
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

The Future of Formal Model Checking is NOW!

Leveraging formal methods for RAPID System On Chip verification

Executive Summary

What is RAPID?

 Hardware-software co-design initiative in Oracle Labs

 Goal: improve energy efficiency of database-processing systems

 In this context, we are verifying the RAPID System On Chip

What was the primary verification methodology for RAPID?

 UVM-based verification environment for units and SoC

Why did we explore the use of formal model checking?

1. To meet our project SCHEDULE

2. To ensure design QUALITY

What was our prior experience using formal methods?

 NONE

How long did this entire effort take?

 7 person months

What were our initial expectations?

1. Verify some SoC level connections

2. Explore if formal could help verify a couple of simple units

What did we achieve?

 SCHEDULE: We exceeded our goals for units targeted with

 formal

 QUALITY: These units were fully functional in first silicon

Formal Strategies

Evolution of the RAPID Formal Plan RAPID Formal Infrastructure

Examples from RAPID Assertion Library

Results

Formal + Simulation

Conclusion State Exploration with Formal

 Thanks to the RAPID team for their enthusiastic participation

 Thanks to Roger Sabbagh for his persistent encouragement

 Thank you for visiting this poster!

Ram.Narayan@Oracle.com

 The key to an optimal SoC verification plan is the

balanced application of Formal and Simulation methods

Formal Assurance

 Objective is to completely verify the

unit

 Properties cover entire state space

 Replaces simulation for unit

verification

 Challenge: How do you know you

have adequate properties?

Bug Hunting with Formal

 Objective is to find bugs – especially

the elusive ones

 Properties target corner cases and

key features

 Complements simulation for

verifying unit

 Can be applied Early (pre-

simulation) and Late (post-

simulation/coverage)

 SoC Connectivity proofs

 Interrupts

 Routing of events to counters

 DFT signals

 Simple connection (or conditional) properties

 Important to blackbox units not relevant to connectivity for

productivity

Formal assurance

 System Interrupt Controller (SIC)

 Event Count Monitor (ECM)

 Least Recently Used Arbiter (LRU)

 SRAM controller (SCR)

 These units were of low to moderate complexity

 Behavior and properties could be described thoroughly for

unit

 For each unit, the set of assertions and assumptions were

reviewed by designers and peers for thoroughness

Deeper Formal proofs

 FUSE Controller (SIC)

 Deep state machine (>500 cycles)

Late Bug Hunting

 Memory Interface System (MIS)

 Unit already being verified using UVM testbench

 Objective to accelerate verification closure

 Properties written to target key invariants and corner case

behaviors

 Clock Control Unit (CCU)

 Bug found in random SoC simulation for a clock mode

 Simulation of all modes was not practical

 Formal model checking used to find other clock modes for

which bug may occur

Early Bug Hunting

 Memory Interface System (MIS)

 New features subject to formal model checking prior to

simulation

 Bugs found and debugged faster

 Assertions with bounded proofs promoted to simulation

Design for Formal Verification

 SRAM Parity Error (SPE)

 Error collection and propagation architecture and design

altered to make it formal assurance friendly

 Significant productivity savings over simulation based

verification

 Truly rapid time to verification closure

Organizational Capability

 Developing skills across RAPID DV team

 Targeting more units across the project

 Formal verification is now a consideration during

verification planning for most units

Python SVA

def_connect (A, B, delay) 1'b1 ##delay 1'b1 |->

(B == $past(A,delay));

def_prop (A) A;

def_imply_range (A,B,min,max) A |-> ##[min:max] B;

def_eventually (A,B,delay) A |->

strong (##[delay:$] B);

def_cond (A,B,C,delay) C |-> ##delay

(B == $past(A,delay));

def_until (A,B,C,Bdly,Ccnt) A |-> ##Bdly

(B throughout C [->Ccnt]);

UNIT STRATEGY REGISTER

COUNT

ASSERTION

COUNT

RUN

TIME

BUG

COUNT

SIC Assurance ~4200 ~3000 3m 5

ECM Assurance ~5500 ~1500 5m 15

LRU Assurance ~75 ~60 120m 2

SRC Assurance ~2500 ~1500 600m 39

FUSE Bug Hunting ~4500 2 110m 4

MIS Bug Hunting ~17000 ~2100 720m 8

SPE Assurance ~350 ~150 2m 8

 To simplify the assertion specification, we developed a simple

Python template for properties and generated SVA from them

 Bugs found very early

 Units fully verified ahead of schedule

FORMAL SIMULATION

Excellent for Unit Verification Excellent for System Verification

and units not suited for formal

model checking

Can replace simulation for units

verifiable with Assurance Strategy

SoC Simulation still needed to

verify system behavior and

interoperability

Early Bug Hunting can accelerate

time to productive simulations

Simulation is essential for

coverage closure

Late Bug Hunting can help find

critical corner case bugs.

Simulation is primary verification

method for these units

Debugging is very precise Debugging may take longer .

Assertions will help accelerate

debug

Not applicable for system

verification

Needed for demonstrating correct

system HW/SW behavior

Excellent for SoC Connectivity

checks

While it can used, takes lot more

simulation resources to achieve

thorough coverage

Can be used to identify

uncoverable conditions early

Necessary for coverage sign-off

when not using assurance

Challenge : How do you know

you are done?

Challenge: How do you know

you are done?

Reality

 Needs planning, diligence and

persistence

 Capability can evolve from

modest beginnings

 Targeted strategy will produce

immediate results

 Leverages and infuses

fundamental Assertion Based

Verification principles

Perception ?

 Formal is only for experts

 Needs special skills and talent

 Is hard to use and deploy

 Is impractical for real world

designs

 Needs a lot of effort before

benefits can be reaped

Acknowledgements

BUGS IN FIRST SILICON = 0

I

N

I

T

I

A

L

S

T

A

T

E

mailto:Ram.Narayan@Oracle.com

