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Metric-Driven Verification for Mixed-signal
John Brennan
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The Winds of Change
Many forces at work to drive change

Source: IBS

TIPPING POINT INDICATORS
• Digitally-calibrated, compensated
• Feedback between D and A
• Software controlled
• Power management
• 28nm and below
• Long Verification Cycles



Mixed-signal Verification: Complexity Issues
Mixed-signal DUT &

Verification test bench environment

Measure

Design

How do I verify the 
mixed-signal IP?

How do I verify the mixed-signal
interconnects?

How do I verify the digital 
content in this SoC?

Analog
Design

How do I abstract
analog behavior?

How do I build consistency between
digital and analog teams?



Advanced Verification Methodology 
Functional Verification Approaches
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Execute
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Metric Driven Verification (MDV): Overview
Planning with unified verification metrics 
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Key Elements of MS Verification Solution

Digital 
verification 

concepts
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Modeling

Simulation

• Performance 
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• Methodology

• Library

• Tools abstracting 

analog and mixed-

signal functionality

• Planning

• Tracking to closure

• Execution and debugging
• Integrated 

Environment 



Cadence mixed-signal verification solution
Bridging the GAP, addressing complexity
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RNM Simulation
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Analog Modeling (SMG)

Multi-Mode Simulation (MMSim)

Fast SPICE (XPS)

UVM Mixed Signal
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TB Development

Sim Management
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Environment)

Re-use and Automation
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Enabling technology
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Focus for Today*
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Verification Planning in MS
Kawe Fotouhi



• Functional Verification is the 
process of proving the 
convergence of the functional 
specification, the design intent, 
and the Test environment 
implementation 

• A good and meaningful 
verification plan will prove that 
convergence

What is a Meaningful Verification plan?

Design Intent

Verification
Plan

Functional

Specification
Implementation

of  verification

environment



Design Intent

Fundamentals of a Good 
Verification Plan

Verification
Plan

Functional

Specification

Functional
&

Design
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of  verification
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Metrics

design and

Verification  
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features with 

corresponding 
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Correctly captures 

important implementation 

specific concerns
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maps all specified 

features and key 

details



• Get all project related people together
– Analog designer, analog and digital verification engineer,  Marketing, Concept, Software, ...

• „Brainstorm“ plan hierarchy and features based on
– Specification
– KnowHow, experience & gut feeling

• Feature analysis focuses on :
– "What" to verify
– Which domain (analog/digital) to verify 
– "How” to verify 

• Feature Examples
– Device mode and configuration options
– Traffic or protocol handling
– Protocol or device exception handling
– Performance specification  
– Operation conditions (PVT)

• Process variations 
• Voltage supply 
• Temperature 

– Application modes
– External connections
– Typical and critical use and corner cases (duty cycle, phase noise ratio etc.)

Creating a Feature based Verification Plan I
Feature Identification



• Translating Feature requirements into concrete metric goals

• Ask HOW features will be measured

• Identify required testcases, coverage and checks metrics

• Which attributes and values are important?
– Driven by the spec

• Where should each value be observed?

– At boundary or involving internal signals

• When are the values valid to be sampled?

– reaching a certain voltage in a given time window after power-up

Creating Feature based Plan II
Attribute Elaboration



PLL output (txi_clk) analog performance and functional feature

Test the SNR in combination 

with ref_clk offset

- Cover corner case frequency

- Check PLL locks



PLL (txi_clk) output Digital 

Cover all possible output frequency 

(randomize fsynth) FRACTIONAL 

and INTEGRAL MODE 



PLL Core feature – modelling requirements

PLL  locks even if it shouldn’t if the 

dutycycle of the ref clock is too large
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UVM for Mixed-signal
Thomas Ziller



UVC

scoreboar
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Using UVM to Apply MDV
• Components of a MDV environment

– Automated Stimulus Generation

– Independent Checking

– Coverage Collection
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DUT
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SV TB

MS-MDV Block Diagram (dms_wire, SV top)

VAMS

Netlist

env

master_agent
sequencer

drivermonitor

VIFVIF

Gasket 

SigGen Sampler

IFReal Numbers

DUT

VAMS/Transistor

seqseqseq

UVM

Classes

Customizable

dms_wire gasket

Real Numbers

CTRLCTRL
CTRL

Wreal/Electrical

0

0

Frequency

Amplitude

Bias

Phase
`uvm_do_with ana1_wire_seq {

clk_period == 0.5; // sample clk

ampl == 0.001;     // 1 mV

bias == 1.1;

freq == 100e6;      // 100 MHz

phase == 0.0;

}



• Coverage/Randomization of reals

• Cadence provides full coverage/randomization support

– Full compliment of real variable usage in randomization

SV RNM: Coverage/Randomization

// Vector bins with precision

class my_tb_cls; 

rand real voltage;

constraint my_constr {voltage dist

{ [1.0 :1.25] := 1, 

[1.25:1.5 ] := 10, 

[1.5 :2.0 ] := 1 };

}

covergroup cg {

my_voltage : coverpoint voltage {

type_option.real_interval = 0.1;

bins b1[] = {[1.0:2.0]};

}

endgroup : cg

endclass

Randomization 

of the voltage

Coverage of what 

voltage values 

were generated



N-Fractional PLL Mixed-Signal
UVM-MS Testbench Hierarchy Structure

tb_dut (SV top)
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clk

...



N-Fractional PLL Mixed-Signal 
Constrained Random Simulation Results

Calibration Settling

PLL lock
Cal. done

Lock
Calibration Settling

Cal. done

Constrained 

random

variations

Set fsynth

Turn on avdd supply



div2clk

N-Fractional PLL Mixed-Signal
”avdd” Supply Range Checking

dms_wire

Analog UVC

Vreg 

PLL Volt. 

Regulator 

Vco 

and 
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Constrained 

Random
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PLL DUT
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+7%

+5%

-5%
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N-Fractional PLL Mixed-Signal
”avdd” Supply Range Checking

vco starts

avdd supply within 2.5V+/-5% range

vco remains turned-off

avdd<2.375V  under_voltage condition

supply_ok

under_voltage



covergroup cg_fsynth;

cp_fsynth: coverpoint fsynth{

illegal_bins a = 

{[14'h2201:14'h3fff]};

option.auto_bin_max = 25; }

endgroup : cg_fsynth

covergroup bias_cg;

bias_cp : coverpoint bias {

bins over_volt = {[2.625:10]};

bins supply_ok = 

{[2.375:2.625]};

bins under_volt ={[0: 2.375]}; }

endgroup // bias_cg

MS Regression Control & Analysis
Functional Coverage Results Example (20 runs) 

Covergroup definitions: 

Automated Runs (2x10, randomized), 

coverage data collection
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Real-number Modeling Capabilities
Ahmed Osman



Performance : Simulation throughput
Behavioral Modeling DMS vs AMS

Performance
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• Model analog block operation as 
discrete real data

– Signal flow-based modeling 
approach 

• Key advantages of RNM
– Discrete solver only 
– Very high simulation performance
– Event driven or sampled data 

modeling of analog operation
– No analog solver, no convergence 

problems!
– Can be written by analog designers 

and/or digital verification engineers

• RNM languages include
‒ Verilog-AMS (wreal)
‒ VHDL
‒ SystemVerilog
‒ e

wreal & 

electrical

wreal & 

logic



Analog or Real Modeling: What is the 
Difference?

Analog Modeling

• Describes current vs. voltage
relationship between nodes in 
model

• Newton-Raphson iteration process 
performs matrix inversion to solve 
all voltage and currents

• Timestep until next solution is 
selected based on accuracy criteria

Real Modeling

• No matrix solution – output 
computed directly from input & 
internal state. Model defines when 
to perform each internal 
computational segment

• No continuous time operation –
only sampled, clocked, and/or 
event-driven operations. Updates 
can be performed when inputs 
change and/or at specific time 
increments

• Same format for digital and real 
modelling – difference is data type



SystemVerilog IEEE 1800-2012 LRM
– User-Defined Types (UDTs) 

• Allows for single-value real nettypes

• Keyword used: nettype

• Allows for multi-value nets (multi-field record style) 

• It can hold one or more values (such as voltage, current, impedance) 
in a single complex data type that can be sent over a wire

– User-Defined Resolution (UDRs) 

• Functions to resolve user-defined types using keyword: with

• Specifies how to combine user defined types

– Interconnect Nets

• Types 

– Explicit: Type-less/Generic nets with keyword: interconnect

– Implied: A Verilog(-AMS) net with keywords: wire, tri, wand, triand, 
wor, or trior

• Used only for a net or port declarations



SystemVerilog User-Defined Nets

– User-Defined Nets can carry 
one or more values over a 
single net.

– Real values can be used to 
communicate voltage, 
current and other values 
between design blocks

– User-Defined Resolutions (UDR) 
functions are used to combine 
multiple outputs together.

V(out) V(in)

V(out)

Real-value 

nettype
UDR 

Programmable 

means to define 

how multiple fields 

in a UDT are 

resolved

UDT

{V,I,R}

SV 

Analog 

Model

UDT

{V,I,R}

SV 

Analog 

Model

UDT

{V,I,R}

SV 

Analog 

Model



Example

Declaring User-Defined Nettype
• A SystemVerilog user-defined nettype without any resolution function can be 

declared as:

// user-defined data type T
typedef struct {

real    voltage;

real    current;

bit     field3;

integer field4;

} T;
UDT

nettype T myNet;

Keyword
UDT

Nettype identifier

module top;

nettype T myNet;

myNet w;

assign w = T'{0.1, 0.2, 1'b1, 10};

initial begin

$display("Value of w -> %f => %p",$realtime, w);

#1 $display("Value of w -> %f => %p",$realtime, w);

#5 $display("Value of w -> %f => %p",$realtime, w);

end

endmodule

Value of w ->  0.000000 => '{voltage:0, current:0, field3:'h0, fileld4:x}

Value of w ->  1.000000 => '{voltage:0.1, current:0.2, field3:'h1, fileld4:10}

Value of w ->  6.000000 => '{voltage:0.1, current:0.2, field3:'h1, fileld4:10}



Declaring User-Defined Net with Resolution Function

• A user-defined SystemVerilog nettype with its resolution functions can be declared as:

• nettype_identifier is the identifier you specify for the nettype.

• [package_scope|class_scope] tf_identifier] can be a Cadence built-in 
resolution function or any typedef  to the built-in real type

nettype data_type nettype_identifier with

[package_scope|class_scope] tf_identifier] ;

//Declaring a UDT nettype with UDR
nettype T wTsum with Tsum;

// user-defined resolution function Tsum
function automatic T Tsum (input T driver[]);

Tsum.field1 = 0.0;

Tsum.field2 = 0.0;

foreach (driver[i]) begin

Tsum.field1 += driver[i].field1;

Tsum.field2 += driver[i].field2;

end

endfunction

// user-defined data type T
typedef struct {

real field1;

real field2;

} T;

UDT

UDR



User-Defined Nettype Example

package temp_pkg;

// user-defined data type T
typedef struct {

real field1;

real field2;

}  T;

// user-defined resolution function Tsum
function automatic T Tsum (input T driver[]);   

Tsum.field1 = 0.0;

Tsum.field2 = 0.0;

foreach (driver[i]) begin

if (driver[i].field1 !== `wrealZState)

Tsum.field1 += driver[i].field1;

if (driver[i].field2 !== `wrealZState)

Tsum.field2 += driver[i].field2;

end

endfunction

// A nettype declaration with datatype and resolution function
nettype T wTsum with Tsum;

endpackage

import temp_pkg::*;

module top;

wTsum w;

T myvar;

assign myvar = w;

driver1 d1(w);

driver2 d2(w);

receiver1 r1(w);

endmodule

module receiver1 (input wTsum rec_1);

always @(rec_1.field1, rec_1.field2)

$display($time , ," sum = %f  flag = %f \n", 

rec_1.field1, rec_1.field2);

endmodule

module driver1 (output wTsum dr_1);

assign dr_1 = T'{1.0, 2.0};

endmodule

module driver2 (output wTsum dr_2);

assign dr_2 = T'{3.0,4.0};

endmodule

Data Type and Resolution Function
(As a Package)

Model

d1

d2

r1 
w

Resolved 

{4.0,6.0}

UDT

UDR

Nettype



Electrical Package in SystemVerilog
• An Electrical Package for Systemverilog (EE_pkg.sv) defines an electrical 

equivalent net (V-I-R) for use in discrete analog behavioral models.

• You can use the new EE_pkg package to port existing wreal models to SV. 

• Has a UDR function that describes how the resolution of V, I and R are 
resolved, res_EE.

• This package ends with the nettype declaration statement:

• The EEnet will conform to Kirchoff's laws.

nettype EEstruct EEnet with res_EE;

 Describes the structure 
EEstruct (UDT) which 
consists of three reals 
namely V, I and R.



Case Study 1: N-Fractional PLL Mixed Signal

Voltage 

Regulator

2MHz refclk Level 

Shifter

PFD
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Charge Pump
Loop Pass Filter

(bilinear transform)

EEnet

Loop Filter
(EE_pkg)

Case Study 1: N-Fractional PLL Mixed Signal



• Loop Filter Voltage output (Verilog-AMS vs. SV EE_pkg)

EE_pkg

SystemVerilog

Verilog-AMS

SV-RNM VAMS
CPU Time 47 seconds 1 hr 8 min. 32 sec

A speed gain of 90x over mixed-signal Verilog-AMS

Case Study 1: N-Fractional PLL Mixed Signal



Case Study2: 3rd – order Feed-forward Gm-C 𝚫𝚺 ADC
High-level Sizing and frequency scaling

Schematic of 3rd – order Gm-C 𝚫𝚺 ADC



Case Study2: 3rd-order Feed-forwardGm-C 𝚫𝚺 ADC
Simulation results for input signal = 80mV

VAMS

SVRNM



Case Study2: 3rd-order CIFF Gm-C 𝚫𝚺 ADC
Simulation results for ain = 80mV

 Spectrum Assistant has been used in ViVA to evaluate various spectrum properties, e.g. 
SINAD, ENOB, THD, etc.

SV-RNM VAMS

SQNR 72.92 dB 72.33 dB

SINAD 71.06 dB 72.33 dB

ENOB 11.515 11.72

THD % 18.19m % 8.1m %

Noise Floor (per sqrt Hz) -126 dB/sqrt Hz -125.3 dB/sqrt Hz

CPU Time 0.4 seconds 92.5 seconds

A speed gain of 230x over mixed-signal Verilog-AMS
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Analog and MS Assertions
Ahmed Osman



Automation  & re-use thru Assertions
in Digital, Analog, and Mixed Signal 

Why Assertions?

Assume

Assert

Cover

Language Support

SVA

PSL

Not New for Analog

Device checks

Spectre MDL

$cds_get_analog_value

• e.g. Monotonicity,DNL, comparator meta-stabilityData converters

• e.g. Calibration / process variability compensation
Digitally-assisted 

analog

• PLL : e.g. PLL lock-in time, Output frequency tuning

• Sigma-Delta : e.g. Integrator stability, presence of tones

Systems with 
Feedbcak

• Power modes, programmable gain, adaptive filtersMultiple modes



• Real Assertion (using RNM data type)
– PSL with explicitly declared wreals
– SVA using real variable

• Analog Assertion (electrical domain behavior)
– PSL or e containing analog objects or access functions or operators
– (This is not possible in SVA since there is no analog object allowed in SV)

Analog / Mixed-signal PSL Assertions

real vin;

// psl vin_check : assert always ( 1.2 < vin && vin < 1.3 )

// @(posedge clk);

electrical vin;

// psl vin_check : assert always ( 1.2 < V(vin) && V(vin) < 1.3 )

// @( cross(V(clk)-1.25)); 



Analog PSL assertions: 
Verification Unit

• Verification units in PSL can contain analog objects

• Write your PSL statements/vunit into a file, e.g. inv_vams.pslvlog

• Example: 

module INV_vams ( out1, in1 );

output out1;

input in1;

electrical in1, out1;

analog begin

if (V(in1) >= 1.25)

V(out1) <+ 0.0;

else

V(out1) <+ 2.5;

end

endmodule

vunit inv_vams_inst_vunit(INV_vams)

{

// psl assert

// always ( V(out1) < 1.25 )

// @( cross(V(in1)-1.25));

}
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