

shobana sudhakar@mentor.com

Amdahl's Law dictates the upper limit on speedups that can be achieved through multi-core simulations depending on the fraction of parallel portion

www.mentor.com

The Need for Speed: Understanding design factors that make multi-core parallel simulations efficient

Shobana Sudhakar

Mentor Graphics

Desigi	<u>n factors that affect multi-core</u>	
ľ	parallel simulations performance	
Design facto single EDA understand v	ors discussed here are not restricted to any simulator but provides guidelines to what makes multi-core simulations a success.	R po
<i>Load baland</i> Very good lo	<i>cing:</i> oad balancing inside the DUT	
	<pre># testbench 100% # dut 91.1% # block1 32.6% # block2 22.7% # block3 22.6% # block4 21.0%</pre>	
Very unever possibly seq	n load balancing with very low DUT time and quential high-level monitor/drivers	
	<pre># testbench 44.9 # dut 6.3 # interface 5.5 # package 15.7 # monitor 14.0 # driver 8.8</pre>	
<i>Concurrenc</i> Designs suc independent	cy: thas multi-core SoC with busy cores and t functions \rightarrow good candidates	R p
Partition p3 report indica	is idle most of the time and this diagnostic ates sequential execution of design.	
Total Time Idle Time	p0 p1 p2 p3 e 37.49s 37.49s 37.49s 0.00s 2.29s 0.54s 27.00s	
Balanced ble after the oth	ocks that are not concurrent and active one her \rightarrow bad candidates	
<i>Communica</i> Heavy inter- transfers and multi-core s	<i>ation:</i> -partition communication (IPC) for data d synchronization \rightarrow negative impact on simulations.	
Design hierarchy	ns with flat hierarchy or partitioning at a lower - many communication ports, increased traffic	
Blocks single partit	s that communicate a lot \rightarrow keep together in tion	

Rohit K Jain rohit jain@mentor.com

Results

esults of RTL customer designs charting various erformance gains vs. number of parallel partitions used

Performance gain with parallel simulations -1.2xslower to 5.15x faster

Balanced and parallel activity in partitions

Heavy class-based TB and little to no functional activity in the DUT

esults of Gate Level customer designs charting various erformance gains vs. number of parallel partitions used

Performance gain with parallel simulations – 1.19x slower to 3.8x faster

Design activity in gate-level simulations typically tend to be more balanced after synthesis

X Unbalanced simulations with majority of time spent in a small block

hour

candidates

×

Results and analysis reports from actual evaluations and deployments of QuestaSim MC² technology on real customer designs

Commercial multi-core simulation provider checklist

•Flexible methods to create design partitions – manual, semi-automatic or fully automatic

•Support all HDL languages and language features •Partition design based on dynamic simulation activity

•Control cross partition synchronization flexibly

•Various analysis reports to provide feedback on design suitability for multi-core simulations as well as performance results

•Fewer number of tool limitations that affect partitioning

Applicability of parallel simulations technology

Design qualification criteria which can help lead to successful multi-core simulations:

•Big designs with long simulation times of more than an

•Balanced activity in each partition

•Flat gate-level netlists and designs with little to no hierarchies do not partition well and are not good

•Minimal cross-partition access such as through

PLI/DPI/FLI/VPI usage

•Race-free designs

Regression suite of tests:

Large number of tests with small simulation time Multiple simulation jobs in parallel to a distributed grid

Tests that take multiple hours/days Faster identification and fix of functional issues with shorter design cycle

References