factory 
requesting an instance of type child. Users may configure the 
factory to instead return any extension of  type child, as is done  
with the call to set_type_override() in the my_test class Using 
the factory, we are able to substitute the types that get instantiated 
without actually changing the definition of the parent class..  

The set_config_int() and get_config_int() calls in the 
example are example usages of OVM’s configuration mechanism.  
The set_config_* methods store configuration settings in a table 
for future look-up by child components in calls to get_config_*. 
Deferring execution of configuration settings in this manner allows a 
parent to configure a child before the child even exists and without 
use of hierarchical references. Furthermore, we are able to 
dynamically specify the topology of the testbench—the number of 
child components, in this example—without changing the definition 
of the parent class. 2 

In contrast to OVM’s build process, the VMM build process 
comprises a single pass via a call to the top-level vmm_env’s 
build() method, which coordinates the instantiation, configuration, 
and connection of all components in the environment. Creation of its 
children occurs via direct calls to new(), which, in turn, create their 
children via direct calls to new(), and so on. Configuration and 
connection occur using special constructor arguments, direct 
assignment of properties, or calling of methods through hierarchical 
references. 

                                                 
2 OVM’s set/get_config can be used at any time, allowing dynamic parameter 
setting throughout the test. Topological configuration, however, must be done 
before the end_of_elaboration phase, typically in the build phase.  
4 Note that, since the OVM package is included via the interoperability 
library, VMM components may use the OVM factory mechanism to allocate 
new OVM types within a VMM environment, e.g. child1 = 
ovm_child::type_id::create(). 



class my_env extends vmm_env; 
  ... 
  virtual function void build(); 

    super.build(); 
    gen = new(..., my_chan); 
    gen.randomized_obj = my_obj; 

    subenv = new(..., my_consensus); 
    ... 
    subenv.configured(); 

    driver = new(...,custom_args,...); 

  endfunction 

endclass 

class gen extends vmm_xactor; 
  child child1; 
  function void new(..., vmm_channel chan); 
    super.new(...); 
    child1 = new(...); 
    ... 
  endfunction 

endclass 

The differences in how OVM and VMM manage the build process 
leads to differences in how to handle instantiation of child 
components from the other library, depending on which 
methodology is the parent.  

For an OVM parent instantiating a VMM child, the process is 
straightforward. All construction, configuration, and connection of 
the VMM child can be handled in the OVM parent’s build() 
method in much the same manner that a vmm_env would do in its 
build() method. 

class ovm_parent extends ovm_component; 
  vmm_child child; 

  virtual function void build(); 
    super.build(); 
    child = new(“vmm_child”,...); 
    ... 
  endfunction 
  ... 
endclass 

By contrast, a VMM parent instantiating an OVM child must account 
for the separate phasing in the OVM build process. Since VMM does 
not employ a two-phase build process or the factory and 
configuration facilities, the constructor is the only means of 
allocating child components and configuring varying topologies. 

First, the VMM parent instantiates the OVM child components 
normally. If the parent is a vmm_env, this occurs in the  build() 
method. Otherwise, allocation occurs in the parent’s constructor via a 
call to  new() or the OVM factory’s create() method.4 

To account for the OVM build process, the VMM user’s env is 
requred to extend from the interoperability library’s 
avt_vmm_ovm_env adapter, not vmm_env. This “underpinning”  
allows the user env to inherit the ovm_build() method and other 
infrastructure needed in a mixed VMM-OVM environment. Thus 
defined, the user env’s implementation of the build() method must 
call the inherited ovm_build() method after all VMM and OVM 
children have been  allocated and before any OVM component 
connections. 

At the completion of ovm_build(), all OVM component children  
and all their descendants will be built and connected. At this point, 
the VMM parent is free to connect and configure the OVM children. 
The following code illustrates: 

class vmm_parent extends `VMM_ENV; 

  ovm_child child1, child2; 

  `ovm_build 

  virtual function void build(); 
    super.build(); 
    child1 = new(“ovm_child1”,null); 
    child2 = new(“ovm_child2”,null); 
    ovm_build(); 
    child1.put_port.connect(child2.put_export); 
    ... 
  endfunction 

  ... 
endclass 

Note the `ovm_build macro invoked within the env class definition. 
This macro declares an instance-specific version of the 
ovm_build() method, which ensures that the ovm_build() 
method will be called only once should the env ever be extended. 

2.3. Transaction-Level Communication 
Both OVM and VMM support the concept of transaction-level 
communication. OVM supports it through an implementation of the 
OSCI SystemC Transaction-Level Modeling (TLM) standard while 
VMM supports it through a proprietary implementation. To support 
interoperability between the two, the Accellera VIP-TSC developed 
a set of adapters that implement OVM functionality on one side and 
VMM functionality on the other. 

2.3.1. Communication Semantics 
In OVM, TLM connections are handled via ports and exports. A port 
is an object in an initiator component that specifies the interface (i.e. 
a set of methods and their semantics) required to communicate, while 
an export is an object in a target component that provides the 
implementation of an interface. The connection from a port to a 
compatible export is typically accomplished by calling the port’s 
connect() method in the parent component’s connect() phase 
method. OVM automatically checks for interface and transaction 
type compatibility between the given port and export. At run-time, 
connections in OVM are thus correct-by-construction.  

virtual function void connect(); 
  child1.put_port.connect(child2.put_export); 
endfunction 

In VMM, connections between components occur through the 
vmm_channel component. The vmm_channel supports a 
unidirectional connection between two components, the producer and 
the consumer. Because the put and get portions of the channel  
interface are not partitioned via different exports, it is incumbent on 
the user to ensure that the producer uses only the channel’s put-side 
methods and the consumer uses only the get-side methods, and that 
the producer and consumer support the same completion model. 

The interoperability library provides a set of adapters to support 
generic channel-based communication. The avt_tlm2channel 
enables communication between an OVM producer and a VMM 

                                                 



consumer. It provides a set of OVM ports and exports for connecting 
to any OVM producer type. In the connect() method of the 
producer’s and adapter’s parent component, the producer ‘s port or 
export is connected to a compatible export or port in the adapter, and 
the remaining ports and exports left unconnected.  

  

 
Figure 2.  avt_tlm2channel adapter 

On the VMM side, as with most VMM transactors, the adapter 
contains an internal vmm_channel for requests and another for 
responses. For protocols where the consumer will annotate the 
request with response information, only the request channel needs to 
be connected, but the req_is_rsp bit of the adapter must be set. If a 
vmm_channel is passed in as a constructor argument, then that 
channel is used, otherwise a new channel is allocated internally by 
the adapter. It is up to the user to ensure that the semantics required 
by the OVM producer are provided by the attached VMM consumer.  

The avt_channel2tlm  enables communication between a VMM 
producer and an OVM consumer. As with all OVM components, the 
OVM consumer’s port or export is connected to one of the exports 
and ports provided by the adapter. If the consumer expects 
sequence_items, for example, we connect the consumer’s 
seq_item_pull_port to the adapter’s seq_item_pull_export. 
As with most VMM components, the VMM producer connects to the 
adapter via a shared vmm_channel, a handle to which is supplied as 
an argument to the producer’s and/or adapter’s constructor. Again, it 
is up to the user to ensure that the expected semantics of the producer 
match the semantics defined by the OVM ports/exports of the 
consumer. 

 
Figure 3.  avt_channel2tlm adapter 

The interoperability library also provides an 
avt_analysis_channel adapter that contains a vmm_channel, 
ovm_analysis_port and ovm_analysis_export. To connect a 
VMM producer to one or more OVM subscriber consumers, you 
connect the adapter’s ovm_analysis_port to each of the 
subscriber’s ovm_analysis_exports. To connect an OVM 
producer (e.g. a monitor) to one or more VMM consumers, you 
create an adapter instance for each VMM consumer, then connect the 
OVM component’s ovm_analysis_port to each adapter’s 
ovm_analysis_export. In all cases, you must also ensure that each  
adapter instance shares a common vmm_channel instance with their 
associated VMM component. 

 

 
Figure 4.  avt_analysis_channel adapter usages 



2.3.2. Datatype Conversion 
The adapters facilitate communication between OVM and VMM 
components by mapping the interface of OVM’s TLM ports and 
exports to VMM’s vmm_channel. Since OVM and VMM use 
different class types for the transaction data being communicated, it 
is also necessary to convert between them as the data is transferred 
from one methodology to the other (and back). The conversion is 
done by the user defining a unidirectional converter class as follows: 

class apb_rw_ovm2vmm; 
  static function  
         vmm_apb_rw convert(ovm_apb_rw from, 
                            vmm_apb_rw to=null); 
    if (to == null) 
      convert = new; 
    else 
      convert = to; 

    case (from.cmd) 
      ovm_apb_rw::RD :  
        convert.kind = vmm_apb_rw::READ; 

      ovm_apb_rw::WR :  
        convert.kind = vmm_apb_rw::WRITE; 
    endcase 

    convert.addr = from.addr; 
    convert.data = from.data; 
    convert.data_id = from.get_transaction_id(); 
    convert.scenario_id = from.get_sequence_id(); 
  endfunction 

endclass 

We use a static convert() function to allow it to be called by the 
adapters without having to instantiate the converter class itself.   

Each adapter in the interoperability kit is parameterized to the data 
types and converter types needed to get an OVM and VMM 
component talking to each other. Users specify the actual types when 
instantiating the adapter. 

class avt_analysis_channel#( 
         type OVM=int, 
              VMM=int, 
              OVM2VMM=avt_converter #(OVM,VMM), 
              VMM2OVM=avt_converter #(VMM,OVM)) 
      extends ovm_component; 
  ... 
  function void write(OVM ovm_t); 
    VMM vmm_t; 
    if (ovm_t == null) 
      return; 
    vmm_t = OVM2VMM::convert(ovm_t); 
    chan.sneak(vmm_t); 
  endfunction 

endclass 

class ovm_producer; ... endclass 

class vmm_consumer; ... endclass 

class ovm_env extends ovm_component; 

  ovm_producer producer; 
  ovm_consumer consumer; 
  avt_analysis_channel #(ovm_apb_rw,vmm_apb_rw, 
       apb_rw_ovm2vmm, apb_rw_vmm2ovm) adapter; 

  virtual function void build(); 
    producer = ovm_producer::type_id::create 
                               (“producer”,this); 

    vmm_consumer consumer = new(...); 
    adapter = new(“adapter”,null,consumer.out_chan); 
  endfunction 

  virtual function void connect(); 
    producer.analysis_port.connect( 
                        adapter.analysis_export); 
  endfunction 

endclass 

3. REUSING VMM_ENV IN OVM 
Having discussed the challenges we faced during development of the 
OVM-VMM interoperability library, we will explore applications of 
the library not found in the kit provided by Accellera.  

In VMM, there is a single vmm_env  instance that serves as the top-
level component. The following example demonstrates simple 
instantiation of a VMM env within an OVM component, which 
allows the env to be reused anywhere within the OVM hierarchy. 

 
Figure 5.  Encapsulating a VMM env in an OVM component 

class user_ovm_component extends ovm_component; 

  ... 

  avt_ovm_vmm_env #(user_vmm_env) env; 

  function void build(); 
    env = new("user_vmm_env",this); 
    env.auto_stop_request = 1; 
  endfunction 

endclass 

Here, we've contained the user_vmm_env in an OVM component 
using the interoperability library’s avt_ovm_vmm_env adapter, 
which allows us to integrate VMM envs such that their phases are 
synchronized with those of other OVM components in the testbench. 
From the standpoint of the VMM env itself, it is phased just as it 
would in a native VMM testbench. The only difference is that we 
call run_test() to kick off simulation rather than 
my_vmm_env.run(). 

In the next example, we show a VMM env that has been more fully 
integrated in an OVM environment. 

4. VMM ENV AS OVM COMPONENT 
In this example, we define an extension to the avt_ovm_vmm_env 
adapter, which enables us to more fully integrate the VMM env it 
contains. VMM envs, when fully integrated as OVM components, 
can reside deep in the component hierarchy as a mere sub-
components of a much larger OVM environment. In fact, any 
number of VMM envs can be instantiated in an OVM testbench 
using this technique.  The VMM envs look and behave like OVM 
components, which frees the environment designer and verification 
engineer from having to learn more than one methodology. 



 
Figure 6.  A more fully integrated VMM env in an OVM environment 

As stated previously, the vmm_gen_cfg() and build() methods in 
the avt_ovm_vmm_env adapter call the underlying VMM env’s  
gen_cfg() and build() methods. Users can derive extensions of 
avt_ovm_vmm_env and override either of these methods to perform 
actions both before and after calling super.vmm_gen_cfg() and/or 
super.build(). For example, in vmm_gen_cfg(), we can call 
super.vmm_gen_cfg() to generate the underlying VMM env’s 
configuration object, and then modify the configuration based on 
settings retrieved from OVM’s configuration mechanism. In 
build(), we could call super.build() to construct the underlying  
VMM env, and then create and connect OVM components to some 
embedded vmm_xactors using the appropriate interoperability 
adapters. 

Before we define our custom VMM env wrapper, we define a simple 
container class for delivering vmm_data-based objects via OVM 
configuration mechanism. 

class vmm_data_wrap #(type T=vmm_data)  
                          extends ovm_object; 
  typedef vmm_data_wrap #(T) this_type; 
  `ovm_object_param_utils(this_type) 
  T obj;   
endclass 

Next, we define ovm_apb_env as an extension of the 
avt_ovm_vmm_env adapter.  

class ovm_apb_env  
         extends avt_ovm_vmm_env #(vmm_apb_env); 

  `ovm_component_utils(ovm_apb_env) 

  ovm_analysis_port #(vmm_apb_rw) ap; 

  function new (string name="ovm_apb_env", 
                ovm_component parent=null); 
    super.new(name,parent); 
    ap = new("analysis_port",this); 
    // stop_request when wait_for_end returns 
    auto_stop_request = 1; 
  endfunction 

 
     virtual function void vmm_gen_cfg(); 
       // do stuff before generating config here 
       super.vmm_gen_cfg(); 
       // do post config generation here 
     endfunction 

  
     virtual function void build(); 
       ovm_object obj; 
       vmm_data_wrap #(vmm_apb_rw) prototype; 

    super.build(); // build VMM env 

    // configure env’s xactors post-build 

    void'(get_config_int("num_trans", 
               env.gen.stop_after_n_insts)); 

    if (get_config_object("prototype",obj,0) && 
             $cast(prototype,obj)) 
      env.gen.randomized_obj = prototype.obj; 
    else 
     `ovm_error(...) 
  endfunction 
endclass 

The build() method builds our wrapped VMM env. Because the 
underlying VMM env’s gen_cfg() has been called by now, we can 
modify the VMM env's config object before calling 
super.build(). After calling super.build(), we can modify 
other aspects that depend on the env being built, such as 
gen.stop_after_n_insts in this example. 

Now that we’ve encapsulated the VMM env in an OVM component 
wrapper, we can now integrate it into an OVM environment as any 
other OVM component. Below, we define a basic OVM testbench 
where the VMM env is not a top-level component but a grandchild 
of the overall OVM environment. 

 
class subcomp extends ovm_component; 
  `ovm_component_utils(subcomp) 
  ovm_apb_env apb_env; 

  function new (string name="subcomp", 
                ovm_component parent=null); 
    super.new(name,parent); 
  endfunction 

  virtual function void build(); 
      apb_env = new("apb_env",this); 
  endfunction 
endclass 

class env extends ovm_component; 
  `ovm_component_utils(env) 
  subcomp comp; 

  function new (string name="env", 
                ovm_component parent=null); 
    super.new(name,parent); 
  endfunction 

  virtual function void build(); 
    comp = new("comp",this); 
  endfunction 
endclass 

module example_09_subenv; 
  `include "vmm_apb_env.sv" // the VMM env 
  env top = new("top"); 
  vmm_data_wrap #(vmm_apb_rw) apb_ext = new; 
  vmm_apb_rw_extend      my_prototype = new; 

  initial begin 
    apb_ext.obj = my_prototype;   

    // set number of transaction to 5 
    set_config_int("top.comp.apb_env", 
                   "num_trans",5); 

    // set the type of transactions to produce 
    // to a special extension of the apb_rw. 
    set_config_object("top.comp.apb_env", 
                   "prototype_obj",apb_ext,0); 



    run_test(); 
  end 
endmodule 

5. VMM SCENARIOS AS OVM SEQUENCES 
This example uses an ovm_scenario2sequence adapter (see 
[4]) to wrap an instance of a vmm_scenario. The adapter allows you 
to run scenarios alongside OVM sequences and have the OVM 
sequencer manage the arbitration among them all. 

The adapter contains a vmm_scenario and a vmm_channel into 
which the vmm_scenario puts transactions. A background process 
continually gets transactions from this channel, converts them to the 
corresponding OVM transaction type, and then presents them to the 
sequencer for execution as any OVM sequence would do. 

 

  
Figure 7.  Encapsulating a VMM scenario as an OVM sequence 

In the following example, note how you may choose to randomize 
the embedded scenario with in-line constraints before starting the 
sequence. 

 
// typedef a scenario wrapper class for apb 
typedef ovm_scenario2sequence 
  #(vmm_apb_rw_scen, // the VMM scenario 
   ovm_apb_rw,apb_rw, 
   apb_rw_convert_ovm2vmm, 
   apb_rw_convert_vmm2ovm) vmm_apb_rw_scen_seq; 

class env extends ovm_component; 

  `ovm_component_utils(env) 

  ovm_sequencer #(ovm_apb_item) seqr; 
  ovm_driver_req drv; 

  function new (string name="env", 
                ovm_component parent=null); 
    super.new(name,parent); 
  endfunction 

  virtual function void build(); 
    seqr = new("o_seq", this); 
    drv  = new("o_drv", this); 
  endfunction 

  virtual function void connect(); 
    drv.seq_item_port.connect 
             (seqr.seq_item_export); 
  endfunction 

  virtual task run(); 

    // create 3 scenarios wrapped in sequences 
    vmm_apb_rw_scen_seq seq1 = new("seq1"); 
    vmm_apb_rw_scen_seq seq2 = new("seq2"); 
    vmm_apb_rw_scen_seq seq3 = new("seq3"); 

    // randomize them as needed 

    seq1.randomize() with  
        { seq1.scenario.addr == 'h111;  
          seq1.scenario.length == 9; }; 
    seq2.randomize() with 
        { seq2.scenario.addr == 'h222;  
          seq2.scenario.length == 7; }; 
    seq3.randomize() with 
        { seq3.scenario.addr == 'h333;  
          seq3.scenario.length == 5; }; 
    // start them up concurrently (in this case) 
    fork 
      seq1.start(seqr); 
      seq2.start(seqr); 
      seq3.start(seqr); 
    join    

    // we’re done, so stop the run phase 
    ovm_top.stop_request(); 

  endtask 

endclass 

module example_08_scenario2sequence; 
  env e = new; 
  initial run_test(); 
endmodule 
 

6. VMM MULTI-STREAM SCENARIOS AS 
OVM SEQUENCES 
This example uses the ovm_ms_scenario2sequence  adapter to 
encapsulate a VMM multi-stream scenario. Although this example 
does not drive multiple sequencers or channels, it is a simple matter 
of programming.  

Multi-stream scenarios operate differently from their single-stream 
counterparts and are more difficult to integrate as an OVM sequence. 

Single-stream scenarios are not dependent on the generator that 
selects them for execution. Nor are they required to fetch a channel it 
will use from an external object; the channel handle is passed as an 
argument to the apply method. 

Multi-stream scenarios and the channels they put or sneak into must 
be pre-allocated and pre-registered with a multi-stream scenario 
generator before they can be used. Then, in the scenario's 
execute() method, the channel handle is retrieved from the 
associated ms generator by name (string) lookup. 

The following defines an OVM parent sequence that concurrently 
executes an OVM child sequence and wrapped VMM scenario: 

// typedef a ms scenario wrapper class for apb 
typedef ovm_ms_scenario2sequence 
 #(vmm_apb_rw_ms_scen, // the VMM ms scenario 
 ovm_apb_rw, apb_rw, 
 apb_rw_convert_ovm2vmm, 
 apb_rw_convert_vmm2ovm) vmm_apb_rw_ms_scen_seq; 
 

class my_sequence extends 
                  ovm_sequence #(ovm_apb_rw); 

  `ovm_object_utils(my_sequence) 

  function new(string name="my_sequence"); 
    super.new(name); 
  endfunction 

  vmm_apb_rw_ms_scen_seq vmm_ms_seq; 



  virtual task body(); 

    ovm_apb_rw_seq ovm_seq = new("ovm_seq"); 

    // concurrently execute OVM sequence 
    // and VMM scenario-sequence 
    ovm_seq.randomize() with { addr == 3; }; 
    vmm_ms_seq.randomize() with { 
                    scenario.addr == 256; }; 

    fork 
     ovm_seq.start(this.m_sequencer, this); 
     vmm_seq.start(this.m_sequencer, this); 
    join 

  endfunction 
endclass 

Note that the `ovm_do_* macros, which embed synchronization and 
allocation, can not be used for multi-stream scenarios. 

To run a multi-stream scenario as a sequence, we first allocate the 
scenario, scenario adapter, and multi-stream scenario generator in the 
build() method. Then, we register the scenario and channel(s) it 
uses with the multi-stream scenario generator. 

 class env extends ovm_component; 

   `ovm_component_utils(env) 

   ovm_sequencer #(ovm_apb_item) sequencer; 
   ovm_driver_req driver; 
   vmm_ms_scenario_gen vmm_scen_gen; 

   my_sequence vseq; 

   function new (string name="my_env", 
                ovm_component parent=null); 
    super.new(name,parent); 
   endfunction 

   virtual function void build(); 

    sequencer = new("OVM_Sequencer", this); 
    driver    = new("OVM_Driver", this); 
    vmm_ms_scenario_gen vmm_scen_gen= new(“gen“); 

    // ms scenarios must be pre-allocated 
    // and registered with its ms_scenario_gen 
    vmm_apb_rw_ms_scen_seq vmm_ms_seq=new(“seq”); 

    vmm_scen_gen.register_ms_scenario 
                  ("vmm_seq",vmm_seq.scenario); 

 
    // register the channel so the VMM scenario  
    // can get a reference to it via get_channel 
    vmm_scen_gen.register_channel("apb_rw_chan", 
                     vmm_seq.chan); 

    // create sequence using factory 
    vseq = my_sequence::type_id::create 
                    ("my_sequence",this); 

    vseq.vmm_seq = vmm_seq; 

   endfunction 

   virtual function void connect(); 
      driver.seq_item_port.connect 
             (sequencer.seq_item_export); 
   endfunction 

   virtual task run(); 
     vseq.start(sequencer); 
     ovm_top.stop_request(); 

   endtask 

endclass 

module example_09_ms_scenario2sequence; 
  env e = new; 
  initial run_test(); 
endmodule 

7. CONCLUSION 
This paper provided insight into the challenges we faced while 
developing the interoperability library and detailed information on 
the various adapters that are available to interconnect OVM and 
VMM components. The Accellera VIP-TSC based its work on the 
assumption that the engineer who is actually doing the work of 
integrating OVM and VMM IP must know enough about both 
methodologies in order to apply the interoperability library 
effectively. This paper provided several advanced applications of the 
library to assist integrators in gaining this knowledge: encapsulating 
VMM envs with OVM component wrappers, thereby allowing them 
to be integrated and reused as any other component in an OVM 
environment, and adapting VMM scenarios to run as and alongside 
other OVM sequences, thereby enhancing reuse of existing VMM-
based stimulus generation. 
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