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Abstract—This paper describes the experience of using formal 

model checking for verifying portions of the RAPID System On 

Chip (SoC). We describe the evolution of the RAPID verification 

plan to leverage formal methods. We outline some of the 

infrastructure that was developed to make this a productive 

effort. This paper documents the results and impact of these 

approaches on RAPID. The purpose of this paper is to encourage 

readers to explore the use of formal verification for their 

projects. 
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I. INTRODUCTION 

A. SoC Verification 

The goal for any hardware verification project involves 

answering these two seemingly simple questions [8]: 

 Does the design work? 

 Are we done? 

 

The success of all projects hinges on the ability to answer 

these questions adequately in a timely manner. Neither the 

quality nor the timeliness is an easy target in its own right. 

When combined together as an objective, they present a 

significant challenge to the best in the industry. 

 

Verification of System On Chip (SoC) designs have some 

unique challenges posed due to design sizes, number of design 

units (IPs), complex system interconnect fabric, multiple 

embedded processors, multiple power and clock domains, 

analog and mixed-signal content and the software layer that 

controls much of the behavior on the chip. The stringent time 

to market demands do not make the challenge any easier. 

 

The approach to verifying SoC’s is often a fragmented 

one. 

 IP verification to verify the design units at the block 

level 

 Interconnect verification to verify the system 

interconnect 

 SoC level verification to verify the interplay between 

the different units and other system functions 

 System integration to co-verify hardware and the 

software functionality and performance. 

 

This verification challenge has fostered significant 

innovations and collaboration in the industry over the last two 

decades. Significant among those is the emergence of 

standards such as SystemVerilog (SV), SystemVerilog 

Assertions (SVA)[9] and Universal Verification Methodology 

(UVM)[6]. 

B. Formal Model Checking 

Assertion-based verification techniques [2] have enabled 

design teams to not only enhance their productivity in 

simulation debug, but also enabled them to explore formal 

solutions to solve verification challenges that would otherwise 

take an inordinate amount of time with simulation. Formal 

verification is steadily gaining acceptance among design 

teams. However, only a quarter [1] of the design teams take 

advantage of these methods. Perception that these methods are 

complex to adopt and need special skills and expertise to 

comprehend and adopt is prevalent. In addition to formal 

model checking, we are witnessing the introduction of 

automatic formal checking [11] in the industry. These 

solutions enable the use of formal methods to reveal design 

issues without the need for any intent specification (assertions) 

or simulation testbenches. 

There are two strategies for applying formal model 

checking [13] to any design to be verified. The Assurance 

strategy relies on solely formal model checking to thoroughly 

verify the unit. This entails proving adequate properties about 

the design to claim completely correctness. This strategy is 

applicable for units whose functionality can be completely 

specified using assertions. Formal model checking can also be 

applied with a Bug Hunting strategy with the purpose of 

finding bugs in the design. This strategy is typically targeted 

at corner cases in the design that are harder to cover with 

simulation. In this case we do not necessarily try to cover the 

entire state space of the design with properties. So, the bug 

hunting approach is often used in conjunction with simulation 

to completely verify the unit. 

C. Project RAPID 

Project RAPID is a hardware-software co-design initiative 

in Oracle Labs that leverages a heterogeneous hardware 



architecture combined with architecture-conscious software to 

improve the energy efficiency of database-processing systems. 

This paper is a by-product of using formal verification to 

verify parts of the RAPID SoC. 

D. Paper Organization 

Section II discusses the evolution of the RAPID formal 

verification plan from an opportunistic one to a planned 

deployment of the technology. The infrastructure developed to 

sustain the entire formal flow is described in Section III. In 

Section IV, we talk about our experiences with applying 

formal tools with multiple strategies on RAPID. The results of 

those experiences and the impact on RAPID are shared in 

Section V.  Finally, this paper concludes by sharing some 

insights learned from this project in Section VI. 

 

II. PLANNING FOR FORMAL VERIFICATION 

The initial RAPID verification plan largely relied on a 
constrained-random simulation environment developed using 
UVM. Most newly designed units had their own unit level 
verification environment to thoroughly verify the unit prior to 
integration into the RAPID SoC Verification Environment. The 
SoC verification was largely used to verify the interaction 
between the different units under various operating modes. 

A. Initial Outlook towards Formal 

At the outset of the project, there were no specific plans to 
use formal verification on RAPID. We decided to explore the 
use of formal methods to verify the connectivity [10] at the 
SoC level. This included  

 Connectivity of events like interrupts across the SoC 

 Connectivity of Design for Test (DFT) signals across 
the SoC 

 Our goal was to catch trivial design errors through formal 
methods without having to rely on lengthy and in some cases, 
random SoC simulations. We would have been satisfied if we 
just verified these SoC connectivity checks with formal tools. 
We did not have any infrastructure in place for running any 
formal tool on the project. None of the members on the team 
had any noteworthy experience with using formal verification 
tools.  Needless to say, our initial expectations were modest. 

B. Focused Plans for Formal Verification 

Our modest expectations quickly grew wings with the early 
success of the SoC connectivity checks and we became more 
ambitious. We decided to explore the use of formal verification 
to verify some of the custom IP being designed for RAPID. 
Each of these units were targeted with a different formal 
strategy depending on design complexity. 

1) Assurance Targets 
Some of these units, (Event Count Monitor (ECM), System 

Interrupts Controller (SIC), Least Recently Used Arbiter 
(LRU) and SRAM Parity Error Register (SPE) ) fit the criteria 
for good candidates[5] for formal verification very well. It was 
very reasonable to expect to be able to prove the complete 

functionality of these units formally. We decided to target 
these units with the Assurance strategy. In addition to proving 
these units with formal verification, we decided to add a few 
SoC simulation sanity tests to demonstrate the operation of 
these units in a broader scope. These simulations were largely 
to verify the access to these units as specified in the RAPID 
register map. 

The initial architecture for the SRAM Parity Error Register 
(SPE) did not lend itself well to applying formal methods. The 
distributed nature of the SRAMs would have warranted the 
verification of this unit to be distributed across multiple scopes 
and the development of error injection mechanisms along with 
the UVM-based verification environments. This was budgeted 
to consume close to 6 weeks in our verification schedule. 
Encouraged by the success of formal verification on previous 
units, we modified the architecture of this unit to make it better 
suited for Assurance with formal verification. This included 
partitioning the register function from the error detection and 
propagation functions. We reduced the time to verification 
closure to 2 weeks. 

2) Partial Assurance Targets 
The SRAM controller (SCR) interconnect protocol was 

more complex and would have made it harder to get thorough 
formal proofs. The logic beyond those interfaces, however, 
made a great target for the Assurance strategy. We decided to 
verify the core logic of the SCR with formal methods using an 
Assurance strategy and resort to simulation to verify the 
interconnect logic using SoC tests. These SoC simulations 
would not need any additional unit level infrastructure and was 
a fairly small effort. 

3) Bug Hunting Targets 
The Fuse Controller (FUSE) had two interfaces to control 

the access to the Fuse array. One is a peripheral bus and the 
other is an interface (BISR) to the Built In Self Test logic on 
the SoC. SoC simulation tests were used to verify the 
functionality of the FUSE through the peripheral interface. We 
wanted to find bugs in BISR interface well before the BIST 
logic and the rest of the SoC was ready. We were not very 
confident about this goal since the FUSE had a state machine 
that exceeded 500 clocks in depth. Nevertheless, we decided to 
pursue a Bug Hunting strategy for this unit. 

The Memory Interface System (MIS) would have been a 
good target for the Assurance strategy. However, schedule and 
resource constraints prevented us from exploring this option. 
The Bug Hunting strategy was adopted to augment the 
simulation based methods to accelerate the path to verification 
completeness. 

C. Time to Closure 

Our goals for every unit we targeted with formal 
verification were: 

 Find bugs early 

 Find all the bugs in the logic targeted by the strategy 

While most other units on RAPID had intermediate 
milestones for verifying basic functionality, the unit we 
targeted with formal verification had just the one milestone of 



verification closure. Unlike traditional simulation based 
methods, we did not have any code or functional coverage to 
track if we were completely verifying the unit. A big concern 
was “How do we know that the assertions are adequate to make 
claim for verification closure?” We mitigated this risk with 
diligence and reviews. Table I. shows a summary of the formal 
verification plan for RAPID. For each unit, we try to outline 
the formal strategy used, the role simulation played to 
complement the formal strategy and the time it took us for 
executing the formal strategy. For the units targeted with 
Assurance, we only ran some sanity simulations to demonstrate 
the system behavior or verify the correct system address 
mapping of the registers in the unit in the SoC. For the SCR, 
we did relied on simulation as the primary means to verify the 
interconnect logic. The Bug Hunting targets had their own 
simulation based verification environments prior to the 
application of formal verification. 

TABLE I.  RAPID FORMAL VERIFICATION PLAN 

Unit 
Formal 

Strategy 

Simulation 

Role 

Time for 

Formal 

SoC Connectivity Sanity System Test 1 week 

SIC Assurance Sanity System Test 2 weeks 

ECM Assurance Sanity System Test 2 weeks 

LRU Assurance None 1 week 

SCR Partial Assurance Primary (interconnect) 3 weeks 

FUSE Bug Hunting Primary (pre Formal) 1 week 

MIS Bug Hunting Primary (pre Formal) 4 weeks 

CCU Bug Hunting Primary (pre Formal) 3 days 

SPE Assurance Sanity System Test 2 weeks 

 

III. INFRASTRUCTURE 

As the application of formal verification grew on RAPID, it 
was evident that we needed an efficient environment for 
property specification, formal compile, formal execution, 
debug and regression. We developed a python based 
environment to perform the aforementioned tasks and more. 
Each formal test was specified in Python with the ability to 
embed raw SystemVerilog code. 

A. RAPID SVA Property Library  

We defined an SVA property library that was adequate for over 
99% of the assertions specified on RAPID. The library 
included some of these patterns: 

 connect_p: Property to verify connectivity between 
two points in the design. In addition to verifying 
connectivity, this property is also used for equivalence 
checks between reference models and the design being 
verified. 

 cond_p: Property to verify conditional connectivity. 

 imply_p: Implication property with a user specified 
delay from the antecedent to the consequent for each 
instance of the property. 

 imply_range_p: Implication property with a user 
specified window within which the consequent is 
expected to occur. 

 eventually_p: Similar to the imply_p, but the 
consequent can be specified to occur any time after a 
specified delay after the antecedent. This is used for 
specifying liveness properties. 

 stable_p: Property to assert that the specified condition 
did not change beyond some event. This is useful for 
constraining the programmable control registers in the 
units from changing during the formal properties. The 
formal tool is still free to program them in an 
unconstrained manner at the beginning of the test. 

 mutex_p: Property to verify mutex properties between 
a set of events. 

 prop_p: Generic property where the user could specify 
any SystemVerilog expression to be asserted. 

B. Python Property Constructs 

For each of these patterns, we defined a Python construct 
that the user specified in the Python test file. The Python test 
file would be executed to generate a SV “checkers” module 
containing SVA assertions that was bound to the top level of 
the design under test. Properties that need custom SVA 
properties are modeled in a side SV file which is included 
inside the checkers module. This side file is also used to code 
reference models to aid the process of writing properties. This 
flow took full advantage of the Python language and made it 
possible to specify a large number of assertions in a very 
concise manner. This also eliminated the learning curve for 
users who were not very familiar with SVA. 

Each property specified in the test has the ability to be 
promoted to the RTL simulation environment. The user is able 
to specify a “promote” field for each property to enable the 
property to be a part of another checkers file which is bound to 
the design in the RTL simulation testbench. This is useful for 
units with a Bug Hunting strategy. Completely proven 
properties were not promoted to simulation. This framework 
also made it convenient for specifying assertions just for 
simulation.  

For each construct, in addition to the expressions for the 
antecedent and/or consequent and the delay between them, we 
had the ability to specify the intended purpose for the property. 
The specified directive can be “cover” or “assume”. If no 
directive is specified, the property is treated as an assertion to 
be proven. A “cover” directive results in the property being a 
target for functional coverage. While the formal tool is not a 
tool for coverage closure, it provides great value in quickly 
identifying “uncoverable” properties, thereby saving time for 
the verification engineer trying to achieve closure in 
simulation. All the “cover” properties are promoted to 
simulation. The “assume” directive is used to create the SVA 
property as an assumption. The formal tool treats this as a 
constraint, and the simulation tool treats this as an assertion to 
be checked in simulation. Almost all “assume” properties are 
promoted to simulation. Some of the assumptions are merely 



intended to reduce the complexity of the state space for the 
formal tool and are not promoted. These convenience 
assumptions are carefully reviewed by the designers to ensure 
the efficacy of the formal proofs. Fig. 1 and Fig. 2 show 
examples of a few Python constructs and the resulting SVA 
code in the checkers module. 

Fig. 1. Example of Python property construct (assert ) 

Fig. 2. Example of Python property construct (assume ) 

In addition to specifying the properties, the Python tests 
also contain: 

 Design information ( clock/reset/parameters ) 

 Memory and time limits for configuring the formal run 
for the server farm 

 Other options to pass on to the vendor tool 

 Options to add SystemVerilog reference models to the 
formal testbench.  

C. Formal Regressions 

The formal tests are run regularly to ensure that the 

correctness of the designs is maintained through the course of 

the project. In the world of simulation, the pass/fail status of a 

simulation can be determined fairly easily. This becomes a 

little trickier when it comes to formal runs. The outcomes of 

formal model checking [2] range from vacuous properties to 

failed properties to bounded proofs to complete proofs. Most 

vendor tools further classify the properties based on the formal 

results. A fairly common classification includes [12]: 

 Proven: Unbounded proof 

 Fired: Disproved assertion which needs to be debugged 

 Inconclusive: Bounded proof 

 Vacuous: Unjustifiable antecedent 

 Possibly Vacuous: Proven property, but antecedent 

justification still inconclusive 

 Covered: Covered “cover” property 

 Uncoverable: “cover” property that cannot be covered 

 

A formal test in our environment constitutes a number of 

properties targeted at the same design under test. So, in our 

RAPID formal regressions, we save a golden result for all the 

properties in a test. All subsequent runs are compared to the 

golden result. If the previously proven properties are no longer 

proven, the test is deemed a failure. Similarly, if a previously 

covered property is not covered in the current run, the test is 

considered a failed test. When we have some previously 

unproven properties being proven and all other properties 

maintain their previous status, the current results become the 

new golden standard for the test. It must be noted that it is 

possible for some of the properties to be fired in the golden 

result. This enables us to establish a regression environment 

through the development and debug stages of the design and 

formal tests. Our goal is to be able to perform formal 

regressions in the same manner we run simulation regressions. 

Fig. 3 shows a flow diagram of a subset of the infrastructure 

for sustaining formal verification on RAPID. 

 

Fig. 3.  RAPID Python based formal flow 

IV. RAPID FORMAL EXPERIENCES 

This being the first formal verification experience for the 
team, the infrastructure and practices evolved to meet the needs 
of the different units. 

def_imply ( 

   name=”NO_GRANT_WITHOUT_REQ”, 
   A=”request == ‘0”, 

   B = “grant == ‘0”, 

   delay=0, 
) 

 

`ifndef DISABLE_NO_GRANT_WITHOUT_REQ 

// Source file/line: /import/workdir/user/formal/lru/checks.py +56 

NO_GRANT_WITHOUT_REQ: assert property ( 
  imply_p ( 

  .clk(lru_clk), 

  .rst(!lru_reset_n), 
  .inA(request == ‘0), 

  .inB(grant == ‘0), 

  .delayC(0) 
  ) 

) else `formal_error("%m : Cannot have GNT without a REQ") 

`endif // ifndef DISABLE_NO_GRANT_WITHOUT_REQ 

def_stable ( 

   name=”STABLE_COUNT_START_SEL”, 

   A=”count_start_sel”, 

   delay=1, 

   assume=True, 

   promote=True ) 
 

`ifndef DISABLE_STABLE_COUNT_START_SEL 
// Source file/line: /import/workdir/user/formal/ecm/checks.py +39 

STABLE_COUNT_START_SEL: assume property ( 

  stable_p ( 
  .clk(ecm_clk), 

  .rst(!ecm_reset_n), 

  .inA(count_start_sel), 
  .delayC(1) 

  ) 

)else `formal_error("%m : count_start_sel must be stable while counting") 
`endif // ifndef DISABLE_STABLE_COUNT_START_SEL 

 



A. SoC Connectivity 

SoC Connectivity checks were written to verify the correct 

connectivity between critical SoC events like interrupts. These 

checks are trivial to define and are of high value. Proving 

these connections saved us significant cycles in SoC 

simulations. 

SoC Connectivity checking also included Boundary Scan 

(BSR) connectivity tests to prove drive, sample and high 

impedance properties of each I/O cell. The RAPID 

Nodewatcher functionality was also targeted with formal 

verification to verify the connectivity of thousands of internal 

signals to a selectable set of I/O pins. These are conditional 

connectivity checks based on the configuration of the Test 

Data Registers (TDR). TDR related checks included properties 

to verify the JTAG overrides that cause the RAPID clock 

control unit to bypass some states or pause. Some of these 

SoC checks went beyond just the point to point connection 

between SoC events and verified the correct configurability 

and functioning of certain global functions on the SoC. 

To make the SoC Connectivity proofs easier for the formal 

tool, we specified directives to the formal tool to blackbox 

most of the units in the SoC. This reduced the time to prove 

the connectivity between these units significantly. In the 

absence of these blackbox directives, the formal tool would 

have had to justify the generation of ‘1’ and ‘0’ at the source 

of the connections. 

B. IP Assurance 

The System Interrupt Controller is the global interrupt 
router on RAPID. It routes interrupts from N different sources 
to M different destinations. The enablement and clearing of 
interrupts is managed through programmable control registers. 
The status of the interrupts is also available through interrupt 
status registers. These control and status registers are 
accessible through a system interconnect. The incoming 
interrupt from each source can be configured to be rising edge, 
falling edge, active level high or active level low. This 
behavior can be configured through the control registers. 
Error! Reference source not found. shows a generic block 
diagram of the SIC. This diagram is typical of most units in an 
SoC. 

Fig. 4. System Interrupt Controller Block Diagram 

We can partition the unit verification into two areas. 

1) Register Access Verification 

The questions that are answered here are: 

 Are the control registers being written to correctly 
through the system interconnect? 

 Are the status registers being read from correctly 
through the system interconnect? 

This verification requires the system interconnect interface 
to be constrained to ensure that the formal tool only generates 
legal transactions. We took advantage of vendor provided 
constraints to constrain these interfaces. The verification IP 
also included checks to ensure that the SIC adhered to the 
protocols of the interconnect. We developed some sequences 
and properties to be able to write to and read from the registers 
based on the interconnect protocol. These sequences accounted 
for any wait states in the protocols and did not constrain the 
response latencies from the slave at all. We used these 
properties to prove that a write to each address specified in the 
architectural spec for the unit caused the appropriate control 
register in the design to receive the data that was written. 
Reserved bits were masked from the comparison. Similar 
properties were used to ensure that the data in the status 
registers were read correctly. The status registers were 
constrained to hold a stable value during the read protocol to 
prevent the hardware from writing to them and causing the 
read properties to fail. 

In the SoC context, we added simulation tests to ensure the 
correct channeling of requests through the SoC system 
interconnect fabric to these registers. This was done more for 
SoC verification and less for the unit verification. While these 
interconnect protocol properties were easy to implement for 
some interconnects like the one in the SIC, it was not a trivial 
approach for more complex protocols. In those situations, we 
just relied on simulation to verify the correct functioning of the 
registers. Fig. 5 shows the formal testbench for the SIC unit. 



Fig. 5. System Interrupt Controller Formal Testbench 

2) IP Core Logic Verification 

The questions that are answered here are: 

 Are the control registers being correctly used by the 
unit as per the design specification? 

 Is the design being reset correctly? 

 Are the inputs being interpreted correctly? 

 Are the outputs being generated appropriately? 

 Are the status registers being updated correctly? 

The Register Access Verification did not verify the intent 
of the registers or the architectural appropriateness of the data 
written to the register. However, it did establish controllability 
and observability of the registers in the unit from its interface. 
The IP core logic verification could now safely use the control 
registers as inputs to properties on the rest of the logic they 
drive. In additional to these registers, we chose a few internal 
nodes in the design as observation and control points in our 
properties. These points gave us additional controllability and 
observability to the design and reduced the complexity of the 
cones of logic being analyzed around them. We proved the 
correctness (observability) of these points prior to enjoying the 
benefits of using them (controllability) for other properties. 
The formal tool ensured the non-vacuity of all the properties by 
ensuring that the antecedents are reachable by stimulus 
involving only the primary inputs. This approach made it easier 
to write properties on the entire unit without any compromise 
on the efficacy of the overall unit verification. 

While defining the set of properties to verify the core logic, 
we had to constrain the control registers to allow only legal 
values as defined in the architectural spec. These constraints 
were promoted to the RTL simulation environment to ensure 
that they were not violated in the system tests that used this 
unit at the SoC level. If the other inputs to the design needed to 
be constrained, assumptions were added and promoted 

accordingly. Additional assertions around internal nodes were 
used as needed for convenience with the same discipline as 
when using the control registers for properties.  Exhaustive 
properties were written to ensure the correctness of the primary 
outputs of the unit and the correct updates to the status 
registers.  To be thorough in our verification, we added checks 
to verify the reset state of some key registers as specified in the 
micro architecture. The Python infrastructure described earlier 
made this entire process of generating assertions seamless and 
was critical to our successful deployment of the methodology. 

The Event Counter Monitor and SRAM Parity Error 
Register experiences were similar to that of the System 
Interrupt Controller. An additional aspect of the ECM and SPE 
verification was the reuse of the core logic units in both the 
cases. The formal testplan for the SPE and ECM employed a 
hierarchical approach with a mix of assurance of reused design 
blocks and checks to verify their connectivity across the SoC. 
To handle that, we added connectivity checks between the 
independently verified units and/or the unit registers. In the 
case of both the SPE and the ECM, designing for formal 
verification was a consideration in the architecture of the units.  

The Least Recently Used Arbiter is a parameterized unit to 
grant access to the least recently granted requester. To verify 
this unit, we wrote a few standard properties to ensure that 
multiple requestors were not granted simultaneously and at 
least one requestor was granted. To verify the correctness of 
the LRU scheme, we wrote a simple reference model in 
synthesizable SystemVerilog and verified that the requestor 
granted by the designed unit matched that by the reference 
model. We proved fairness and bounded waiting properties for 
the LRU. This exercise eliminated the need for functional 
coverage in multiple units in the SoC where this LRU arbiter 
was used. 

The SRAM Controller interfaces to a more complex system 
interconnect that is not as convenient for verifying formally. 
We used a vendor provided monitor to constrain the interface. 
The core of the SRC was rigorously verified using formal 
properties. The SRAM controlled by the SRC was blackbox’ed 
and the correctness of the control, address and data inputs into 
the SRAM were verified to be correctly generated or calculated 
by the controller logic. As discussed earlier, we used internal 
nodes (outputs of the interconnect logic) as inputs to the 
properties describing the intended core behavior. So, while 
some interconnect verification was achieved as a byproduct of 
the core logic verification, it was not adequate to claim the 
interface verified. The verification of the register accesses was 
done through SoC level simulation tests. In addition to the 
register accesses, we deferred the verification of the protocol 
along with its corner cases to simulation tests at the SoC level. 
Since accesses to the SRAM are defined in the system memory 
map, these tests were fairly trivial to write. 

While most of the bugs manifested as firings of the 
properties targeted, some of them were revealed due to 
vacuous proofs or design check violations that were reported 
by the formal tool as a by-product of the model checking. The 
inability of the formal tool to justify the antecedent of the 
property could be due to an undriven signal or some other 
condition that would prevent the property from being proven or 



fired. Such failures may be trickier to debug because of a lack 
of a waveform to describe the failure. From our experience, it 
is important to not ignore them. They are likely masking a bug. 
It would be beneficial to identify some of these bugs earlier 
concurrently with the design process using automatic formal 
checks. 

C. IP Bug Hunting 

Our objective in this strategy is clearly to drive to 

verification closure by finding the remaining bugs in the 

design as fast as possible. Emphasis is less on complete proofs 

and thorough verification of the unit through a set of formal 

proofs. In this approach, bounded proofs are tolerable. Such a 

strategy always complements simulation or is complemented 

by simulation. Traditional simulation-based code and 

functional coverage become the metrics for verification 

closure. Formal verification is just a catalyst to accelerate to 

closure. On RAPID we applied the Bug Hunting strategy in 

three different situations. 

 

1) Fuse Controller 

The FUSE unit has a deep state machine and hence we did 

not target this with the IP Assurance strategy. Besides, most of 

this unit was verified in the early stage of the project before 

formal verification had made its mark on RAPID. The FUSE 

unit was largely verified through its system interconnect 

interface using SoC level simulation. Through those 

simulations, we had verified the ability to program and read 

the fuse array. The BISR interface to the FUSE was yet to be 

verified. Our goal was to iron out this access mechanism to the 

FUSE unit prior to the BIST and BISR interface being 

designed. 

We just wrote two properties to verify that fuse array read 

and write requests through the BISR interface would be 

completed within the expected number of cycles. The 

read/write operations take over 500/1000 clock cycles 

respectively. We were a little skeptical about the applicability 

of formal verification to explore the state space of the 

controller to these depths. These two assertions proved highly 

valuable by highlighting a few bugs in the unit which could 

very likely have been missed in probabilistic SOC level 

simulation. The formal tool highlighted issues in the state 

machine being able to handle back-to-back reads/writes. These 

failures occurred around 1000 cycles after reset. Once the 

bugs were fixed, we were able to get unbounded proofs for 

these properties. The run times for these proofs were very 

reasonable as well (less than 2 hours). It would have required 

us an elaborate random stimulus generator for the BISR 

interface to probably find these bugs. The SoC environment 

does not lend the controllability for such random stimulus. At 

the very least, this formal effort saved us the longer debug 

times in the simulation environment. 

 

2) Clock Controller Unit 

The CCU controls the clock generation to the various units 

on the RAPID SoC. Towards the end of the project, we found 

a bug using random SoC simulations in the CCU with one of 

the clock modes the SoC was expected to operate in. The 

challenge was to ensure that this bug did not occur in any of 

the other clock modes. Doing that in simulation would have 

been impractical. We decided to explore the use formal 

verification to give us that confidence. We described the 

property that the bug would have violated and ran formal 

model checking on the CCU. Through this effort we were able 

to: 

 Confirm the bug that was found in simulation 

 Prove that this bug only occurred in the clock mode 

that was reported in simulation. 

That proof gave us confidence in the health of the design 

and expanded our options to fix or ignore the bug. 

 

3) Memory Interface Subsystem 

The Memory Interface Subsystem (MIS) includes a 

localized Memory Access Arbiter (MAA) and its interface 

(MSYS) to the system interconnect. The units in this 

subsystem were already being verified in a unified UVM- 

based unit level environment. We decided to accelerate the 

verification closure of these units by using formal verification 

for finding the remaining bugs. We asserted some general 

invariant properties about the design. We also implemented 

properties to assert some corner cases. In order to increase our 

chances to find bugs, we verified the MAA and the MSYS in 

separate formal environments. Fig. 6 shows the formal 

testbenches for the units in the MIS. 

Like in the previous units, we used vendor IP to constrain 

the system interconnect. We strictly followed the Assume-

Guarantee [3][4] formal proof methodology in this situation. 

The assumptions that were made to verify properties for the 

MSYS unit became targets for the MAA verification. This bug 

hunting exercise revealed a few design issues including a 

critical one that potentially saved us a respin of silicon. 

Although we did not get unbounded proofs for all these 

properties, we were able to achieve our goals of driving to 

verification closure on these units. 

 

Fig. 6. MAA and MSYS Formal Testbench 

Subsequent to the initial bug hunting effort, the 

verification methodology for this unit has evolved into using 

formal methods for performing early bug hunting for all the 

new design features designed. This has proven to be a very 

valuable exercise with bugs being found within minutes after 



the designer has implemented the design. This is as productive 

as it can get when the design and verification responsibilities 

are split between different teams. 

D. Challenges 

 We encountered our set of challenges during the 
deployment of the formal solutions. None of them posed any 
significant obstacles to the project, though. 

1) Confidence 

Some designers were very comfortable with conventional 

simulation based methods. It needed an initial leap of faith to 

rely solely on formal verification for verifying their designs. 

One designer commented “I understand you are going to 

prove assertions. I would still like to see some simulations to 

verify the unit.” This concern is very reasonable given that we 

did not have a quantifiable way to articulate the completeness 

of the formal properties. Another willing but skeptical 

verification engineer commented “There are reasons we have 

traditional methods like scoreboards and functional 

coverage.” Our experiences on RAPID changed the outlook of 

each of these engineers towards formal verification. The 

former’s response after the formal experience was “I did not 

know that formal verification can verify my unit this 

thoroughly. I understand my design better because of this 

formal experience.” The latter engineer went on to verifying a 

complete unit formally within the scheduled time. 

2) Assertion Based Verification Focus 

The documentation of design intent in the form of 

assertions and design coverage by the designers can accelerate 

the adoption for formal verification. The benefits of formal 

verification can be fully exploited when the designers make a 

commitment to specifying assertions as a part of the design 

process.  

3) Infrastructure development 

As mentioned earlier, the infrastructure for formal 

verification was non-existent prior to our undertaking. The 

development of the infrastructure was an evolutionary process. 

4) Assertion coverage 

The biggest challenge that is still unresolved is a lack of 

tangible coverage metric to tell us if the set of assertions 

written is adequate to claim verification completeness for the 

units. While there has been some work done on this topic [7], 

we did not have the bandwidth to adopt any of these methods 

on this project. We alleviated this concern with reliance on 

design and verification reviews. 

V. RESULTS 

TABLE II. shows the results of applying formal 
verification on the different units on RAPID. The table also 
shares some attributes about the designs as reported by the 
formal tool. The number of assertions reflects the number of 
unique assertions eventually run for the unit. These assertions 
were broken down into multiple tests for each unit. Our 
environment enables a definition of a hierarchy of tests for a 
unit and automatically handles the dynamic scheduling of these 
formal jobs on the server farm. The run times reflect the total 
amount of time taken to run all the tests for each unit.  

TABLE II.   FORMAL VERIFICATION RESULTS ON RAPID 

Unit Strategy Registers Assertions 
Run 

Time 
Bugs 

SIC Assurance ~4200 ~3000 3m 5 

ECM Assurance ~5500 ~1500 5m 15 

LRU Assurance ~75 ~60 120m 2 

SRC 
Partial 

Assurance 
~2500 ~1500 600m 39 

FUSE 
Bug 

Hunting 
~4500 2 110m 4 

MAA 
Bug 

Hunting 
~6700 ~2000 600m 6 

MSYS 
Bug 

Hunting 
~9500 ~100 120m 2 

SPE Assurance ~350 ~150 2m 8 

 

A. Schedule 

The results clearly show the effectiveness of formal 

verification in finding bugs. What they do not convey is the 

time taken to find those bugs. Each of the units targeted for IP 

Assurance was verified well within the original time allocated 

for those units in the original project plan. These units were 

qualified for SoC integration well ahead of their schedule. The 

role that SoC tests played in the thorough coverage of these 

units was also reduced considerably. For e.g. with the formal 

verification of the SIC and the SoC interrupt connectivity, it 

was no longer necessary to verify the correct functioning of 

every interrupt on the SoC level. Such tests would have 

consumed MxN tests at significant lower SoC simulation 

performance to cover the entire matrix of N interrupt 

generators and M destinations. Instead of these exhaustive 

tests, just a few SoC simulation tests were written to 

demonstrate the correct system behavior. This was more a 

system level task. These tests were not expected to find any 

bugs and they did not. These schedule savings in the RAPID 

SoC verification plan has not been estimated and is non-

trivial. 

B. Quality 

For all the units that were targeted with the IP Assurance 

strategy, a few SoC test were written to demonstrate their 

behavior in a system. Some of these were highly randomized 

tests subjecting the units to adverse conditions. The only bugs 

these tests revealed were in the SRC unit where we had 

deferred the verification of the system interconnect interface 

to simulation. This has helped develop more confidence in 

formal verification and our methods among the RAPID design 

and verification teams. 

C. Benefits 

Beyond the schedule and quality impact of formal 

verification on RAPID, we realized a few intangible benefits 

of adopting a formal verification. 

1) Design – Verification Collaboration 

Formal verification success fosters a structured approach to 

IP verification.  Structured planning reviews are conducted to 

review architectural features to be implemented and document 

key assumptions, assertions and coverage items. This enables 



a consistent understanding of the design prior to the design 

and verification phase. The designers are able to accommodate 

design for verification as a factor in evaluation design options. 

With more familiarity with the formal verification, these 

considerations evolve into design for formal verification 

guidelines. 

2) Organizational Capability 

There is a distinct openness in the organization to leverage 

formal methods. Designers and verification engineers are 

looking for ways to use formal verification to verify their 

units. Even if the entire unit is not a good fit, key sub 

functions are being considered to be verified formally. With a 

more mature infrastructure in place, we are in a position to 

execute on these plans more efficiently. It now takes us less 

than 10 minutes to define a formal testbench together for a 

new unit and start writing and verifying properties on the unit. 

3) Early Bug Hunting 

While the benefits of formal verification are well 

understood in finding hard to find bugs, it has proven very 

effective and efficient in finding and verifying most of the 

“simpler” bugs from the design. The formal tools may take a 

long time to prove complex properties, but often do not take 

very long to find a counter example to disprove a property. It 

does not take very long to put together a formal testbench 

along with constraints and the necessary monitors. Unlike 

simulation failures, firings in formal verification are very easy 

to diagnose to get to the root cause of the failure. This can be a 

big productivity boost in getting to a fully functional unit 

faster. 

4) Documentation Verification 

Often, the bugs found in formal verification are a result of 

inconsistencies between the assumptions made by the designer 

and the design spec. The properties written for formal proofs 

are based on the specified intent of the design. There will be 

situations where the spec has to be modified to clearly 

articulate the functionality of the design to the system 

engineers and software developers. 

5) Confidence and Understanding 

During the course of the formal process, we ended up 

writing a number of incorrect assertions. The tool will 

rightfully disprove these assertions and generate waveforms to 

illustrate the failing pattern. While these experiences may 

seem a waste of time, there is a sense of confidence in the 

correctness of the design. These are valuable experiences for 

the designer and the verification engineer to deepen their 

understanding of the design and become more adept at 

verifying their unit. 
. 

VI. CONCLUSION 

Our efforts on the RAPID project and the results have 
demonstrated the role formal verification can play in an SoC 
project. We have shown how a team that had fairly limited 
experience with formal verification has adopted the 
methodology and leveraged it to achieve the project’s goals. 
We have shown the importance of applying the correct formal 
for each unit. For some units, it can be applied to completely 

prove the units’ functionality and for others, it can be a bug 
hunting expedition. It is important to be true to the plan for the 
unit. Any deviation from the plan can lead to an unproductive 
effort. 

Formal verification is a highly effective and efficient 
approach to finding bugs. Simulation is the only means 
available to compute functional coverage towards verification 
closure. We have attempted to strike a balance between the two 
methodologies to operate within the strengths of each approach 
towards meeting the projects goals. We have demonstrated that 
closer collaboration between the design and verification teams 
during the pre-implementation phase is essential for 
maximizing the applicability of formal methods.  

What we have achieved on this project is nothing new. 
These methods have been employed by a number of projects 
across the industry. We wanted to share our experience to allay 
prevalent concerns about the obstacles to adopting formal 
verification. More than skill, this approach requires the right 
attitude – diligence, perseverance and a pinch of humility. 

In our industry, verification is widely accepted as the long 
pole in the project schedule. 67% [1] of projects do not meet 
their planned schedules. On RAPID, we did not apply formal 
methods for the sake of applying formal methods. We applied 
formal methods because we believed it would help us reign in 
the schedule for the units we targeted. And, we did. Our role as 
verification engineers and managers is to certify the quality of 
the designs being taped out within the schedule outlined for the 
project. It is our responsibility to use available solutions wisely 
to make those schedules appear less unreasonable. We 
encourage verification teams to explore the use of formal (and 
any other) verification to meet your project goals. 

A. Future Work 

As we continue to develop formal expertise across our 

organization, there are some areas that merit some additional 

exploration.  

 Quantify the coverage achieved with the proven 

assertions on any unit. This will provide a metric to 

indicate completeness of the set of assertions. 

 Use automatic formal checks to eliminate design 

violations prior to simulation and formal verification. 

 Use automatic formal analysis of the design to identify 

unreachable and uncoverable sections of the design. This 

will help streamline coverage closure and potentially 

identify design issues early. 

 Augment the formal flow to automate the Assume-

Guarantee flow and the promotions of inconclusive 

assertions to RTL simulations. 
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