The Importance of Complete Signoff Methodology for Formal Verification
Mahesh Parmar? lain Singleton? Geogy Jacob®

1Synopsys (India) Pvt. Ltd. B Wing, 3'-5" Floor, Tower A, RMZ Infinity, Old Madras Road, Bangalore, 56001,
Karnataka, India, mparmar@synopsys.com
2Synopsys Inc, 690 E Middlefield Road, Mountain View, CA 94043, USA, isingle@synopsys.com,
3Synopsys Inc, 690 E Middlefield Road, Mountain View, CA 94043, USA gjacob@synopsys.com

Introduction: Formal verification in the industry has been growing rapidly in the past few years as a means for
ensuring correctness in the design of integrated circuits. The surge in popularity of formal can be attributed in part to
two major factors: the development of user-friendly formal verification tools and the ability of formal to produce
exhaustive verification results. As design complexity continues to grow, and the applications of integrated circuits
become more diverse, there is an ever growing need to achieve higher confidence in design verification. Traditional
verification methodologies such as dynamic simulation cannot provide an exhaustive level of confidence due to the
sheer number of input combinations that need to be tested. The mathematical proofs obtained through formal model
checking allow users to gain confidence that features of designs will always work as expected, however formal is not
without its own challenges.

Due to the exhaustive nature of formal it is held to a higher standard than simulation-based testing. From a manage-
ment perspective, investment in formal often means to them that everything has been completely tested. The success-
ful application of formal however is only as good as the methodology used. To ensure thorough completeness of a
formal verification task it is important to go through a process described here as formal signoff. The formal signoff
process can be broken down into two main areas:

e dealing with bounded proofs

e ensuring verification completeness.

A bounded proof refers to an assertion, given to a formal verification tool, which in the time allotted has not been
able to conclusively say whether a property will always hold true or not. It provides a depth from the initial state up
to which has been exhaustively explored without any failures detected, but beyond this is unknown. Verification
completeness refers to ensuring that all possible features of the design have been tested by the assertions that have
been written. It also refers to checking that the results of these assertions are valid by verifying there are no overcon-
straints on the design. Such overconstraints are dangerous as in the presence of an overconstraint assertions may
pass, masking real issues in the design. In this paper we present a methodology for a complete formal verification
signoff and use a real case study to highlight the dangers of not going through this process.

The case study we present is a Branch Prediction Unit (BPU), a sub-block within the Instruction Fetch Unit (IFU) of
an advanced high performance, low power microprocessor developed for the high-end embedded market. The BPU
is used to reduce the branch penalty in highly pipelined processor designs. This implementation uses dynamic predic-
tion with global history, utilizing the history of previous branches and the current branch in order to make the predic-
tion. The BPU features a dual bank memory and each memory word can have up to 4 instructions aligned to 16 bit
boundaries. The BPU supports up to 2 branches for a 64 bit word and up to four branches can be analyzed every
clock cycle. The BPU receives information from the Execution Unit (EXU) whenever a branch is executed and uses
this information to update branch memory. This information is used to make predictions in the future. A block dia-
gram of the BPU is shown in Figure 1 below.

Add !
v’ | 8 | Address
‘ L Fetl * Instruction Fetch
‘ Interf - (To Icach H/CCM)
" o Icache
Prediction » ace
Logic e
‘ Branch Target
- | |
Prediction Interface Next Address Memory
(From Execution Unit) A
R B .
Branch Branch b Pre.dlctlon ;
Update | | Write | | Memory History =
Logic | Buffer Write Memory
| (Training) L _d | IeeigW | T | Branch Prediction

RAMs
BRANCH PREDICTION UNIT

Figure 1: Block Diagram of BPU

The BPU had undergone significant simulation testing but due to its complex nature, the likelihood of potential
missed bugs remained high. As a result, the management decided to apply formal verification to see whether apply-
ing formal would be enough to complete verification and gain additional confidence. The initial stage of the formal
work done on this was with the plan for thorough and complete verification. The closure criteria used was:

o Designer review of properties and results

¢ Human analysis of acceptable bounded depths and capping the formal verification exploration at this depth

While designer review is an important part of verification signoff it is not enough on its own to produce enough con-
fidence in formal verification. Relying purely on human judgment vs a metric driven approach is prone to error and
use of automation and thorough process is an important part of performing quality formal verification. After the veri-
fication was deemed complete on this design it was passed over to us where we applied our defined verification
methodology to analyze the quality of the work.

Methodology: The originally completed work contained a total of 141 assertions, 19 cover properties and 40
constraints. More than 80% of properties were bounded. Our signoff methodology first begins with thorough analysis
and experimentation with the bounded properties that were left at the end of the verification run. There are several
advanced techniques which help to either improve the bounds of assertions or convert them into full proofs. This
paper does not explore these in detail however and instead focuses on some of the simpler techniques that can be
deployed for bounded proof signoff. For our case study we first performed a bounded analysis on the assertions that
had been written. This technique involves generating a set of cover properties on the design and performing a reach-
ability analysis using shortest path formal engines. By doing this, it is possible to get an idea of the sequential depth
of the design and a better understanding of how many cycles need to be reached to achieve some level of confidence
in a formal signoff. When we performed this analysis on our case study we found that the required bounds were in
fact above those that had been deemed sufficient by the human analysis carried out previously. The previous analysis
was done simply by looking at the design and working with the design team to understand the likely sequential depth
of the design. While this is a useful activity, using formal techniques to calculate the true depth of cover points in the
design can provide a more accurate insight. As the cover points told us that the previously reached depth was not
sufficient we experimented with different formal engines and some abstraction techniques which allowed us to in-

crease the explored bound. Doing this enabled us to find RTL bugs that existed beyond the previously signed off
bound.

In addition to thorough analysis of the bounded proofs, it is important to signoff the quality of the overall formal
testbench and completeness. For verification completeness we adopted a state-of-the-art flow to quantify the areas in
the design which had truly been tested. This encompassed a flow as follows:

E tial Overconstraint Reachability
ssentia Analysis
Y
Structural property Cone of
Strong Influence analysis
Y
Formally generated core of
Stronger driving logic on properties
Y
St t Automated fault injection
ronges assertion stress testing
C

Figure 2: Formal Signoff Flow
Each step of this flow is important.

The first stage of the signoff flow incorporates important overconstraint reachability analysis. In contrast to dynamic
simulation where the inputs of the design are driven, formal property verification, by its nature, will automatically
check all possible interleavings of input combinations. This is part of the exhaustive power of formal verification,
however not all inputs to the design are legal. As a result, it is essential to write a set of constraints to prevent illegal
behavior from driving the design. There are two possible problems that can arise when incorporating constraints:

Underconstrained Design — The set of constraints provided do not prevent all illegal behavior and problematic in-
puts may drive the design

Overconstrained Design — The set of constraints provided is preventing some legal behavior and certain input com-
binations may not be tested.

An underconstrained design is an easier problem to catch. Underconstraints will allow illegal input behavior and as
such cause false failures on the set of assertions being tested. These false failures are naturally debugged and uncover
the underconstraint as the root cause. By contrast, an overconstrained design is a much harder problem to catch.
Overconstraints prevent certain legal behavior and therefore mean that assertions may prove, or remain inconclusive,
under a restricted set of behaviors. When a property is proven, it is assumed that the behavior holds true, but an
overconstraint could be masking a real design bug.

Overconstraint reachability analysis is the process of checking whether all possible cover points in the design are
reachable under a given set of constraints. This is performed by doing a formal reachability analysis on a set of gen-
erated cover properties. If some of these properties are shown to be unreachable it means, there are areas in the de-
sign which cannot be reached and may be prevented from doing so due to constraints. It is of course true that simply
because an area of the design is unreachable, it does not necessarily confirm the presence of an overconstraint. There

may also be areas in the design which are structurally unreachable due to design construction. Classic examples of
this would be default assignments in case statements. In Figure 3 below, the default statement is unreachable by the
formal tool, even without constraints in place.

wire [Ll:0] &:
[Floase (L)

mmmm

| (52
I
L

L defanlt:
endoase

Figure 3: Structurally Unreachable Line Target in Design

It is therefore important to allow the formal model checking tool to perform an analysis to understand whether targets
are unreachable due to constraints or would be unreachable without constraints. Some tools have the ability to per-
form this analysis automatically. An alternative approach would be to run the analysis with and without constraints
and identify the difference. Figure 4 below shows the same simple case statement with an added constraint. In this
case there are areas of the design unreachable both with and without constraints.

assume property (2 (posedge clk) A[L] == 0}

wire [L:0] A
—locaze (A)

=N mpm

endcase

Figure 4: Unreachable Targets with and without Constraints

In Figure 3 we see an overconstraint has been added which ties the MSB of A to 0. This means that we now have
areas of the design unreachable with constraints, in addition to the structurally unreachable target. These overcon-
straints could easily mask a bug in the design. For example, the assertion in Figure 5 below will prove in the pres-
ence of this constraint, but it actually masks a bug in the design.

assert property ("clk r=st |A |-> (B <€ 2)) ;!

Figure 5: Assertion Giving False Positive in the Presence of Overconstraint

As such running overconstraint analysis allows us to identify and remove overconstraints in the design. In the IFU
case study we worked on, performing this analysis identified several overconstraints in the design. Once these over-
constraints were removed, we were able to identify RTL bugs in the design that would have otherwise been missed.
More details in the Results section.

While overconstraint analysis is an important step of checking that the design setup is correct, it does not check
whether there are enough assertions in the design, or the quality of the assertions. There are multiple steps in our
formal signoff flow to check the quality and quantity of assertions. Each step provides a stronger level of confidence
but is slightly more intensive in terms of the runtime cost. By following the flow in order, we can identify low hang-
ing fruit very quickly, before progressing to more intensive analysis.

The first step in reviewing the assertions is to perform a Cone of Influence (COI) analysis. Every property defined in
the formal environment has a structural fan-in of logic that traces back to the primary inputs of the design. If we
overlay all the COI’s of all the assertions in the design, it is possible to see if there are any areas of logic that do not
fan-in to any assertion. The presence of logic within the COI of an assertion does not necessarily mean that this logic
has been tested thoroughly, however if there is logic outside of the COI of all assertions it means that it has most
certainly not been tested.

P1

P2

P3

Figure 6: Visual Representation of Logic Outside of COI of 3 Properties

Figure 6 above shows a visual representation of the analysis where there are 3 assertions, whose COls overlap one
another, but there is a small red cloud of logic sitting outside of the COI of all these properties. Due to the fact COI
analysis is a structural check, we run this as the first part of our signoff flow. The structural nature of the analysis
means that it will always have a quick turnaround time, even on large designs, and the verification holes it finds are
just as valid as holes found by more intensive analysis. Due to the coarse nature of the check however it means that
there could be many more verification holes that have not been found by this analysis. In our case study of the IFU
our COl analysis provided a report that approximately 87% of the design space was within the COI of the assertions,
meaning that 13% of the design remained untested. This was untested in the previous revision as no formal signoff
techniques had been applied and only human review had determined if there were enough properties.

Although COl is a powerful tool for identifying holes in the verification, the structural nature of it means that it is not
as accurate an analysis as other methods. After running COI analysis and fixing the holes, it is then important to per-
form an analysis of the formal core of the assertions. The formal core can be defined as the subset of the COI that
was used by the formal engines to prove the properties.

reg [L:0] cntr;
always (@ (posedge clk or negedge resetn)
if (lresetn)
cntr <= H
else cntr <= cntr + push - pop;

assign empty = cntr = 0;
as=sign full = cntr == 3

as=zert property (@ (posedge clk) !(empty && full))):

Figure 7: Inside COI Outside Formal Core

The example RTL in Figure 7 shows the assignment of the register cntr and an assertion relating to empty and full
flags. In a COI based analysis, the cntr would be shown to be inside the COIl of the property as it is structurally con-
nected. There is however, no relation between the actual assignment of this register and the proof of the assertion. If
we were to replace the cntr with a floating input the property would still prove. As such the cntr is shown as outside
of the formal core, although inside of the COl. Formal core based analysis can be performed by commercial formal
model checking tools to inform the user of what was involved in the proof (or bounded proof) of an assertion. For-
mal core analysis is a stronger, more accurate metric than COI, but because the analysis is formal it usually has a
longer runtime than COI. Because the COI holes are a subset of formal core, it is still recommended to run COI first.

The final step in the signoff flow is to run fault injection/mutation analysis. This is an important step in determining
the final signoff confidence on a formal environment. This fault injection technology used was Synopsys VC Formal
FTA. While formal core analysis can identify that something has been tested about logic in a design, it cannot tell
you whether multiple features of that logic have been tested. Fault injection analysis is the step of artificially insert-
ing bugs into the design and checking whether the assertions falsify in the presence of these faults. If all assertions
prove in the presence of a fault, this indicates a verification hole as we were unable to catch the issues. If, however at
least a single assertion fails in the presence of a fault then this is a sign that we can detect the fault, and an indication
of robustness.

Referring to the small design in Figure 7, we could add the assertion below to ensure that cntr appears in the formal core.

as=sert property (@ (posedge clk) !push && 'pop |-> Zstakle({cntr)):;

Figure 8: Additional Assertion to Improve Formal Core

The assertion in Figure 8 checks something about the cntr register directly and ensures that if push and pop are both
low, the cntr remains stable. This means that cntr would be in the formal core of this assertion as it is involved in the
proof — without cntr, the property would fail. The assertion however only checks one thing about the cntr. It does not
check the increment and decrement conditions happen correctly, only that there are no changes when push and pop
are low. By running a fault injection analysis, we could inject faults to remove the else condition or flip the +/- signs
and none of these faults would be caught — the assertion would still prove. By running fault injection analysis, we can
validate the quality of assertions. Fault injection analysis however can again be more runtime intensive. In general, it
is quicker to falsify a property in formal than it is to prove a property (though there are exceptions). This means that
the stronger your formal environment is when you enter the fault injection phase, the better the performance that will
be seen. Equally, if there are areas of the design that are not supposed to be tested, then they can be found using oth-
er techniques and excluded from the fault injection. As a result, it is much better to step through each stage of the
formal signoff process, increasing the confidence as the steps are performed. In our case study, an additional 17% of
the design was found to be untested on top of the 13% found using COI analysis.

Results: By applying our methodology we were able to identify initially that the bounded depth of 15 which was
considered sufficient was in fact not large enough to be used for signoff. By running a bounded analysis and experi-
menting with cutpoint based abstraction and bug hunting techniques, we identified 33 assertions, out of the original
141 previously signed off at a bounded depth of 15 which subsequently failed between 16 — 20 cycles. This high-
lighted the importance of looking futher into bounded proofs.

In addition to the falsifications that were found at these greater bounded depths we were able to use overconstraint
analysis to ensure that there were no overconstraints in the setup. Using overconstraint analysis has allowed us to
prove that of the 1110 extracted cover points, none of them are overconstraining the design.

In total we were able to identify 4 RTL bugs that were missed by the initial formal verification process. Of these
bugs, all of them were found as a result of discovering the bounds explored were not sufficient and using techniques
to improve the bound. All of the bugs are related to incorrect branch prediction which would have caused serious
problems if they had made their way into Silicon.

Finally, on top of the new RTL bugs we discovered using the already existing assertions, our thorough sign-off flow
identified that approximately 30% of the design in total was as yet untested. This was identified through the use of
mutation analysis which showed that 30% of 2150 injected faults in the design could not be caught with the current
assertions. After identifying the verification holes, we were able to add 8 new assertions, requiring 3 constraints in
order to cover the verification holes.

Original Signed Off Design With Our Signoff Methodology
Total #Properties 141 149
Signoff Methodology Bounded at 15 Full fault detection with FTA
Designer review
Additional found bugs N/A 4

This paper highlights that it is not enough to rely on a technology alone. While formal verification is a very powerful
tool, it is important for management and engineering teams to understand that correct methodology is equally im-
portant. Without the application of a properly defined signoff flow it is easy to under-verify a design and miss bugs.
While this is true of any verification methodology, it is possible to gain a false sense of security with formal verifica-
tion due to its exhaustivity and the belief that it will catch all issues.

