
The OVM-VMM Interoperability Library: Bridging the Gap
Tom Fitzpatrick

Mentor Graphics Corp.
tom_fitzpatrick@mentor.com

Adam Erickson
Mentor Graphics Corp.

adam_erickson@mentor.com

ABSTRACT

The Accellera Verification IP Technical Subcommittee (VIP-TSC)
has spent the past year-and-a-half developing an interoperability
class library to allow OVM- and VMM1-based VIP to work together
in a single environment. This paper will describe the primary
obstacles we encountered while bridging these two independently-
developed methodologies. It will then provide examples of how best
to apply the resulting adapters, converters and other infrastructure
comprising the VIP Interoperability reference library to enable OVM
users to incorporate VMM-based IP in their environments and vice-
versa. Since the VIP-TSC has published a Best Practices
Document[1], this paper will not rehash the contents of that
document. Rather, it will attempt to provide some broader context in
which to examine the choices made in developing the library.

The paper will also describe how the library can be easily extended
to accommodate even tighter integration among OVM and VMM-
based components. Example uses of these extensions in the area of
stimulus generation and VMM env reuse in an OVM environment
are discussed.

1. INTRODUCTION
As testbenches comprise increasing numbers of verification IP (VIP)
to meet the demands of shrinking schedules and the growing scale of
system-level verification environments, the key to verification reuse
is the ability to easily integrate VIP developed from multiple
independent sources. A well-designed verification methodology
provides guidelines that allow components to be developed
independently yet work together when integrated within a larger
testbench environment. The Open Verification Methodology (OVM)
provides such guidelines and a supporting library that help ensure
any OVM-based VIP will work with any other OVM IP. Similarly,
the Verification Methodology Manual (VMM), encourages the
development of VIP that can be used with other VMM-based IP.

A challenge for users arises when a testbench environment requires a
mixture of both OVM-based and VMM-based IP. Preserving the
reuse potential enjoyed by components deployed in homogeneous
environments requires a reliable and standard mechanism for
integrating such components in a mixed environment.

2. INTEGRATION ISSUES
When integrating OVM and VMM VIP, there are a number of issues
that must be considered. In general, both OVM and VMM support
similar concepts, such as phasing, transaction-based communication,
configuration, messaging and so on, but there are important
differences in the implementation of these concepts.

1 All work done by the VIP-TSC was done using OVM 2.0[.*] and VMM
1.1[.*]

2.1. Phasing Differences
Both OVM and VMM partition test execution into a series of
predefined phases. However, there are differences in the number of
phases, the roles they are intended to perform, and the manner in
which they are executed.

OVM VMM
build gen_cfg

connect build

end_of_elaboration reset_dut

start_of_simulation cfg_dut

run start

extract wait_for_end

check stop

report cleanup

 report

Figure 1. OVM and VMM Predefined Phases

In OVM, the ovm_component base class—from which all user-
defined components derive—defines a set of virtual methods
corresponding to each phase. Users can override any or all of them in
their derived component classes. The test flow is started by calling
run_test(), which automatically calls all the phase methods in all
components in the proper order. The next phase isn’t started until all
components have completed the previous phase.

In VMM, the concept of phasing via virtual method overrides exists
only in the vmm_env class, of which there may be at most one
instance in simulation. Phasing of the user’s environment is managed
by its vmm_env base class, but it is up to the user to manually
initialize, configure, and start any children components in overrides
of the env’s phase methods.

There is some—but not complete—alignment between the set of
OVM and VMM phases (see Figure 1.). Certain phases in OVM
have no corresponding phase in VMM and vice versa. Where there is
correspondence, there can be semantic differences, such as whether
the phase is a task or a function and whether it is executed top-down
or bottom-up in the hierarchy. Critically, the manner in which the
time-consuming phases are executed are quite different between
OVM and VMM. These differences in phasing lead to integration
issues when instantiating, connecting and executing the environment.

For example, VMM envs define a gen_cfg and task-based report
phase, neither of which are present in OVM. To enable VMM env
integration in an OVM environment, the interoperability library’s
avt_ovm_vmm_env adapter uses OVM’s flexible phasing

mechanism to register two new custom phases, vmm_gen_cfg and
vmm_report, whose default implementations call the underlying
VMM env’s gen_cfg() and report() methods, respectively.
Thus, whenever the avt_ovm_vmm_env adapter is used—that is,
whenever a VMM env is integrated in an OVM environment—the
VMM-specific phases are added to the list of phases that OVM will
execute during simulation.

In both OVM and VMM, it is a rule that no phase may be executed
before completion of the previous phase. In OVM, when a parent's
build() method returns after creating one or more new child
components, the phasing mechanism will recognize the new children
and cycle them through any user-defined phases leading up to the
build phase, such as the custom vmm_gen_cfg phase. Essentially,
new children are "caught up" before OVM proceeds with the rest of
the build phase. Thus, even when integrated in an OVM
environment, the VMM env’s gen_cfg() method will always be
called before its build() method.

2.2. Testbench Construction Differences
Both OVM and VMM prescribe a process for assembling a
verification environment whereby a parent component (which may
be the top-level testbench) instantiates one or more children
components, and then configures and connects each of them.

In OVM, the build process is partitioned into two phases, build and
connect. These phases are implemented in the virtual build() and
connect() methods in every OVM component.

The build() method performs child component instantiation and
configuration, and the connect() method makes the connections
that enable them to communicate with each other and with other
components external to the parent.

Configuration is fetched and components are created in the build
phase to allow users to override the types and number of components
created without changing the parent container class. It doesn't have to
be this way. A component may create children components in its
constructor, but then testbench topology construction is less flexible
overall, which limits reuse.

 The following is a typical implementation of the build() and
connect() phase methods.

class child extends ovm_component;
 ...
 int max_trans = 10; // default=10

 virtual function void build();
 // get user config, if any
 get_config_int(“max_trans”, max_trans);
 endfunction

endclass

class parent extends ovm_component;
 ...
 child c[$];

 virtual function void build();
 int num_child = 5;
 string name;

 // get config for this object
 get_config_int(“num_child”,num_child);

 // instantiate, based on config
 for (int i=0;i<num_child;i++) begin
 name = $sformatf(“c%0d”,i);

 c[i] = child::type_id::create(name, this);
 end

 // configure
 set_config_int(“c1”,”max_trans”,3);
 endfunction

 virtual function void connect();
 // connect
 child1.put_port.connect(child2.put_export);
 endfunction

endclass
__

class my_child extends child;
 // any user extensions of child class
endclass

class my_test extends ovm_component;

 parent my_env;

 virtual function void build();
 child::type_id::set_type_override(
 my_child::get_type());
 set_config_int(“env”,”num_child”,10);
 my_env = parent::type_id::create(“env”,this);
 endfunction
 ...
endclass

The create() method in the parent is a call to the OVM factory
requesting an instance of type child. Users may configure the
factory to instead return any extension of type child, as is done
with the call to set_type_override() in the my_test class Using
the factory, we are able to substitute the types that get instantiated
without actually changing the definition of the parent class..

The set_config_int() and get_config_int() calls in the
example are example usages of OVM’s configuration mechanism.
The set_config_* methods store configuration settings in a table
for future look-up by child components in calls to get_config_*.
Deferring execution of configuration settings in this manner allows a
parent to configure a child before the child even exists and without
use of hierarchical references. Furthermore, we are able to
dynamically specify the topology of the testbench—the number of
child components, in this example—without changing the definition
of the parent class. 2

In contrast to OVM’s build process, the VMM build process
comprises a single pass via a call to the top-level vmm_env’s
build() method, which coordinates the instantiation, configuration,
and connection of all components in the environment. Creation of its
children occurs via direct calls to new(), which, in turn, create their
children via direct calls to new(), and so on. Configuration and
connection occur using special constructor arguments, direct
assignment of properties, or calling of methods through hierarchical
references.

2 OVM’s set/get_config can be used at any time, allowing dynamic parameter
setting throughout the test. Topological configuration, however, must be done
before the end_of_elaboration phase, typically in the build phase.
4 Note that, since the OVM package is included via the interoperability
library, VMM components may use the OVM factory mechanism to allocate
new OVM types within a VMM environment, e.g. child1 =
ovm_child::type_id::create().

class my_env extends vmm_env;
 ...
 virtual function void build();

 super.build();
 gen = new(..., my_chan);
 gen.randomized_obj = my_obj;

 subenv = new(..., my_consensus);
 ...
 subenv.configured();

 driver = new(...,custom_args,...);

 endfunction

endclass

class gen extends vmm_xactor;
 child child1;
 function void new(..., vmm_channel chan);
 super.new(...);
 child1 = new(...);
 ...
 endfunction

endclass

The differences in how OVM and VMM manage the build process
leads to differences in how to handle instantiation of child
components from the other library, depending on which
methodology is the parent.

For an OVM parent instantiating a VMM child, the process is
straightforward. All construction, configuration, and connection of
the VMM child can be handled in the OVM parent’s build()
method in much the same manner that a vmm_env would do in its
build() method.

class ovm_parent extends ovm_component;
 vmm_child child;

 virtual function void build();
 super.build();
 child = new(“vmm_child”,...);
 ...
 endfunction
 ...
endclass

By contrast, a VMM parent instantiating an OVM child must account
for the separate phasing in the OVM build process. Since VMM does
not employ a two-phase build process or the factory and
configuration facilities, the constructor is the only means of
allocating child components and configuring varying topologies.

First, the VMM parent instantiates the OVM child components
normally. If the parent is a vmm_env, this occurs in the build()
method. Otherwise, allocation occurs in the parent’s constructor via a
call to new() or the OVM factory’s create() method.4

To account for the OVM build process, the VMM user’s env is
requred to extend from the interoperability library’s
avt_vmm_ovm_env adapter, not vmm_env. This “underpinning”
allows the user env to inherit the ovm_build() method and other
infrastructure needed in a mixed VMM-OVM environment. Thus
defined, the user env’s implementation of the build() method must
call the inherited ovm_build() method after all VMM and OVM
children have been allocated and before any OVM component
connections.

At the completion of ovm_build(), all OVM component children
and all their descendants will be built and connected. At this point,
the VMM parent is free to connect and configure the OVM children.
The following code illustrates:

class vmm_parent extends `VMM_ENV;

 ovm_child child1, child2;

 `ovm_build

 virtual function void build();
 super.build();
 child1 = new(“ovm_child1”,null);
 child2 = new(“ovm_child2”,null);
 ovm_build();
 child1.put_port.connect(child2.put_export);
 ...
 endfunction

 ...
endclass

Note the `ovm_build macro invoked within the env class definition.
This macro declares an instance-specific version of the
ovm_build() method, which ensures that the ovm_build()
method will be called only once should the env ever be extended.

2.3. Transaction-Level Communication
Both OVM and VMM support the concept of transaction-level
communication. OVM supports it through an implementation of the
OSCI SystemC Transaction-Level Modeling (TLM) standard while
VMM supports it through a proprietary implementation. To support
interoperability between the two, the Accellera VIP-TSC developed
a set of adapters that implement OVM functionality on one side and
VMM functionality on the other.

2.3.1. Communication Semantics
In OVM, TLM connections are handled via ports and exports. A port
is an object in an initiator component that specifies the interface (i.e.
a set of methods and their semantics) required to communicate, while
an export is an object in a target component that provides the
implementation of an interface. The connection from a port to a
compatible export is typically accomplished by calling the port’s
connect() method in the parent component’s connect() phase
method. OVM automatically checks for interface and transaction
type compatibility between the given port and export. At run-time,
connections in OVM are thus correct-by-construction.

virtual function void connect();
 child1.put_port.connect(child2.put_export);
endfunction

In VMM, connections between components occur through the
vmm_channel component. The vmm_channel supports a
unidirectional connection between two components, the producer and
the consumer. Because the put and get portions of the channel
interface are not partitioned via different exports, it is incumbent on
the user to ensure that the producer uses only the channel’s put-side
methods and the consumer uses only the get-side methods, and that
the producer and consumer support the same completion model.

The interoperability library provides a set of adapters to support
generic channel-based communication. The avt_tlm2channel
enables communication between an OVM producer and a VMM

consumer. It provides a set of OVM ports and exports for connecting
to any OVM producer type. In the connect() method of the
producer’s and adapter’s parent component, the producer ‘s port or
export is connected to a compatible export or port in the adapter, and
the remaining ports and exports left unconnected.

Figure 2. avt_tlm2channel adapter

On the VMM side, as with most VMM transactors, the adapter
contains an internal vmm_channel for requests and another for
responses. For protocols where the consumer will annotate the
request with response information, only the request channel needs to
be connected, but the req_is_rsp bit of the adapter must be set. If a
vmm_channel is passed in as a constructor argument, then that
channel is used, otherwise a new channel is allocated internally by
the adapter. It is up to the user to ensure that the semantics required
by the OVM producer are provided by the attached VMM consumer.

The avt_channel2tlm enables communication between a VMM
producer and an OVM consumer. As with all OVM components, the
OVM consumer’s port or export is connected to one of the exports
and ports provided by the adapter. If the consumer expects
sequence_items, for example, we connect the consumer’s
seq_item_pull_port to the adapter’s seq_item_pull_export.
As with most VMM components, the VMM producer connects to the
adapter via a shared vmm_channel, a handle to which is supplied as
an argument to the producer’s and/or adapter’s constructor. Again, it
is up to the user to ensure that the expected semantics of the producer
match the semantics defined by the OVM ports/exports of the
consumer.

Figure 3. avt_channel2tlm adapter

The interoperability library also provides an
avt_analysis_channel adapter that contains a vmm_channel,
ovm_analysis_port and ovm_analysis_export. To connect a
VMM producer to one or more OVM subscriber consumers, you
connect the adapter’s ovm_analysis_port to each of the
subscriber’s ovm_analysis_exports. To connect an OVM
producer (e.g. a monitor) to one or more VMM consumers, you
create an adapter instance for each VMM consumer, then connect the
OVM component’s ovm_analysis_port to each adapter’s
ovm_analysis_export. In all cases, you must also ensure that each
adapter instance shares a common vmm_channel instance with their
associated VMM component.

Figure 4. avt_analysis_channel adapter usages

2.3.2. Datatype Conversion
The adapters facilitate communication between OVM and VMM
components by mapping the interface of OVM’s TLM ports and
exports to VMM’s vmm_channel. Since OVM and VMM use
different class types for the transaction data being communicated, it
is also necessary to convert between them as the data is transferred
from one methodology to the other (and back). The conversion is
done by the user defining a unidirectional converter class as follows:

class apb_rw_ovm2vmm;
 static function
 vmm_apb_rw convert(ovm_apb_rw from,
 vmm_apb_rw to=null);
 if (to == null)
 convert = new;
 else
 convert = to;

 case (from.cmd)
 ovm_apb_rw::RD :
 convert.kind = vmm_apb_rw::READ;

 ovm_apb_rw::WR :
 convert.kind = vmm_apb_rw::WRITE;
 endcase

 convert.addr = from.addr;
 convert.data = from.data;
 convert.data_id = from.get_transaction_id();
 convert.scenario_id = from.get_sequence_id();
 endfunction

endclass

We use a static convert() function to allow it to be called by the
adapters without having to instantiate the converter class itself.

Each adapter in the interoperability kit is parameterized to the data
types and converter types needed to get an OVM and VMM
component talking to each other. Users specify the actual types when
instantiating the adapter.

class avt_analysis_channel#(
 type OVM=int,
 VMM=int,
 OVM2VMM=avt_converter #(OVM,VMM),
 VMM2OVM=avt_converter #(VMM,OVM))
 extends ovm_component;
 ...
 function void write(OVM ovm_t);
 VMM vmm_t;
 if (ovm_t == null)
 return;
 vmm_t = OVM2VMM::convert(ovm_t);
 chan.sneak(vmm_t);
 endfunction

endclass

class ovm_producer; ... endclass

class vmm_consumer; ... endclass

class ovm_env extends ovm_component;

 ovm_producer producer;
 ovm_consumer consumer;
 avt_analysis_channel #(ovm_apb_rw,vmm_apb_rw,
 apb_rw_ovm2vmm, apb_rw_vmm2ovm) adapter;

 virtual function void build();
 producer = ovm_producer::type_id::create
 (“producer”,this);

 vmm_consumer consumer = new(...);
 adapter = new(“adapter”,null,consumer.out_chan);
 endfunction

 virtual function void connect();
 producer.analysis_port.connect(
 adapter.analysis_export);
 endfunction

endclass

3. REUSING VMM_ENV IN OVM
Having discussed the challenges we faced during development of the
OVM-VMM interoperability library, we will explore applications of
the library not found in the kit provided by Accellera.

In VMM, there is a single vmm_env instance that serves as the top-
level component. The following example demonstrates simple
instantiation of a VMM env within an OVM component, which
allows the env to be reused anywhere within the OVM hierarchy.

Figure 5. Encapsulating a VMM env in an OVM component

class user_ovm_component extends ovm_component;

 ...

 avt_ovm_vmm_env #(user_vmm_env) env;

 function void build();
 env = new("user_vmm_env",this);
 env.auto_stop_request = 1;
 endfunction

endclass

Here, we've contained the user_vmm_env in an OVM component
using the interoperability library’s avt_ovm_vmm_env adapter,
which allows us to integrate VMM envs such that their phases are
synchronized with those of other OVM components in the testbench.
From the standpoint of the VMM env itself, it is phased just as it
would in a native VMM testbench. The only difference is that we
call run_test() to kick off simulation rather than
my_vmm_env.run().

In the next example, we show a VMM env that has been more fully
integrated in an OVM environment.

4. VMM ENV AS OVM COMPONENT
In this example, we define an extension to the avt_ovm_vmm_env
adapter, which enables us to more fully integrate the VMM env it
contains. VMM envs, when fully integrated as OVM components,
can reside deep in the component hierarchy as a mere sub-
components of a much larger OVM environment. In fact, any
number of VMM envs can be instantiated in an OVM testbench
using this technique. The VMM envs look and behave like OVM
components, which frees the environment designer and verification
engineer from having to learn more than one methodology.

Figure 6. A more fully integrated VMM env in an OVM environment

As stated previously, the vmm_gen_cfg() and build() methods in
the avt_ovm_vmm_env adapter call the underlying VMM env’s
gen_cfg() and build() methods. Users can derive extensions of
avt_ovm_vmm_env and override either of these methods to perform
actions both before and after calling super.vmm_gen_cfg() and/or
super.build(). For example, in vmm_gen_cfg(), we can call
super.vmm_gen_cfg() to generate the underlying VMM env’s
configuration object, and then modify the configuration based on
settings retrieved from OVM’s configuration mechanism. In
build(), we could call super.build() to construct the underlying
VMM env, and then create and connect OVM components to some
embedded vmm_xactors using the appropriate interoperability
adapters.

Before we define our custom VMM env wrapper, we define a simple
container class for delivering vmm_data-based objects via OVM
configuration mechanism.

class vmm_data_wrap #(type T=vmm_data)
 extends ovm_object;
 typedef vmm_data_wrap #(T) this_type;
 `ovm_object_param_utils(this_type)
 T obj;
endclass

Next, we define ovm_apb_env as an extension of the
avt_ovm_vmm_env adapter.

class ovm_apb_env
 extends avt_ovm_vmm_env #(vmm_apb_env);

 `ovm_component_utils(ovm_apb_env)

 ovm_analysis_port #(vmm_apb_rw) ap;

 function new (string name="ovm_apb_env",
 ovm_component parent=null);
 super.new(name,parent);
 ap = new("analysis_port",this);
 // stop_request when wait_for_end returns
 auto_stop_request = 1;
 endfunction

 virtual function void vmm_gen_cfg();
 // do stuff before generating config here
 super.vmm_gen_cfg();
 // do post config generation here
 endfunction

 virtual function void build();
 ovm_object obj;
 vmm_data_wrap #(vmm_apb_rw) prototype;

 super.build(); // build VMM env

 // configure env’s xactors post-build

 void'(get_config_int("num_trans",
 env.gen.stop_after_n_insts));

 if (get_config_object("prototype",obj,0) &&
 $cast(prototype,obj))
 env.gen.randomized_obj = prototype.obj;
 else
 `ovm_error(...)
 endfunction
endclass

The build() method builds our wrapped VMM env. Because the
underlying VMM env’s gen_cfg() has been called by now, we can
modify the VMM env's config object before calling
super.build(). After calling super.build(), we can modify
other aspects that depend on the env being built, such as
gen.stop_after_n_insts in this example.

Now that we’ve encapsulated the VMM env in an OVM component
wrapper, we can now integrate it into an OVM environment as any
other OVM component. Below, we define a basic OVM testbench
where the VMM env is not a top-level component but a grandchild
of the overall OVM environment.

class subcomp extends ovm_component;
 `ovm_component_utils(subcomp)
 ovm_apb_env apb_env;

 function new (string name="subcomp",
 ovm_component parent=null);
 super.new(name,parent);
 endfunction

 virtual function void build();
 apb_env = new("apb_env",this);
 endfunction
endclass

class env extends ovm_component;
 `ovm_component_utils(env)
 subcomp comp;

 function new (string name="env",
 ovm_component parent=null);
 super.new(name,parent);
 endfunction

 virtual function void build();
 comp = new("comp",this);
 endfunction
endclass

module example_09_subenv;
 `include "vmm_apb_env.sv" // the VMM env
 env top = new("top");
 vmm_data_wrap #(vmm_apb_rw) apb_ext = new;
 vmm_apb_rw_extend my_prototype = new;

 initial begin
 apb_ext.obj = my_prototype;

 // set number of transaction to 5
 set_config_int("top.comp.apb_env",
 "num_trans",5);

 // set the type of transactions to produce
 // to a special extension of the apb_rw.
 set_config_object("top.comp.apb_env",
 "prototype_obj",apb_ext,0);

 run_test();
 end
endmodule

5. VMM SCENARIOS AS OVM SEQUENCES
This example uses an ovm_scenario2sequence adapter (see
[4]) to wrap an instance of a vmm_scenario. The adapter allows you
to run scenarios alongside OVM sequences and have the OVM
sequencer manage the arbitration among them all.

The adapter contains a vmm_scenario and a vmm_channel into
which the vmm_scenario puts transactions. A background process
continually gets transactions from this channel, converts them to the
corresponding OVM transaction type, and then presents them to the
sequencer for execution as any OVM sequence would do.

Figure 7. Encapsulating a VMM scenario as an OVM sequence

In the following example, note how you may choose to randomize
the embedded scenario with in-line constraints before starting the
sequence.

// typedef a scenario wrapper class for apb
typedef ovm_scenario2sequence
 #(vmm_apb_rw_scen, // the VMM scenario
 ovm_apb_rw,apb_rw,
 apb_rw_convert_ovm2vmm,
 apb_rw_convert_vmm2ovm) vmm_apb_rw_scen_seq;

class env extends ovm_component;

 `ovm_component_utils(env)

 ovm_sequencer #(ovm_apb_item) seqr;
 ovm_driver_req drv;

 function new (string name="env",
 ovm_component parent=null);
 super.new(name,parent);
 endfunction

 virtual function void build();
 seqr = new("o_seq", this);
 drv = new("o_drv", this);
 endfunction

 virtual function void connect();
 drv.seq_item_port.connect
 (seqr.seq_item_export);
 endfunction

 virtual task run();

 // create 3 scenarios wrapped in sequences
 vmm_apb_rw_scen_seq seq1 = new("seq1");
 vmm_apb_rw_scen_seq seq2 = new("seq2");
 vmm_apb_rw_scen_seq seq3 = new("seq3");

 // randomize them as needed

 seq1.randomize() with
 { seq1.scenario.addr == 'h111;
 seq1.scenario.length == 9; };
 seq2.randomize() with
 { seq2.scenario.addr == 'h222;
 seq2.scenario.length == 7; };
 seq3.randomize() with
 { seq3.scenario.addr == 'h333;
 seq3.scenario.length == 5; };
 // start them up concurrently (in this case)
 fork
 seq1.start(seqr);
 seq2.start(seqr);
 seq3.start(seqr);
 join

 // we’re done, so stop the run phase
 ovm_top.stop_request();

 endtask

endclass

module example_08_scenario2sequence;
 env e = new;
 initial run_test();
endmodule

6. VMM MULTI-STREAM SCENARIOS AS
OVM SEQUENCES
This example uses the ovm_ms_scenario2sequence adapter to
encapsulate a VMM multi-stream scenario. Although this example
does not drive multiple sequencers or channels, it is a simple matter
of programming.

Multi-stream scenarios operate differently from their single-stream
counterparts and are more difficult to integrate as an OVM sequence.

Single-stream scenarios are not dependent on the generator that
selects them for execution. Nor are they required to fetch a channel it
will use from an external object; the channel handle is passed as an
argument to the apply method.

Multi-stream scenarios and the channels they put or sneak into must
be pre-allocated and pre-registered with a multi-stream scenario
generator before they can be used. Then, in the scenario's
execute() method, the channel handle is retrieved from the
associated ms generator by name (string) lookup.

The following defines an OVM parent sequence that concurrently
executes an OVM child sequence and wrapped VMM scenario:

// typedef a ms scenario wrapper class for apb
typedef ovm_ms_scenario2sequence
 #(vmm_apb_rw_ms_scen, // the VMM ms scenario
 ovm_apb_rw, apb_rw,
 apb_rw_convert_ovm2vmm,
 apb_rw_convert_vmm2ovm) vmm_apb_rw_ms_scen_seq;

class my_sequence extends
 ovm_sequence #(ovm_apb_rw);

 `ovm_object_utils(my_sequence)

 function new(string name="my_sequence");
 super.new(name);
 endfunction

 vmm_apb_rw_ms_scen_seq vmm_ms_seq;

 virtual task body();

 ovm_apb_rw_seq ovm_seq = new("ovm_seq");

 // concurrently execute OVM sequence
 // and VMM scenario-sequence
 ovm_seq.randomize() with { addr == 3; };
 vmm_ms_seq.randomize() with {
 scenario.addr == 256; };

 fork
 ovm_seq.start(this.m_sequencer, this);
 vmm_seq.start(this.m_sequencer, this);
 join

 endfunction
endclass

Note that the `ovm_do_* macros, which embed synchronization and
allocation, can not be used for multi-stream scenarios.

To run a multi-stream scenario as a sequence, we first allocate the
scenario, scenario adapter, and multi-stream scenario generator in the
build() method. Then, we register the scenario and channel(s) it
uses with the multi-stream scenario generator.

 class env extends ovm_component;

 `ovm_component_utils(env)

 ovm_sequencer #(ovm_apb_item) sequencer;
 ovm_driver_req driver;
 vmm_ms_scenario_gen vmm_scen_gen;

 my_sequence vseq;

 function new (string name="my_env",
 ovm_component parent=null);
 super.new(name,parent);
 endfunction

 virtual function void build();

 sequencer = new("OVM_Sequencer", this);
 driver = new("OVM_Driver", this);
 vmm_ms_scenario_gen vmm_scen_gen= new(“gen“);

 // ms scenarios must be pre-allocated
 // and registered with its ms_scenario_gen
 vmm_apb_rw_ms_scen_seq vmm_ms_seq=new(“seq”);

 vmm_scen_gen.register_ms_scenario
 ("vmm_seq",vmm_seq.scenario);

 // register the channel so the VMM scenario
 // can get a reference to it via get_channel
 vmm_scen_gen.register_channel("apb_rw_chan",
 vmm_seq.chan);

 // create sequence using factory
 vseq = my_sequence::type_id::create
 ("my_sequence",this);

 vseq.vmm_seq = vmm_seq;

 endfunction

 virtual function void connect();
 driver.seq_item_port.connect
 (sequencer.seq_item_export);
 endfunction

 virtual task run();
 vseq.start(sequencer);
 ovm_top.stop_request();

 endtask

endclass

module example_09_ms_scenario2sequence;
 env e = new;
 initial run_test();
endmodule

7. CONCLUSION
This paper provided insight into the challenges we faced while
developing the interoperability library and detailed information on
the various adapters that are available to interconnect OVM and
VMM components. The Accellera VIP-TSC based its work on the
assumption that the engineer who is actually doing the work of
integrating OVM and VMM IP must know enough about both
methodologies in order to apply the interoperability library
effectively. This paper provided several advanced applications of the
library to assist integrators in gaining this knowledge: encapsulating
VMM envs with OVM component wrappers, thereby allowing them
to be integrated and reused as any other component in an OVM
environment, and adapting VMM scenarios to run as and alongside
other OVM sequences, thereby enhancing reuse of existing VMM-
based stimulus generation.

8. REFERENCES
[1] Verification Intellectual Property (VIP) Recommended Practices,
Version 1.0, August 25, 2009. Accellera; See
http://sourceforge.net/projects/acc-vip-iop.
[2] Bergeron, Janick, Cerny, Eduard, Hunter, Alan, Nightingale,
Andrew, Verification Methodology Manual for SystemVerilog,
Springer, 2006
[3] Glasser, Mark, Open Verification Methodology Cookbook,
Springer, 2009
[4] OVM World, OVM’s online community;
http://www.ovmworld.org
[5] VMM Central, VMM’s online community;
http://vmmcentral.com

