
The future of formal model checking is NOW!
Leveraging formal methods for RAPID System On Chip verification

Ram Narayan

Hardware Advanced Development

Oracle Labs

Austin, Texas. U. S. of A.

ram.narayan@oracle.com

Abstract—This paper describes the experience of using formal

model checking for verifying portions of the RAPID System On

Chip (SoC). We describe the evolution of the RAPID verification

plan to leverage formal methods. We outline some of the

infrastructure that was developed to make this a productive

effort. This paper documents the results and impact of these

approaches on RAPID. The purpose of this paper is to encourage

readers to explore the use of formal verification for their

projects.

Keywords—formal; verification; SoC; System On Chip; model

checking

I. INTRODUCTION

A. SoC Verification

The goal for any hardware verification project involves

answering these two seemingly simple questions [8]:

 Does the design work?

 Are we done?

The success of all projects hinges on the ability to answer

these questions adequately in a timely manner. Neither the

quality nor the timeliness is an easy target in its own right.

When combined together as an objective, they present a

significant challenge to the best in the industry.

Verification of System On Chip (SoC) designs have some

unique challenges posed due to design sizes, number of design

units (IPs), complex system interconnect fabric, multiple

embedded processors, multiple power and clock domains,

analog and mixed-signal content and the software layer that

controls much of the behavior on the chip. The stringent time

to market demands do not make the challenge any easier.

The approach to verifying SoC’s is often a fragmented

one.

 IP verification to verify the design units at the block

level

 Interconnect verification to verify the system

interconnect

 SoC level verification to verify the interplay between

the different units and other system functions

 System integration to co-verify hardware and the

software functionality and performance.

This verification challenge has fostered significant

innovations and collaboration in the industry over the last two

decades. Significant among those is the emergence of

standards such as SystemVerilog (SV), SystemVerilog

Assertions (SVA)[9] and Universal Verification Methodology

(UVM)[6].

B. Formal Model Checking

Assertion-based verification techniques [2] have enabled

design teams to not only enhance their productivity in

simulation debug, but also enabled them to explore formal

solutions to solve verification challenges that would otherwise

take an inordinate amount of time with simulation. Formal

verification is steadily gaining acceptance among design

teams. However, only a quarter [1] of the design teams take

advantage of these methods. Perception that these methods are

complex to adopt and need special skills and expertise to

comprehend and adopt is prevalent. In addition to formal

model checking, we are witnessing the introduction of

automatic formal checking [11] in the industry. These

solutions enable the use of formal methods to reveal design

issues without the need for any intent specification (assertions)

or simulation testbenches.

There are two strategies for applying formal model

checking [13] to any design to be verified. The Assurance

strategy relies on solely formal model checking to thoroughly

verify the unit. This entails proving adequate properties about

the design to claim completely correctness. This strategy is

applicable for units whose functionality can be completely

specified using assertions. Formal model checking can also be

applied with a Bug Hunting strategy with the purpose of

finding bugs in the design. This strategy is typically targeted

at corner cases in the design that are harder to cover with

simulation. In this case we do not necessarily try to cover the

entire state space of the design with properties. So, the bug

hunting approach is often used in conjunction with simulation

to completely verify the unit.

C. Project RAPID

Project RAPID is a hardware-software co-design initiative

in Oracle Labs that leverages a heterogeneous hardware

architecture combined with architecture-conscious software to

improve the energy efficiency of database-processing systems.

This paper is a by-product of using formal verification to

verify parts of the RAPID SoC.

D. Paper Organization

Section II discusses the evolution of the RAPID formal

verification plan from an opportunistic one to a planned

deployment of the technology. The infrastructure developed to

sustain the entire formal flow is described in Section III. In

Section IV, we talk about our experiences with applying

formal tools with multiple strategies on RAPID. The results of

those experiences and the impact on RAPID are shared in

Section V. Finally, this paper concludes by sharing some

insights learned from this project in Section VI.

II. PLANNING FOR FORMAL VERIFICATION

The initial RAPID verification plan largely relied on a
constrained-random simulation environment developed using
UVM. Most newly designed units had their own unit level
verification environment to thoroughly verify the unit prior to
integration into the RAPID SoC Verification Environment. The
SoC verification was largely used to verify the interaction
between the different units under various operating modes.

A. Initial Outlook towards Formal

At the outset of the project, there were no specific plans to
use formal verification on RAPID. We decided to explore the
use of formal methods to verify the connectivity [10] at the
SoC level. This included

 Connectivity of events like interrupts across the SoC

 Connectivity of Design for Test (DFT) signals across
the SoC

 Our goal was to catch trivial design errors through formal
methods without having to rely on lengthy and in some cases,
random SoC simulations. We would have been satisfied if we
just verified these SoC connectivity checks with formal tools.
We did not have any infrastructure in place for running any
formal tool on the project. None of the members on the team
had any noteworthy experience with using formal verification
tools. Needless to say, our initial expectations were modest.

B. Focused Plans for Formal Verification

Our modest expectations quickly grew wings with the early
success of the SoC connectivity checks and we became more
ambitious. We decided to explore the use of formal verification
to verify some of the custom IP being designed for RAPID.
Each of these units were targeted with a different formal
strategy depending on design complexity.

1) Assurance Targets
Some of these units, (Event Count Monitor (ECM), System

Interrupts Controller (SIC), Least Recently Used Arbiter
(LRU) and SRAM Parity Error Register (SPE)) fit the criteria
for good candidates[5] for formal verification very well. It was
very reasonable to expect to be able to prove the complete

functionality of these units formally. We decided to target
these units with the Assurance strategy. In addition to proving
these units with formal verification, we decided to add a few
SoC simulation sanity tests to demonstrate the operation of
these units in a broader scope. These simulations were largely
to verify the access to these units as specified in the RAPID
register map.

The initial architecture for the SRAM Parity Error Register
(SPE) did not lend itself well to applying formal methods. The
distributed nature of the SRAMs would have warranted the
verification of this unit to be distributed across multiple scopes
and the development of error injection mechanisms along with
the UVM-based verification environments. This was budgeted
to consume close to 6 weeks in our verification schedule.
Encouraged by the success of formal verification on previous
units, we modified the architecture of this unit to make it better
suited for Assurance with formal verification. This included
partitioning the register function from the error detection and
propagation functions. We reduced the time to verification
closure to 2 weeks.

2) Partial Assurance Targets
The SRAM controller (SCR) interconnect protocol was

more complex and would have made it harder to get thorough
formal proofs. The logic beyond those interfaces, however,
made a great target for the Assurance strategy. We decided to
verify the core logic of the SCR with formal methods using an
Assurance strategy and resort to simulation to verify the
interconnect logic using SoC tests. These SoC simulations
would not need any additional unit level infrastructure and was
a fairly small effort.

3) Bug Hunting Targets
The Fuse Controller (FUSE) had two interfaces to control

the access to the Fuse array. One is a peripheral bus and the
other is an interface (BISR) to the Built In Self Test logic on
the SoC. SoC simulation tests were used to verify the
functionality of the FUSE through the peripheral interface. We
wanted to find bugs in BISR interface well before the BIST
logic and the rest of the SoC was ready. We were not very
confident about this goal since the FUSE had a state machine
that exceeded 500 clocks in depth. Nevertheless, we decided to
pursue a Bug Hunting strategy for this unit.

The Memory Interface System (MIS) would have been a
good target for the Assurance strategy. However, schedule and
resource constraints prevented us from exploring this option.
The Bug Hunting strategy was adopted to augment the
simulation based methods to accelerate the path to verification
completeness.

C. Time to Closure

Our goals for every unit we targeted with formal
verification were:

 Find bugs early

 Find all the bugs in the logic targeted by the strategy

While most other units on RAPID had intermediate
milestones for verifying basic functionality, the unit we
targeted with formal verification had just the one milestone of

verification closure. Unlike traditional simulation based
methods, we did not have any code or functional coverage to
track if we were completely verifying the unit. A big concern
was “How do we know that the assertions are adequate to make
claim for verification closure?” We mitigated this risk with
diligence and reviews. Table I. shows a summary of the formal
verification plan for RAPID. For each unit, we try to outline
the formal strategy used, the role simulation played to
complement the formal strategy and the time it took us for
executing the formal strategy. For the units targeted with
Assurance, we only ran some sanity simulations to demonstrate
the system behavior or verify the correct system address
mapping of the registers in the unit in the SoC. For the SCR,
we did relied on simulation as the primary means to verify the
interconnect logic. The Bug Hunting targets had their own
simulation based verification environments prior to the
application of formal verification.

TABLE I. RAPID FORMAL VERIFICATION PLAN

Unit
Formal

Strategy

Simulation

Role

Time for

Formal

SoC Connectivity Sanity System Test 1 week

SIC Assurance Sanity System Test 2 weeks

ECM Assurance Sanity System Test 2 weeks

LRU Assurance None 1 week

SCR Partial Assurance Primary (interconnect) 3 weeks

FUSE Bug Hunting Primary (pre Formal) 1 week

MIS Bug Hunting Primary (pre Formal) 4 weeks

CCU Bug Hunting Primary (pre Formal) 3 days

SPE Assurance Sanity System Test 2 weeks

III. INFRASTRUCTURE

As the application of formal verification grew on RAPID, it
was evident that we needed an efficient environment for
property specification, formal compile, formal execution,
debug and regression. We developed a python based
environment to perform the aforementioned tasks and more.
Each formal test was specified in Python with the ability to
embed raw SystemVerilog code.

A. RAPID SVA Property Library

We defined an SVA property library that was adequate for over
99% of the assertions specified on RAPID. The library
included some of these patterns:

 connect_p: Property to verify connectivity between
two points in the design. In addition to verifying
connectivity, this property is also used for equivalence
checks between reference models and the design being
verified.

 cond_p: Property to verify conditional connectivity.

 imply_p: Implication property with a user specified
delay from the antecedent to the consequent for each
instance of the property.

 imply_range_p: Implication property with a user
specified window within which the consequent is
expected to occur.

 eventually_p: Similar to the imply_p, but the
consequent can be specified to occur any time after a
specified delay after the antecedent. This is used for
specifying liveness properties.

 stable_p: Property to assert that the specified condition
did not change beyond some event. This is useful for
constraining the programmable control registers in the
units from changing during the formal properties. The
formal tool is still free to program them in an
unconstrained manner at the beginning of the test.

 mutex_p: Property to verify mutex properties between
a set of events.

 prop_p: Generic property where the user could specify
any SystemVerilog expression to be asserted.

B. Python Property Constructs

For each of these patterns, we defined a Python construct
that the user specified in the Python test file. The Python test
file would be executed to generate a SV “checkers” module
containing SVA assertions that was bound to the top level of
the design under test. Properties that need custom SVA
properties are modeled in a side SV file which is included
inside the checkers module. This side file is also used to code
reference models to aid the process of writing properties. This
flow took full advantage of the Python language and made it
possible to specify a large number of assertions in a very
concise manner. This also eliminated the learning curve for
users who were not very familiar with SVA.

Each property specified in the test has the ability to be
promoted to the RTL simulation environment. The user is able
to specify a “promote” field for each property to enable the
property to be a part of another checkers file which is bound to
the design in the RTL simulation testbench. This is useful for
units with a Bug Hunting strategy. Completely proven
properties were not promoted to simulation. This framework
also made it convenient for specifying assertions just for
simulation.

For each construct, in addition to the expressions for the
antecedent and/or consequent and the delay between them, we
had the ability to specify the intended purpose for the property.
The specified directive can be “cover” or “assume”. If no
directive is specified, the property is treated as an assertion to
be proven. A “cover” directive results in the property being a
target for functional coverage. While the formal tool is not a
tool for coverage closure, it provides great value in quickly
identifying “uncoverable” properties, thereby saving time for
the verification engineer trying to achieve closure in
simulation. All the “cover” properties are promoted to
simulation. The “assume” directive is used to create the SVA
property as an assumption. The formal tool treats this as a
constraint, and the simulation tool treats this as an assertion to
be checked in simulation. Almost all “assume” properties are
promoted to simulation. Some of the assumptions are merely

intended to reduce the complexity of the state space for the
formal tool and are not promoted. These convenience
assumptions are carefully reviewed by the designers to ensure
the efficacy of the formal proofs. Fig. 1 and Fig. 2 show
examples of a few Python constructs and the resulting SVA
code in the checkers module.

Fig. 1. Example of Python property construct (assert)

Fig. 2. Example of Python property construct (assume)

In addition to specifying the properties, the Python tests
also contain:

 Design information (clock/reset/parameters)

 Memory and time limits for configuring the formal run
for the server farm

 Other options to pass on to the vendor tool

 Options to add SystemVerilog reference models to the
formal testbench.

C. Formal Regressions

The formal tests are run regularly to ensure that the

correctness of the designs is maintained through the course of

the project. In the world of simulation, the pass/fail status of a

simulation can be determined fairly easily. This becomes a

little trickier when it comes to formal runs. The outcomes of

formal model checking [2] range from vacuous properties to

failed properties to bounded proofs to complete proofs. Most

vendor tools further classify the properties based on the formal

results. A fairly common classification includes [12]:

 Proven: Unbounded proof

 Fired: Disproved assertion which needs to be debugged

 Inconclusive: Bounded proof

 Vacuous: Unjustifiable antecedent

 Possibly Vacuous: Proven property, but antecedent

justification still inconclusive

 Covered: Covered “cover” property

 Uncoverable: “cover” property that cannot be covered

A formal test in our environment constitutes a number of

properties targeted at the same design under test. So, in our

RAPID formal regressions, we save a golden result for all the

properties in a test. All subsequent runs are compared to the

golden result. If the previously proven properties are no longer

proven, the test is deemed a failure. Similarly, if a previously

covered property is not covered in the current run, the test is

considered a failed test. When we have some previously

unproven properties being proven and all other properties

maintain their previous status, the current results become the

new golden standard for the test. It must be noted that it is

possible for some of the properties to be fired in the golden

result. This enables us to establish a regression environment

through the development and debug stages of the design and

formal tests. Our goal is to be able to perform formal

regressions in the same manner we run simulation regressions.

Fig. 3 shows a flow diagram of a subset of the infrastructure

for sustaining formal verification on RAPID.

Fig. 3. RAPID Python based formal flow

IV. RAPID FORMAL EXPERIENCES

This being the first formal verification experience for the
team, the infrastructure and practices evolved to meet the needs
of the different units.

def_imply (

 name=”NO_GRANT_WITHOUT_REQ”,
 A=”request == ‘0”,

 B = “grant == ‘0”,

 delay=0,
)

`ifndef DISABLE_NO_GRANT_WITHOUT_REQ

// Source file/line: /import/workdir/user/formal/lru/checks.py +56

NO_GRANT_WITHOUT_REQ: assert property (
 imply_p (

 .clk(lru_clk),

 .rst(!lru_reset_n),
 .inA(request == ‘0),

 .inB(grant == ‘0),

 .delayC(0)
)

) else `formal_error("%m : Cannot have GNT without a REQ")

`endif // ifndef DISABLE_NO_GRANT_WITHOUT_REQ

def_stable (

 name=”STABLE_COUNT_START_SEL”,

 A=”count_start_sel”,

 delay=1,

 assume=True,

 promote=True)

`ifndef DISABLE_STABLE_COUNT_START_SEL
// Source file/line: /import/workdir/user/formal/ecm/checks.py +39

STABLE_COUNT_START_SEL: assume property (

 stable_p (
 .clk(ecm_clk),

 .rst(!ecm_reset_n),

 .inA(count_start_sel),
 .delayC(1)

)

)else `formal_error("%m : count_start_sel must be stable while counting")
`endif // ifndef DISABLE_STABLE_COUNT_START_SEL

A. SoC Connectivity

SoC Connectivity checks were written to verify the correct

connectivity between critical SoC events like interrupts. These

checks are trivial to define and are of high value. Proving

these connections saved us significant cycles in SoC

simulations.

SoC Connectivity checking also included Boundary Scan

(BSR) connectivity tests to prove drive, sample and high

impedance properties of each I/O cell. The RAPID

Nodewatcher functionality was also targeted with formal

verification to verify the connectivity of thousands of internal

signals to a selectable set of I/O pins. These are conditional

connectivity checks based on the configuration of the Test

Data Registers (TDR). TDR related checks included properties

to verify the JTAG overrides that cause the RAPID clock

control unit to bypass some states or pause. Some of these

SoC checks went beyond just the point to point connection

between SoC events and verified the correct configurability

and functioning of certain global functions on the SoC.

To make the SoC Connectivity proofs easier for the formal

tool, we specified directives to the formal tool to blackbox

most of the units in the SoC. This reduced the time to prove

the connectivity between these units significantly. In the

absence of these blackbox directives, the formal tool would

have had to justify the generation of ‘1’ and ‘0’ at the source

of the connections.

B. IP Assurance

The System Interrupt Controller is the global interrupt
router on RAPID. It routes interrupts from N different sources
to M different destinations. The enablement and clearing of
interrupts is managed through programmable control registers.
The status of the interrupts is also available through interrupt
status registers. These control and status registers are
accessible through a system interconnect. The incoming
interrupt from each source can be configured to be rising edge,
falling edge, active level high or active level low. This
behavior can be configured through the control registers.
Error! Reference source not found. shows a generic block
diagram of the SIC. This diagram is typical of most units in an
SoC.

Fig. 4. System Interrupt Controller Block Diagram

We can partition the unit verification into two areas.

1) Register Access Verification

The questions that are answered here are:

 Are the control registers being written to correctly
through the system interconnect?

 Are the status registers being read from correctly
through the system interconnect?

This verification requires the system interconnect interface
to be constrained to ensure that the formal tool only generates
legal transactions. We took advantage of vendor provided
constraints to constrain these interfaces. The verification IP
also included checks to ensure that the SIC adhered to the
protocols of the interconnect. We developed some sequences
and properties to be able to write to and read from the registers
based on the interconnect protocol. These sequences accounted
for any wait states in the protocols and did not constrain the
response latencies from the slave at all. We used these
properties to prove that a write to each address specified in the
architectural spec for the unit caused the appropriate control
register in the design to receive the data that was written.
Reserved bits were masked from the comparison. Similar
properties were used to ensure that the data in the status
registers were read correctly. The status registers were
constrained to hold a stable value during the read protocol to
prevent the hardware from writing to them and causing the
read properties to fail.

In the SoC context, we added simulation tests to ensure the
correct channeling of requests through the SoC system
interconnect fabric to these registers. This was done more for
SoC verification and less for the unit verification. While these
interconnect protocol properties were easy to implement for
some interconnects like the one in the SIC, it was not a trivial
approach for more complex protocols. In those situations, we
just relied on simulation to verify the correct functioning of the
registers. Fig. 5 shows the formal testbench for the SIC unit.

Fig. 5. System Interrupt Controller Formal Testbench

2) IP Core Logic Verification

The questions that are answered here are:

 Are the control registers being correctly used by the
unit as per the design specification?

 Is the design being reset correctly?

 Are the inputs being interpreted correctly?

 Are the outputs being generated appropriately?

 Are the status registers being updated correctly?

The Register Access Verification did not verify the intent
of the registers or the architectural appropriateness of the data
written to the register. However, it did establish controllability
and observability of the registers in the unit from its interface.
The IP core logic verification could now safely use the control
registers as inputs to properties on the rest of the logic they
drive. In additional to these registers, we chose a few internal
nodes in the design as observation and control points in our
properties. These points gave us additional controllability and
observability to the design and reduced the complexity of the
cones of logic being analyzed around them. We proved the
correctness (observability) of these points prior to enjoying the
benefits of using them (controllability) for other properties.
The formal tool ensured the non-vacuity of all the properties by
ensuring that the antecedents are reachable by stimulus
involving only the primary inputs. This approach made it easier
to write properties on the entire unit without any compromise
on the efficacy of the overall unit verification.

While defining the set of properties to verify the core logic,
we had to constrain the control registers to allow only legal
values as defined in the architectural spec. These constraints
were promoted to the RTL simulation environment to ensure
that they were not violated in the system tests that used this
unit at the SoC level. If the other inputs to the design needed to
be constrained, assumptions were added and promoted

accordingly. Additional assertions around internal nodes were
used as needed for convenience with the same discipline as
when using the control registers for properties. Exhaustive
properties were written to ensure the correctness of the primary
outputs of the unit and the correct updates to the status
registers. To be thorough in our verification, we added checks
to verify the reset state of some key registers as specified in the
micro architecture. The Python infrastructure described earlier
made this entire process of generating assertions seamless and
was critical to our successful deployment of the methodology.

The Event Counter Monitor and SRAM Parity Error
Register experiences were similar to that of the System
Interrupt Controller. An additional aspect of the ECM and SPE
verification was the reuse of the core logic units in both the
cases. The formal testplan for the SPE and ECM employed a
hierarchical approach with a mix of assurance of reused design
blocks and checks to verify their connectivity across the SoC.
To handle that, we added connectivity checks between the
independently verified units and/or the unit registers. In the
case of both the SPE and the ECM, designing for formal
verification was a consideration in the architecture of the units.

The Least Recently Used Arbiter is a parameterized unit to
grant access to the least recently granted requester. To verify
this unit, we wrote a few standard properties to ensure that
multiple requestors were not granted simultaneously and at
least one requestor was granted. To verify the correctness of
the LRU scheme, we wrote a simple reference model in
synthesizable SystemVerilog and verified that the requestor
granted by the designed unit matched that by the reference
model. We proved fairness and bounded waiting properties for
the LRU. This exercise eliminated the need for functional
coverage in multiple units in the SoC where this LRU arbiter
was used.

The SRAM Controller interfaces to a more complex system
interconnect that is not as convenient for verifying formally.
We used a vendor provided monitor to constrain the interface.
The core of the SRC was rigorously verified using formal
properties. The SRAM controlled by the SRC was blackbox’ed
and the correctness of the control, address and data inputs into
the SRAM were verified to be correctly generated or calculated
by the controller logic. As discussed earlier, we used internal
nodes (outputs of the interconnect logic) as inputs to the
properties describing the intended core behavior. So, while
some interconnect verification was achieved as a byproduct of
the core logic verification, it was not adequate to claim the
interface verified. The verification of the register accesses was
done through SoC level simulation tests. In addition to the
register accesses, we deferred the verification of the protocol
along with its corner cases to simulation tests at the SoC level.
Since accesses to the SRAM are defined in the system memory
map, these tests were fairly trivial to write.

While most of the bugs manifested as firings of the
properties targeted, some of them were revealed due to
vacuous proofs or design check violations that were reported
by the formal tool as a by-product of the model checking. The
inability of the formal tool to justify the antecedent of the
property could be due to an undriven signal or some other
condition that would prevent the property from being proven or

fired. Such failures may be trickier to debug because of a lack
of a waveform to describe the failure. From our experience, it
is important to not ignore them. They are likely masking a bug.
It would be beneficial to identify some of these bugs earlier
concurrently with the design process using automatic formal
checks.

C. IP Bug Hunting

Our objective in this strategy is clearly to drive to

verification closure by finding the remaining bugs in the

design as fast as possible. Emphasis is less on complete proofs

and thorough verification of the unit through a set of formal

proofs. In this approach, bounded proofs are tolerable. Such a

strategy always complements simulation or is complemented

by simulation. Traditional simulation-based code and

functional coverage become the metrics for verification

closure. Formal verification is just a catalyst to accelerate to

closure. On RAPID we applied the Bug Hunting strategy in

three different situations.

1) Fuse Controller

The FUSE unit has a deep state machine and hence we did

not target this with the IP Assurance strategy. Besides, most of

this unit was verified in the early stage of the project before

formal verification had made its mark on RAPID. The FUSE

unit was largely verified through its system interconnect

interface using SoC level simulation. Through those

simulations, we had verified the ability to program and read

the fuse array. The BISR interface to the FUSE was yet to be

verified. Our goal was to iron out this access mechanism to the

FUSE unit prior to the BIST and BISR interface being

designed.

We just wrote two properties to verify that fuse array read

and write requests through the BISR interface would be

completed within the expected number of cycles. The

read/write operations take over 500/1000 clock cycles

respectively. We were a little skeptical about the applicability

of formal verification to explore the state space of the

controller to these depths. These two assertions proved highly

valuable by highlighting a few bugs in the unit which could

very likely have been missed in probabilistic SOC level

simulation. The formal tool highlighted issues in the state

machine being able to handle back-to-back reads/writes. These

failures occurred around 1000 cycles after reset. Once the

bugs were fixed, we were able to get unbounded proofs for

these properties. The run times for these proofs were very

reasonable as well (less than 2 hours). It would have required

us an elaborate random stimulus generator for the BISR

interface to probably find these bugs. The SoC environment

does not lend the controllability for such random stimulus. At

the very least, this formal effort saved us the longer debug

times in the simulation environment.

2) Clock Controller Unit

The CCU controls the clock generation to the various units

on the RAPID SoC. Towards the end of the project, we found

a bug using random SoC simulations in the CCU with one of

the clock modes the SoC was expected to operate in. The

challenge was to ensure that this bug did not occur in any of

the other clock modes. Doing that in simulation would have

been impractical. We decided to explore the use formal

verification to give us that confidence. We described the

property that the bug would have violated and ran formal

model checking on the CCU. Through this effort we were able

to:

 Confirm the bug that was found in simulation

 Prove that this bug only occurred in the clock mode

that was reported in simulation.

That proof gave us confidence in the health of the design

and expanded our options to fix or ignore the bug.

3) Memory Interface Subsystem

The Memory Interface Subsystem (MIS) includes a

localized Memory Access Arbiter (MAA) and its interface

(MSYS) to the system interconnect. The units in this

subsystem were already being verified in a unified UVM-

based unit level environment. We decided to accelerate the

verification closure of these units by using formal verification

for finding the remaining bugs. We asserted some general

invariant properties about the design. We also implemented

properties to assert some corner cases. In order to increase our

chances to find bugs, we verified the MAA and the MSYS in

separate formal environments. Fig. 6 shows the formal

testbenches for the units in the MIS.

Like in the previous units, we used vendor IP to constrain

the system interconnect. We strictly followed the Assume-

Guarantee [3][4] formal proof methodology in this situation.

The assumptions that were made to verify properties for the

MSYS unit became targets for the MAA verification. This bug

hunting exercise revealed a few design issues including a

critical one that potentially saved us a respin of silicon.

Although we did not get unbounded proofs for all these

properties, we were able to achieve our goals of driving to

verification closure on these units.

Fig. 6. MAA and MSYS Formal Testbench

Subsequent to the initial bug hunting effort, the

verification methodology for this unit has evolved into using

formal methods for performing early bug hunting for all the

new design features designed. This has proven to be a very

valuable exercise with bugs being found within minutes after

the designer has implemented the design. This is as productive

as it can get when the design and verification responsibilities

are split between different teams.

D. Challenges

 We encountered our set of challenges during the
deployment of the formal solutions. None of them posed any
significant obstacles to the project, though.

1) Confidence

Some designers were very comfortable with conventional

simulation based methods. It needed an initial leap of faith to

rely solely on formal verification for verifying their designs.

One designer commented “I understand you are going to

prove assertions. I would still like to see some simulations to

verify the unit.” This concern is very reasonable given that we

did not have a quantifiable way to articulate the completeness

of the formal properties. Another willing but skeptical

verification engineer commented “There are reasons we have

traditional methods like scoreboards and functional

coverage.” Our experiences on RAPID changed the outlook of

each of these engineers towards formal verification. The

former’s response after the formal experience was “I did not

know that formal verification can verify my unit this

thoroughly. I understand my design better because of this

formal experience.” The latter engineer went on to verifying a

complete unit formally within the scheduled time.

2) Assertion Based Verification Focus

The documentation of design intent in the form of

assertions and design coverage by the designers can accelerate

the adoption for formal verification. The benefits of formal

verification can be fully exploited when the designers make a

commitment to specifying assertions as a part of the design

process.

3) Infrastructure development

As mentioned earlier, the infrastructure for formal

verification was non-existent prior to our undertaking. The

development of the infrastructure was an evolutionary process.

4) Assertion coverage

The biggest challenge that is still unresolved is a lack of

tangible coverage metric to tell us if the set of assertions

written is adequate to claim verification completeness for the

units. While there has been some work done on this topic [7],

we did not have the bandwidth to adopt any of these methods

on this project. We alleviated this concern with reliance on

design and verification reviews.

V. RESULTS

TABLE II. shows the results of applying formal
verification on the different units on RAPID. The table also
shares some attributes about the designs as reported by the
formal tool. The number of assertions reflects the number of
unique assertions eventually run for the unit. These assertions
were broken down into multiple tests for each unit. Our
environment enables a definition of a hierarchy of tests for a
unit and automatically handles the dynamic scheduling of these
formal jobs on the server farm. The run times reflect the total
amount of time taken to run all the tests for each unit.

TABLE II. FORMAL VERIFICATION RESULTS ON RAPID

Unit Strategy Registers Assertions
Run

Time
Bugs

SIC Assurance ~4200 ~3000 3m 5

ECM Assurance ~5500 ~1500 5m 15

LRU Assurance ~75 ~60 120m 2

SRC
Partial

Assurance
~2500 ~1500 600m 39

FUSE
Bug

Hunting
~4500 2 110m 4

MAA
Bug

Hunting
~6700 ~2000 600m 6

MSYS
Bug

Hunting
~9500 ~100 120m 2

SPE Assurance ~350 ~150 2m 8

A. Schedule

The results clearly show the effectiveness of formal

verification in finding bugs. What they do not convey is the

time taken to find those bugs. Each of the units targeted for IP

Assurance was verified well within the original time allocated

for those units in the original project plan. These units were

qualified for SoC integration well ahead of their schedule. The

role that SoC tests played in the thorough coverage of these

units was also reduced considerably. For e.g. with the formal

verification of the SIC and the SoC interrupt connectivity, it

was no longer necessary to verify the correct functioning of

every interrupt on the SoC level. Such tests would have

consumed MxN tests at significant lower SoC simulation

performance to cover the entire matrix of N interrupt

generators and M destinations. Instead of these exhaustive

tests, just a few SoC simulation tests were written to

demonstrate the correct system behavior. This was more a

system level task. These tests were not expected to find any

bugs and they did not. These schedule savings in the RAPID

SoC verification plan has not been estimated and is non-

trivial.

B. Quality

For all the units that were targeted with the IP Assurance

strategy, a few SoC test were written to demonstrate their

behavior in a system. Some of these were highly randomized

tests subjecting the units to adverse conditions. The only bugs

these tests revealed were in the SRC unit where we had

deferred the verification of the system interconnect interface

to simulation. This has helped develop more confidence in

formal verification and our methods among the RAPID design

and verification teams.

C. Benefits

Beyond the schedule and quality impact of formal

verification on RAPID, we realized a few intangible benefits

of adopting a formal verification.

1) Design – Verification Collaboration

Formal verification success fosters a structured approach to

IP verification. Structured planning reviews are conducted to

review architectural features to be implemented and document

key assumptions, assertions and coverage items. This enables

a consistent understanding of the design prior to the design

and verification phase. The designers are able to accommodate

design for verification as a factor in evaluation design options.

With more familiarity with the formal verification, these

considerations evolve into design for formal verification

guidelines.

2) Organizational Capability

There is a distinct openness in the organization to leverage

formal methods. Designers and verification engineers are

looking for ways to use formal verification to verify their

units. Even if the entire unit is not a good fit, key sub

functions are being considered to be verified formally. With a

more mature infrastructure in place, we are in a position to

execute on these plans more efficiently. It now takes us less

than 10 minutes to define a formal testbench together for a

new unit and start writing and verifying properties on the unit.

3) Early Bug Hunting

While the benefits of formal verification are well

understood in finding hard to find bugs, it has proven very

effective and efficient in finding and verifying most of the

“simpler” bugs from the design. The formal tools may take a

long time to prove complex properties, but often do not take

very long to find a counter example to disprove a property. It

does not take very long to put together a formal testbench

along with constraints and the necessary monitors. Unlike

simulation failures, firings in formal verification are very easy

to diagnose to get to the root cause of the failure. This can be a

big productivity boost in getting to a fully functional unit

faster.

4) Documentation Verification

Often, the bugs found in formal verification are a result of

inconsistencies between the assumptions made by the designer

and the design spec. The properties written for formal proofs

are based on the specified intent of the design. There will be

situations where the spec has to be modified to clearly

articulate the functionality of the design to the system

engineers and software developers.

5) Confidence and Understanding

During the course of the formal process, we ended up

writing a number of incorrect assertions. The tool will

rightfully disprove these assertions and generate waveforms to

illustrate the failing pattern. While these experiences may

seem a waste of time, there is a sense of confidence in the

correctness of the design. These are valuable experiences for

the designer and the verification engineer to deepen their

understanding of the design and become more adept at

verifying their unit.
.

VI. CONCLUSION

Our efforts on the RAPID project and the results have
demonstrated the role formal verification can play in an SoC
project. We have shown how a team that had fairly limited
experience with formal verification has adopted the
methodology and leveraged it to achieve the project’s goals.
We have shown the importance of applying the correct formal
for each unit. For some units, it can be applied to completely

prove the units’ functionality and for others, it can be a bug
hunting expedition. It is important to be true to the plan for the
unit. Any deviation from the plan can lead to an unproductive
effort.

Formal verification is a highly effective and efficient
approach to finding bugs. Simulation is the only means
available to compute functional coverage towards verification
closure. We have attempted to strike a balance between the two
methodologies to operate within the strengths of each approach
towards meeting the projects goals. We have demonstrated that
closer collaboration between the design and verification teams
during the pre-implementation phase is essential for
maximizing the applicability of formal methods.

What we have achieved on this project is nothing new.
These methods have been employed by a number of projects
across the industry. We wanted to share our experience to allay
prevalent concerns about the obstacles to adopting formal
verification. More than skill, this approach requires the right
attitude – diligence, perseverance and a pinch of humility.

In our industry, verification is widely accepted as the long
pole in the project schedule. 67% [1] of projects do not meet
their planned schedules. On RAPID, we did not apply formal
methods for the sake of applying formal methods. We applied
formal methods because we believed it would help us reign in
the schedule for the units we targeted. And, we did. Our role as
verification engineers and managers is to certify the quality of
the designs being taped out within the schedule outlined for the
project. It is our responsibility to use available solutions wisely
to make those schedules appear less unreasonable. We
encourage verification teams to explore the use of formal (and
any other) verification to meet your project goals.

A. Future Work

As we continue to develop formal expertise across our

organization, there are some areas that merit some additional

exploration.

 Quantify the coverage achieved with the proven

assertions on any unit. This will provide a metric to

indicate completeness of the set of assertions.

 Use automatic formal checks to eliminate design

violations prior to simulation and formal verification.

 Use automatic formal analysis of the design to identify

unreachable and uncoverable sections of the design. This

will help streamline coverage closure and potentially

identify design issues early.

 Augment the formal flow to automate the Assume-

Guarantee flow and the promotions of inconclusive

assertions to RTL simulations.

ACKNOWLEDGMENT

I salute all the formal users and solution providers who
have persevered over the years to make this a viable solution
for hardware verification. This paper is the result of the trust
and encouragement from my management, Doug Good and
Charlie Roth. I would like to thank my colleagues, Steve
Burchfiel and Sravya Kusam, for sharing their experiences
with using formal on their units. The adaptability of the

designers, Ashraf Ahmed, Philip Sams, John Fernando, Joseph
Wright and John Coddington, was important to the successful
adoption of this approach. The support and responsiveness
from our formal verification tool vendor was critical to our
success.

REFERENCES

[1] H. Foster, “The 2012 Wilson Research Group functional verification
study,” Verification Horizons, April-September 2013.

[2] H. D. Foster, A. C. Krolnik, D. J. Lacey, “Assertion-based design,”
KAP, 2003.

[3] T. A. Henzinger, S. Qadeer, S. K. Rajamani, “You assume, we
guarantee:methodology and case studies,” CAV98: Computer Aided
Verification, pp440-451, 1998

[4] S. K. Roy, H. Iwashita, T. Nakata, “Formal verification based on assume
and guarantee approach: a case study,” Proceedings of the ASP-DAC
2000.

[5] H. Foster, L. Loh, B. Rabii, V. Singhal, “Guidelines for creating a
formal verification testplan,” DVCon 2006.

[6] Accellera Systems Initiative:Universal Verification Methodology,
Accellera Standards.

[7] V. Singhal, P. Aggarwal, “Using coverage to deploy formal in a
simulation world,” CAV 2011: Computer Aided Verification, pp 44-49,
2011.

[8] M. Glasser, “Open verification methodology cookbook,”, Springer,
2009.

[9] IEEE Standard for SystemVerilog: Unified Hardware Design,
Specification and Verification Language, IEEE Std. 1800-2005.

[10] K. Ranerup, M. Handover, “Using formal verification to exhaustively
verify SoC assemblies,” DVCon 2013.

[11] R. Sabbagh, “The top five formal verification applications,” Verification
Horizons, Vol. 8, Issue 3, October 2012

[12] Questa Formal User Guide, Mentor Graphics, August 2013.

[13] H. Foster, “Planing for formal ABV success,” Verification Academy,
Courses: Assertion-Based Verification

