
The How To’s
of Advanced Mixed-Signal Verification

John Brennan, Thomas Ziller, Kawe Fotouhi,
Ahmed Osman

Cadence Design Systems

© Accellera Systems Initiative 1

Agenda

1. Metric-Driven Verification for MS

2. Verification Planning and Management in MS

5. Analog and MS Assertions

3. Universal-Verification Methodology for MS

4. Real-number Modeling Capabilities

6. Q&A

Metric-Driven Verification for Mixed-signal
John Brennan

Mixed
Signal

Software
Control

Integration of
AFE

Process ≤
28nm

Digital
Calibration/

Computation

Industry
Standards

The Winds of Change
Many forces at work to drive change

Source: IBS

TIPPING POINT INDICATORS
• Digitally-calibrated, compensated
• Feedback between D and A
• Software controlled
• Power management
• 28nm and below
• Long Verification Cycles

Mixed-signal Verification: Complexity Issues
Mixed-signal DUT &

Verification test bench environment

Measure

Design

How do I verify the
mixed-signal IP?

How do I verify the mixed-signal
interconnects?

How do I verify the digital
content in this SoC?

Analog
Design

How do I abstract
analog behavior?

How do I build consistency between
digital and analog teams?

Advanced Verification Methodology
Functional Verification Approaches

Test targets

DUT

Test 1:

Test 2:

Test 3: x
Test 4:

Least effective

in finding the

hidden bugs

Directed Tests Driven
Results

DUTG

Coverage
CG1

CG2

CG3 x

CG4

Coverage Driven
Results Adds quality &

productivity,

but difficult to

estimate

completion
Coverage targets

80%

20%

10%

70%

DUT
G

Chip Features

Feature A
Subset 1 ….

Subset 2 ….

Feature B

Feature C

Feature D

Verif. Plan

• Feature A

• Feature B

• Feature C

• Feature D

Metric Driven
50%

20%

Feature-based

plan with

extended

metrics

enables

efficient

and accurate

project closure

Results

A
BDC

Feature-based

Verification targets

(Metrics for cov+checks)

Plan

Construct

Execute

Measure /

Analyze

Metric Driven Verification (MDV): Overview
Planning with unified verification metrics

Done

Yes No

Signoff?

Metric-based

Executable

Verification plan
PDF

VE Start ProductionPrototypeChip

Integration

Module

Set Two
Module

Set One

Actual Metrics Achieved
Target Metrics Milestones

Missed Milestone

Successful Milestone

VE Start ProductionPrototypeChip

Integration

Module

Set Two
Module

Set One

Actual Metrics Achieved
Target Metrics Milestones

Missed Milestone

Successful Milestone

Coverage & Failure

Analysis

Metric Visualization

IEM

Checks

Assertions

Coverage

Incisive®
VIP Portfolio

Testbench Simulation,
Formal,
HW/SW Co-Sim, LPV, MSV,
Sim-Acceleration, Emulation

ISXJG

IES SN

http://www.uvmworld.org/index.php
http://www.uvmworld.org/index.php

Key Elements of MS Verification Solution

Digital
verification

concepts

Behavioral
Modeling

Simulation

• Performance

• Features

• Methodology

• Library

• Tools abstracting

analog and mixed-

signal functionality

• Planning

• Tracking to closure

• Execution and debugging
• Integrated

Environment

Cadence mixed-signal verification solution
Bridging the GAP, addressing complexity

A b s t r a c t i o n L e v e l

Analog High accuracy Digital High simulation throughput

In
te

g
r
a

ti
o

n
 &

 A
u

to
m

a
ti

o
n

Metric-Driven

Verification

Methodology

Logic Simulation (Incisive)Transistor Simulation (Spectre)

RNM Simulation

Multi-Language Simulation

(Incisive)

Analog Modeling (SMG)

Multi-Mode Simulation (MMSim)

Fast SPICE (XPS)

UVM Mixed Signal

PSL / SVA Assertion

Functional Coverage

TB Development

Sim Management

(Analog Design

Environment)

Re-use and Automation

Plan,Track,Analyse,Report

Enabling technology

Core simulation engine

Focus for Today*

Agenda

1. Metric-Driven Verification for MS

2. Verification Planning and Management in MS

5. Analog and MS Assertions

6. Q&A

3. Universal-Verification Methodology for MS

4. Real-number Modeling Capabilities

Verification Planning in MS
Kawe Fotouhi

• Functional Verification is the
process of proving the
convergence of the functional
specification, the design intent,
and the Test environment
implementation

• A good and meaningful
verification plan will prove that
convergence

What is a Meaningful Verification plan?

Design Intent

Verification
Plan

Functional

Specification
Implementation

of verification

environment

Design Intent

Fundamentals of a Good
Verification Plan

Verification
Plan

Functional

Specification

Functional
&

Design
Specs

Implementation

of verification

env

Metrics

design and

Verification

team

Be able to correlate

features with

corresponding

measured metrics

Correctly captures

important implementation

specific concerns

Directly links and

maps all specified

features and key

details

• Get all project related people together
– Analog designer, analog and digital verification engineer, Marketing, Concept, Software, ...

• „Brainstorm“ plan hierarchy and features based on
– Specification
– KnowHow, experience & gut feeling

• Feature analysis focuses on :
– "What" to verify
– Which domain (analog/digital) to verify
– "How” to verify

• Feature Examples
– Device mode and configuration options
– Traffic or protocol handling
– Protocol or device exception handling
– Performance specification
– Operation conditions (PVT)

• Process variations
• Voltage supply
• Temperature

– Application modes
– External connections
– Typical and critical use and corner cases (duty cycle, phase noise ratio etc.)

Creating a Feature based Verification Plan I
Feature Identification

• Translating Feature requirements into concrete metric goals

• Ask HOW features will be measured

• Identify required testcases, coverage and checks metrics

• Which attributes and values are important?
– Driven by the spec

• Where should each value be observed?

– At boundary or involving internal signals

• When are the values valid to be sampled?

– reaching a certain voltage in a given time window after power-up

Creating Feature based Plan II
Attribute Elaboration

PLL output (txi_clk) analog performance and functional feature

Test the SNR in combination

with ref_clk offset

- Cover corner case frequency

- Check PLL locks

PLL (txi_clk) output Digital

Cover all possible output frequency

(randomize fsynth) FRACTIONAL

and INTEGRAL MODE

PLL Core feature – modelling requirements

PLL locks even if it shouldn’t if the

dutycycle of the ref clock is too large

Agenda

1. Metric-Driven Verification for MS

2. Verification Planning and Management in MS

5. Analog and MS Assertions

6. Q&A

3. Universal-Verification Methodology for MS

4. Real-number Modeling Capabilities

UVM for Mixed-signal
Thomas Ziller

UVC

scoreboar

d

transactiontransactionmonitor monitor

sequencer

stimulus

Using UVM to Apply MDV
• Components of a MDV environment

– Automated Stimulus Generation

– Independent Checking

– Coverage Collection

driver
DUT

slave

0x223Fstimulus0XA30E0X94D70XFF780X37670XCC180XDA830XBA1F0X95FB
0X382E

stimulusstimulusstimulusstimulusstimulusstimulusstimulusstimulusstimulus

seed new test

coverage and check metrics

check

check check

cov

cov cov

stimulus sequences

stimulus sequences

stimulus sequences

stimulus sequences

sequence

library

SV TB

MS-MDV Block Diagram (dms_wire, SV top)

VAMS

Netlist

env

master_agent
sequencer

drivermonitor

VIFVIF

Gasket

SigGen Sampler

IFReal Numbers

DUT

VAMS/Transistor

seqseqseq

UVM

Classes

Customizable

dms_wire gasket

Real Numbers

CTRLCTRL
CTRL

Wreal/Electrical

0

0

Frequency

Amplitude

Bias

Phase
`uvm_do_with ana1_wire_seq {

clk_period == 0.5; // sample clk

ampl == 0.001; // 1 mV

bias == 1.1;

freq == 100e6; // 100 MHz

phase == 0.0;

}

• Coverage/Randomization of reals

• Cadence provides full coverage/randomization support

– Full compliment of real variable usage in randomization

SV RNM: Coverage/Randomization

// Vector bins with precision

class my_tb_cls;

rand real voltage;

constraint my_constr {voltage dist

{ [1.0 :1.25] := 1,

[1.25:1.5] := 10,

[1.5 :2.0] := 1 };

}

covergroup cg {

my_voltage : coverpoint voltage {

type_option.real_interval = 0.1;

bins b1[] = {[1.0:2.0]};

}

endgroup : cg

endclass

Randomization

of the voltage

Coverage of what

voltage values

were generated

N-Fractional PLL Mixed-Signal
UVM-MS Testbench Hierarchy Structure

tb_dut (SV top)

pll_sim (vams)
pll DUT (vams)

pll_stim (vams)

sequencer

dms_wire_uvc

gasket (vams)

dms_wire

master_agent

driver

IF
VIF

monitor VIF

real
electrical

logic electrical

avdd

pll_tx_agent

driver

IF
VIF

monitor VIF

logic

logic
fsynth<13:0>

clk

...

N-Fractional PLL Mixed-Signal
Constrained Random Simulation Results

Calibration Settling

PLL lock
Cal. done

Lock
Calibration Settling

Cal. done

Constrained

random

variations

Set fsynth

Turn on avdd supply

div2clk

N-Fractional PLL Mixed-Signal
”avdd” Supply Range Checking

dms_wire

Analog UVC

Vreg

PLL Volt.

Regulator

Vco

and

Div/2

Constrained

Random

Number Gen.

[2.325 ... 2.675]

PLL DUT

div2clk

UVM-MS env.

electrical

real avdd

-7%

+7%

+5%

-5%

2.5 supply_ok

under_volt

over_volt

1.2V

0V

avdd

supply_ok

under_volt

over_volt
avdd

div2clk

div2clk

N-Fractional PLL Mixed-Signal
”avdd” Supply Range Checking

vco starts

avdd supply within 2.5V+/-5% range

vco remains turned-off

avdd<2.375V under_voltage condition

supply_ok

under_voltage

covergroup cg_fsynth;

cp_fsynth: coverpoint fsynth{

illegal_bins a =

{[14'h2201:14'h3fff]};

option.auto_bin_max = 25; }

endgroup : cg_fsynth

covergroup bias_cg;

bias_cp : coverpoint bias {

bins over_volt = {[2.625:10]};

bins supply_ok =

{[2.375:2.625]};

bins under_volt ={[0: 2.375]}; }

endgroup // bias_cg

MS Regression Control & Analysis
Functional Coverage Results Example (20 runs)

Covergroup definitions:

Automated Runs (2x10, randomized),

coverage data collection

Agenda

1. Metric-Driven Verification for MS

2. Verification Planning and Management in MS

5. Analog and MS Assertions

6. Q&A

3. Universal-Verification Methodology for MS

4. Real-number Modeling Capabilities

Real-number Modeling Capabilities
Ahmed Osman

Performance : Simulation throughput
Behavioral Modeling DMS vs AMS

Performance

A
c
c

u
ra

c
y

Verilog-AMS

VHDL-AMS

Pure

Digital

Wreal/

SV-RNM

FastSPICE

SPICE/APS

SoC Functional

Verification

E
ff

o
rt

SPICE/APS

Verilog- AMS

VHDL AMS

Pure

Digital

Wreal/

SV-RNM
FastSPICE

Performance

• Model analog block operation as
discrete real data

– Signal flow-based modeling
approach

• Key advantages of RNM
– Discrete solver only
– Very high simulation performance
– Event driven or sampled data

modeling of analog operation
– No analog solver, no convergence

problems!
– Can be written by analog designers

and/or digital verification engineers

• RNM languages include
‒ Verilog-AMS (wreal)
‒ VHDL
‒ SystemVerilog
‒ e

wreal &

electrical

wreal &

logic

Analog or Real Modeling: What is the
Difference?

Analog Modeling

• Describes current vs. voltage
relationship between nodes in
model

• Newton-Raphson iteration process
performs matrix inversion to solve
all voltage and currents

• Timestep until next solution is
selected based on accuracy criteria

Real Modeling

• No matrix solution – output
computed directly from input &
internal state. Model defines when
to perform each internal
computational segment

• No continuous time operation –
only sampled, clocked, and/or
event-driven operations. Updates
can be performed when inputs
change and/or at specific time
increments

• Same format for digital and real
modelling – difference is data type

SystemVerilog IEEE 1800-2012 LRM
– User-Defined Types (UDTs)

• Allows for single-value real nettypes

• Keyword used: nettype

• Allows for multi-value nets (multi-field record style)

• It can hold one or more values (such as voltage, current, impedance)
in a single complex data type that can be sent over a wire

– User-Defined Resolution (UDRs)

• Functions to resolve user-defined types using keyword: with

• Specifies how to combine user defined types

– Interconnect Nets

• Types

– Explicit: Type-less/Generic nets with keyword: interconnect

– Implied: A Verilog(-AMS) net with keywords: wire, tri, wand, triand,
wor, or trior

• Used only for a net or port declarations

SystemVerilog User-Defined Nets

– User-Defined Nets can carry
one or more values over a
single net.

– Real values can be used to
communicate voltage,
current and other values
between design blocks

– User-Defined Resolutions (UDR)
functions are used to combine
multiple outputs together.

V(out) V(in)

V(out)

Real-value

nettype
UDR

Programmable

means to define

how multiple fields

in a UDT are

resolved

UDT

{V,I,R}

SV

Analog

Model

UDT

{V,I,R}

SV

Analog

Model

UDT

{V,I,R}

SV

Analog

Model

Example

Declaring User-Defined Nettype
• A SystemVerilog user-defined nettype without any resolution function can be

declared as:

// user-defined data type T
typedef struct {

real voltage;

real current;

bit field3;

integer field4;

} T;
UDT

nettype T myNet;

Keyword
UDT

Nettype identifier

module top;

nettype T myNet;

myNet w;

assign w = T'{0.1, 0.2, 1'b1, 10};

initial begin

$display("Value of w -> %f => %p",$realtime, w);

#1 $display("Value of w -> %f => %p",$realtime, w);

#5 $display("Value of w -> %f => %p",$realtime, w);

end

endmodule

Value of w -> 0.000000 => '{voltage:0, current:0, field3:'h0, fileld4:x}

Value of w -> 1.000000 => '{voltage:0.1, current:0.2, field3:'h1, fileld4:10}

Value of w -> 6.000000 => '{voltage:0.1, current:0.2, field3:'h1, fileld4:10}

Declaring User-Defined Net with Resolution Function

• A user-defined SystemVerilog nettype with its resolution functions can be declared as:

• nettype_identifier is the identifier you specify for the nettype.

• [package_scope|class_scope] tf_identifier] can be a Cadence built-in
resolution function or any typedef to the built-in real type

nettype data_type nettype_identifier with

[package_scope|class_scope] tf_identifier] ;

//Declaring a UDT nettype with UDR
nettype T wTsum with Tsum;

// user-defined resolution function Tsum
function automatic T Tsum (input T driver[]);

Tsum.field1 = 0.0;

Tsum.field2 = 0.0;

foreach (driver[i]) begin

Tsum.field1 += driver[i].field1;

Tsum.field2 += driver[i].field2;

end

endfunction

// user-defined data type T
typedef struct {

real field1;

real field2;

} T;

UDT

UDR

User-Defined Nettype Example

package temp_pkg;

// user-defined data type T
typedef struct {

real field1;

real field2;

} T;

// user-defined resolution function Tsum
function automatic T Tsum (input T driver[]);

Tsum.field1 = 0.0;

Tsum.field2 = 0.0;

foreach (driver[i]) begin

if (driver[i].field1 !== `wrealZState)

Tsum.field1 += driver[i].field1;

if (driver[i].field2 !== `wrealZState)

Tsum.field2 += driver[i].field2;

end

endfunction

// A nettype declaration with datatype and resolution function
nettype T wTsum with Tsum;

endpackage

import temp_pkg::*;

module top;

wTsum w;

T myvar;

assign myvar = w;

driver1 d1(w);

driver2 d2(w);

receiver1 r1(w);

endmodule

module receiver1 (input wTsum rec_1);

always @(rec_1.field1, rec_1.field2)

$display($time , ," sum = %f flag = %f \n",

rec_1.field1, rec_1.field2);

endmodule

module driver1 (output wTsum dr_1);

assign dr_1 = T'{1.0, 2.0};

endmodule

module driver2 (output wTsum dr_2);

assign dr_2 = T'{3.0,4.0};

endmodule

Data Type and Resolution Function
(As a Package)

Model

d1

d2

r1
w

Resolved

{4.0,6.0}

UDT

UDR

Nettype

Electrical Package in SystemVerilog
• An Electrical Package for Systemverilog (EE_pkg.sv) defines an electrical

equivalent net (V-I-R) for use in discrete analog behavioral models.

• You can use the new EE_pkg package to port existing wreal models to SV.

• Has a UDR function that describes how the resolution of V, I and R are
resolved, res_EE.

• This package ends with the nettype declaration statement:

• The EEnet will conform to Kirchoff's laws.

nettype EEstruct EEnet with res_EE;

 Describes the structure
EEstruct (UDT) which
consists of three reals
namely V, I and R.

Case Study 1: N-Fractional PLL Mixed Signal

Voltage

Regulator

2MHz refclk Level

Shifter

PFD

Charge

Pump

VCO

Divider

Level Shifter

 Modulator + Digital

Control

ESD

Loop Filter

Charge Pump
Loop Pass Filter

(bilinear transform)

EEnet

Loop Filter
(EE_pkg)

Case Study 1: N-Fractional PLL Mixed Signal

• Loop Filter Voltage output (Verilog-AMS vs. SV EE_pkg)

EE_pkg

SystemVerilog

Verilog-AMS

SV-RNM VAMS
CPU Time 47 seconds 1 hr 8 min. 32 sec

A speed gain of 90x over mixed-signal Verilog-AMS

Case Study 1: N-Fractional PLL Mixed Signal

Case Study2: 3rd – order Feed-forward Gm-C 𝚫𝚺 ADC
High-level Sizing and frequency scaling

Schematic of 3rd – order Gm-C 𝚫𝚺 ADC

Case Study2: 3rd-order Feed-forwardGm-C 𝚫𝚺 ADC
Simulation results for input signal = 80mV

VAMS

SVRNM

Case Study2: 3rd-order CIFF Gm-C 𝚫𝚺 ADC
Simulation results for ain = 80mV

 Spectrum Assistant has been used in ViVA to evaluate various spectrum properties, e.g.
SINAD, ENOB, THD, etc.

SV-RNM VAMS

SQNR 72.92 dB 72.33 dB

SINAD 71.06 dB 72.33 dB

ENOB 11.515 11.72

THD % 18.19m % 8.1m %

Noise Floor (per sqrt Hz) -126 dB/sqrt Hz -125.3 dB/sqrt Hz

CPU Time 0.4 seconds 92.5 seconds

A speed gain of 230x over mixed-signal Verilog-AMS

Agenda

1. Metric-Driven Verification for MS

2. Verification Planning and Management in MS

5. Analog and MS Assertions

6. Q&A

3. Universal-Verification Methodology for MS

4. Real-number Modeling Capabilities

Analog and MS Assertions
Ahmed Osman

Automation & re-use thru Assertions
in Digital, Analog, and Mixed Signal

Why Assertions?

Assume

Assert

Cover

Language Support

SVA

PSL

Not New for Analog

Device checks

Spectre MDL

$cds_get_analog_value

• e.g. Monotonicity,DNL, comparator meta-stabilityData converters

• e.g. Calibration / process variability compensation
Digitally-assisted

analog

• PLL : e.g. PLL lock-in time, Output frequency tuning

• Sigma-Delta : e.g. Integrator stability, presence of tones

Systems with
Feedbcak

• Power modes, programmable gain, adaptive filtersMultiple modes

• Real Assertion (using RNM data type)
– PSL with explicitly declared wreals
– SVA using real variable

• Analog Assertion (electrical domain behavior)
– PSL or e containing analog objects or access functions or operators
– (This is not possible in SVA since there is no analog object allowed in SV)

Analog / Mixed-signal PSL Assertions

real vin;

// psl vin_check : assert always (1.2 < vin && vin < 1.3)

// @(posedge clk);

electrical vin;

// psl vin_check : assert always (1.2 < V(vin) && V(vin) < 1.3)

// @(cross(V(clk)-1.25));

Analog PSL assertions:
Verification Unit

• Verification units in PSL can contain analog objects

• Write your PSL statements/vunit into a file, e.g. inv_vams.pslvlog

• Example:

module INV_vams (out1, in1);

output out1;

input in1;

electrical in1, out1;

analog begin

if (V(in1) >= 1.25)

V(out1) <+ 0.0;

else

V(out1) <+ 2.5;

end

endmodule

vunit inv_vams_inst_vunit(INV_vams)

{

// psl assert

// always (V(out1) < 1.25)

// @(cross(V(in1)-1.25));

}

Demo

© Accellera Systems Initiative 50

Questions

© Accellera Systems Initiative 51

