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ABSTRACT  

UVM, the Universal Verification Methodology for SystemVerilog, 

has been with us for several years now and is being increasingly 

adopted due to its strength as a multi-vendor standard, encouraging a 

consistent and re-usable approach to creating verification IP. As is 

often the case with such standards, there are many users who dip 

their toes in the water but never seem to find time to explore the full 

potential of UVM. This paper explores some of the finer points of 

UVM, building upon experience gained at Doulos from delivering 

training and working with engineers using UVM in a practical 

industrial environment.  

This paper covers a lot of ground. The goal is to help engineers to 

progress beyond the basics of UVM by pointing to the areas of UVM 

that are worthy of further attention. Rather than just restating the 

contents of the UVM class documentation, the approach is to give 

some tips as to when, why, and how to use some of the deeper 

features of the UVM base class library. 
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1. INTRODUCTION 

UVM, the Universal Verification Methodology for SystemVerilog, 

consists of a SystemVerilog base class library, a Class Reference [2], 

a User’s Guide [3], and a few examples, all of which are freely 

downloadable [4]. According to the Class Reference, "The UVM 

Class Library provides the building blocks needed to quickly develop 

well-constructed and reusable verification components and test 

environments in SystemVerilog." 

The UVM class library is very rich in content. Introductory seminars 

or webinars on UVM do little more than scratch the surface. Formal 

hands-on UVM training courses typically run for 3 or 4 days of very 

intense training, but even that is often insufficient to teach all the 

detail. The goal of this paper is to pick a few of the more interesting 

features of UVM and dig a little deeper than would usually be done 

in an introductory seminar. 

We start by investigating the sequencer, which is the engine used in 

UVM to generate stimulus. We show how to manipulate the behavior 

of multiple concurrent sequences with confidence and to have one 

sequence interrupt another, which is a particularly useful technique 

for creating virtual sequences where a sequence running on one 

sequencer is able to start and stop sequences on a different 

sequencer. We also point out pitfalls to avoid with concurrent 

sequences, such as being sure to define the parent-child relationship 

between sequences and to set the proper sequence arbitration 

algorithm. 

Continuing with the theme of sequences, we investigate the sequence 

library. Both the current UVM release and several of its ancestors 

have included trial implementations of a so-called sequence library, 

which attempts to provide a mechanism for packaging and re-using a 

set of related sequences. 

UVM puts a lot of emphasis on sequences for the creation of 

modular, reusable stimulus generation, and allows sequences to be 

related in a number of ways, including nested, virtual, and layered 

sequences. The use of layered sequences poses questions as to the 

best way to structure those sequences for reusability. This paper 

explores how to minimize unwanted dependencies between layered 

sequences when creating so-called translation sequences, which 

translate between layers in a protocol stack. This paper also explores 

the options for passing request and response information up and 

down the stack of layered sequences, including the concepts of 

request and response ids and response queues, and contrasts this with 

the range of more ad hoc methods for communication between 

components also available in UVM. 

The joint concepts of a resource database and a configuration 

database were introduced with UVM 1.0 to extend and generalize the 

concept of configuration tables from OVM. The resource database is 

a general container for shared resources, where each resource has a 

scope, a name and a typed value. The configuration database uses the 

resource database by interpreting the scope of each resource as a 

hierarchical name in the UVM component hierarchy. UVM improves 

upon OVM by allowing values of arbitrary type to be stored directly 

in the database without the need for wrappers, but at the cost of some 

complexity for the user in dealing with the twin concepts of the 

resource and configuration databases. The ability to use wildcards in 

the scope string and to make multiple identical entries in the database 

can be very powerful mechanisms when properly understood, and are 

explored in this paper. 

The configuration database and the reporting mechanism in UVM 

are linked to the UVM component hierarchy, though the 

programming interface to both these mechanisms now permit either 

to be called from sequences, despite the fact that sequences are not 

part of the component hierarchy. This paper exposes some pitfalls 

when accessing the configuration database from sequences, and 

makes some recommendations on best practice. 

2. ASSUMPTIONS 

This paper is based on the Accellera Systems Initiative Universal 

Verification Methodology version 1.1c, which was released in 

October 2012. 

This paper assumes the reader has a certain level of familiarity with 

the SystemVerilog language and with the UVM class library. In 

particular, a familiarity with the following UVM concepts is 

assumed: the component hierarchy, the factory, the configuration 

database, the phasing mechanism, transaction-level communication, 
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analysis ports, agents, sequencers, sequences, virtual sequences, 

tests, and objections. 

3. THE SEQUENCER 

The UVM sequencer is the engine for running sequences. Each 

sequence runs on a sequencer, in much the same way as a computer 

program runs on a processor. Like a processor, a sequencer is static 

and has fixed connections to other components in the UVM 

verification environment. Like a computer program, a sequence is 

dynamic, has a start and an end point in time, and potentially has to 

compete with other sequences trying to run on the same sequencer at 

the same time. Each sequence has a task, named body, which may 

generate transactions itself or may run other nested sequences to do 

so. Those nested sequences may in turn generate transactions of the 

same type as their parent sequence or may run other nested 

sequences, and so on to any depth. In the end, each regular sequence 

generates a single stream of transactions of a given type, though it 

may call other nested sequences to do its work. An exception to this 

rule is the so-called virtual sequence, which may execute several 

nested sequences across multiple separate sequencers, each of which 

may individually generate transactions of different types. 

It is often sufficient to use the uvm_sequencer out-of-the-box 

without the need to extend the uvm_sequencer base class. So the 

following code is often sufficient to create a sequencer: 

typedef uvm_sequencer #(my_tx) my_seqr; 

... 

my_seqr seqr; 

... 

seqr = my_seqr::type_id::create("seqr", this); 

A simple user-defined sequence class might look like this: 

class my_seq extends uvm_sequence #(my_tx); 

  `uvm_object_utils(my_seq) 

 

  // Boiler-plate constructor code 
  function new(string name = ""); 

    super.new(name); 

  endfunction: new 

 

  // The body task does the work of the sequence 
  task body;  

    repeat(4)  

    begin 

      // Create a new transaction object 
      req = my_tx::type_id::create("req"); 

 

      // start_item waits for the driver 
      start_item(req);  

 

      if (!req.randomize()) 

        `uvm_error("", "failed to randomize") 

 

      // finish_item sends the request to the driver 
      finish_item(req);  

    end 

  endtask 

endclass 

The sequence above generates 4 random transactions of type my_tx. 

If the sequence above were to be called from another sequence, the 

body task of the parent sequence might look as follows:  

class top_seq extends uvm_sequence #(my_tx); 

  ... 

  `uvm_declare_p_sequencer(my_seqr) 

  ... 

  task body; 

    repeat(3)  

    begin 

      my_seq seq; 

      seq = my_seq::type_id::create("seq"); 

      if (!seq.randomize()) 

        `uvm_error("", "failed to randomize") 

      seq.start(p_sequencer, this); 

    end 

  endtask 

In the code fragment above, the sequence my_seq is called 3 times 

from top_seq. Sequence my_seq runs as a child sequence of top_seq 

and both sequences run on the same sequencer. This is where things 

start getting a little more subtle. my_seq is made to run on the same 

sequencer as top_seq by passing the variable p_sequencer as the 

first argument to the start method. p_sequencer is introduced into 

the user-defined sequence class using the macro 

`uvm_declare_p_sequencer, and points to the sequencer that the 

sequence is running on. This variable is useful whenever a sequence 

needs access to the sequencer on which it is running. 

Moreover, my_seq is made to run as a child of top_seq by passing a 

reference to the parent sequence (this) as the second argument of the 

start method. It becomes critical to define the parent-child 

relationship between sequences in this way when it comes to 

controlling sequence execution from virtual sequences, as we will 

see below. 

As the code stands above, my_seq is called 3 times in sequence from 

the parent sequence. Because the start method is blocking, each 

instance of my_seq only starts running after the previous instance has 

completed. However, if we allow the child sequences to run 

concurrently on the same sequencer, we open the door to lots of 

interesting issues: 

task body; 

  fork  

    begin 

      seq1 = my_seq::type_id::create("seq1"); 

      if (!seq1.randomize()) 

        `uvm_error("", "failed to randomize") 

      seq1.start(p_sequencer, this); 

    end 

    begin 

      seq2 = my_seq::type_id::create("seq2"); 

      if (!seq2.randomize()) 

        ... 

      seq2.start(p_sequencer, this); 

    end 

    begin 

      ... 

      seq3.start(p_sequencer, this); 

    end 

  join 

endtask 

You are encouraged to try this example for yourself. What you will 

find is that transactions from the 3 sequences (seq1, seq2, seq3) are 

strictly interleaved. This is no accident but is a deliberate feature of 

the UVM sequencer, and can be brought under user control. 

3.1. The arbitration queue 

Each sequencer has an arbitration queue containing references to all 

the sequences that are trying to run on the sequencer at the current 

point in time (seq1, seq2, seq3 in the example above). Each 
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sequencer also has an arbitration algorithm used to select the next 

sequence item from the queue. The default arbitration algorithm is 

FIFO such that the first sequence to get started gets served first and, 

having generated one transaction, gets sent to the back of queue. The 

result is that when multiple sequences are competing to run on the 

same sequencer, they get scheduled in round-robin order so that the 

transactions are strictly interleaved. 

The arbitration algorithm used by each sequencer can be selected by 

the user from a set of built-in algorithms or can be user-defined. 

Several, but not all, of the built-in algorithms make use of the 

priority of the sequence. It turns out that the default FIFO algorithm 

ignores the sequence priority, which can be very confusing for 

newcomers trying to understand the behavior of their code. 

Here is an example of selecting a built-in arbitration algorithm, 

which in this case does make use of the sequence priority:  

task body; 

  p_sequencer.set_arbitration( 

                      SEQ_ARB_STRICT_RANDOM); 

  fork  

    begin 

      seq1 = my_seq::type_id::create("seq1"); 

      if (!seq1.randomize()) 

        `uvm_error("", "failed to randomize") 

      seq1.start(p_sequencer, this, 1); 

    end 

    begin 

      ... 

      seq2.start(p_sequencer, this, 2); 

    end 

    begin 

      ...  

      seq3.start(p_sequencer, this, 3); 

    end 

  join 

endtask 

The algorithm SEQ_ARB_STRICT_RANDOM strictly selects 

sequences with a higher priority (larger integer) before sequences 

with a lower priority (smaller integer), and in the case of sequences 

with equal priority makes a selection at random. In the example 

above, this would result in seq3 running to completion before seq2 is 

allowed to generate its first transaction. The sequence priority can be 

set by being passed as the third argument to the start method, or by 

calling the set_priority method of the sequence object. 

In order to provide a user-defined algorithm it is necessary to 

override the user_priority_arbitration method of the sequencer and 

to select the SEQ_ARB_USER algorithm. This requires a user-

defined sequencer class, for example:  

class my_sequencer 

                 extends uvm_sequencer #(my_tx); 

  ... 

  function integer user_priority_arbitration( 

                   integer avail_sequences[$]); 

    foreach (avail_sequences[i]) 

    begin 

      integer index         = avail_sequences[i]; 

      uvm_sequence_request req =  

                      arb_sequence_q[index]; 

      int pri               = req.item_priority; 

      uvm_sequence_base seq = req.sequence_ptr; 

       

      if (pri > max_pri) 

      begin 

        max_pri   = pri; 

        max_index = index; 

      end 

    end 

    return max_index; 

  endfunction 

 

endclass 

The user_priority_arbitration method is passed a queue containing 

indexes into the arbitration queue of the sequencer, which is itself 

named arb_sequence_q. From that it is possible to retrieve the 

priority of each sequence and the sequence objects themselves, both 

of which can be used to calculate and return the index number of the 

next sequence to be selected. This mechanism gives the user total 

control over the order in which the sequencer selects which sequence 

to run next. The sequence priority can even be adjusted dynamically, 

if required. 

3.2. Virtual sequences 

A virtual sequence is a sequence that happens not to generate any 

transactions itself but does its work by starting child sequences on 

other sequencers. Virtual sequences are typically used in UVM to co-

ordinate the behavior of multiple sequencers within multiple agents 

connected to multiple interfaces of the design-under-test. 

In early versions of OVM, virtual sequences and virtual sequencers 

were distinguished from regular sequences and sequencers by means 

of separate base classes. Virtual sequences could only run on virtual 

sequencers. This legacy still lives on in the minds of some UVM 

users, though virtual sequences and sequencers have long since been 

collapsed into their regular brethren. 

In UVM, a virtual sequence extends the same base class as a regular 

sequence and can run on any sequencer. In fact, because a virtual 

sequence is not obliged to be specialized with a specific transaction 

type when extending uvm_sequence (see the example below), and 

because a virtual sequence will not, by definition, call start_item 

and finish_item, there are fewer restrictions on the choice of 

sequencer. A virtual sequence can run on its own dedicated 

sequencer, can run on a sequencer used to run regular (non-virtual) 

sequences, or can even run on the null sequencer (explained below). 

Aside from the desire to group together related sequences to facilitate 

reuse, the choice would be made on the basis of whether the user 

needs to have the virtual sequence access properties of an existing 

sequencer. 

When running any sequence, the start method of the sequence calls 

its body method, which may in turn start child sequences, and so on 

until a child sequence attempts to generate a transaction, at which 

point the entire call stack will be stalled until the downstream 

component (typically a driver) requests a transaction. The priority of 

the sequence, passed as an argument to start, will be used as the 

default priority for any child sequences, and ultimately as the default 

priority of any transactions. Priority and arbitration are ultimately 

only relevant to the transactions generated by the sequences, not to 

the sequences themselves, so the sequencer arbitration queue, as 

described above, is not directly relevant to virtual sequences but only 

to the transactions generated by their children. This is why it is 

possible to start a virtual sequence on the null sequencer, for 

example: 

virtual_seq.start(null, this, priority); 

It is meaningful to set the priority of a virtual sequence, even when 

that virtual sequence is running on the null sequencer, because the 

priority will be inherited by the children of the virtual sequence and 

hence by their transactions.  
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3.3. lock and grab 

There is another important mechanism that can be used to control the 

order of sequence execution, namely, the ability of a sequence to 

"lock" or gain exclusive control over a sequencer. Once a sequence 

has locked a sequencer, only that sequence can have its sequence 

items executed on the sequencer: all other sequence items in the 

arbitration queue will be bypassed until the lock is released. The 

sequence lock mechanism is of particular interest when writing 

virtual sequences.  

Imagine a UVM sequencer within an agent connected to the DUT. 

That sequencer may be generating background traffic appropriate to 

the particular interface it is connected to. A virtual sequence, which 

co-ordinates multiple agents, may want to take control of that low-

level sequencer to inject some specific transactions or to handle an 

interrupt. This can be accomplished using the sequence lock 

mechanism. 

Here is an example of a virtual sequence:  

class virtual_seq extends uvm_sequence; 

  `uvm_object_utils(virtual_seq) 

  my_sequencer seqr; // Reference to another sequencer 
  ... 

  task body; 

    my_seq seq; 

    seq = my_seq::type_id::create(); 

    seq.starting_phase = starting_phase; 

    if (!seq.randomize()) ... 

 

    // Take exclusive control of another sequencer 
    this.lock(seqr); 

 

    // Run sequence on that sequencer 
    seq.start(seqr, this); 

 

    // Relinquish control 
    this.unlock(seqr); 

    ... 

The call this.lock(seqr) gives the calling sequence virtual_seq 

exclusive access to the sequencer seqr. Assuming seqr is not already 

locked by some other sequence, the virtual sequence above will be 

able to run its own sequence before giving up the lock. On the other 

hand, if the sequencer is already locked, the call to lock above will 

block until the sequencer becomes available by being unlocked 

elsewhere. By definition, only one sequence can lock a given 

sequencer at any given time, and any other calls to lock get sent to 

the back of the queue. 

There is an alternative method grab that is identical in effect to lock 

except that in the event that the attempt to lock the sequencer is not 

immediately successful, the pending request gets sent to the front of 

the arbitration queue rather than to the back. This gives the user a 

certain degree of control over the behavior in the event that multiple 

sequences attempt to lock the same sequencer simultaneously. Once 

a call to lock or grab has taken control of a sequencer, the owner 

cannot be interrupted by any other call to lock or grab until it has 

explicitly relinquished control by calling unlock or ungrab. lock is 

polite and goes to the back of the queue, whereas grab barges in at 

the front of the queue. However, neither lock nor grab requests are 

affected by the arbitration algorithm or sequence priority: both are 

serviced ahead of any regular sequence items in the arbitration 

queue. In other words, the distinction between lock and grab is only 

important with respect to the order in which concurrent locks and 

grabs are serviced on the same sequencer. 

4. THE SEQUENCE LIBRARY 

The concept of a sequence library has been around since the days of 

URM and AVM, prior to their merging into OVM. UVM contains a 

prototypical sequence library implementation, though at the time of 

writing the uvm_sequence_library is still not included in the official 

UVM documentation. Note that OVM included a set of macros for 

creating a "sequence library" which have been deprecated in UVM. 

The uvm_sequence_library being discussed here is not the same as 

the deprecated sequence library mechanism from OVM. 

The idea behind the sequence library is to have a library of sequences 

(naturally enough) where the sequences get run in turn, one-at-a 

time. This is in contrast to the discussion on the arbitration queue 

above, where we were considering the issue of what happens when 

several sequences attempt to run in parallel on the same sequencer: 

the sequence library runs several sequences in series on the same 

sequencer. 

The sequence library should not be used as the mechanism for 

managing and starting every sequence: the techniques for starting 

sequences as discussed in previous sections are sufficient for many 

purposes. The sequence library is a specific mechanism for a specific 

purpose, that is, to identify a set of sequences and then be able to 

control the order in which those sequences execute either by 

selecting a random execution order or by providing a user-defined 

algorithm. 

In use, a sequence library looks like a fancy sequence (class 

uvm_sequence_library extends uvm_sequence): 

class my_seq_lib 

          extends uvm_sequence_library #(my_tx); 

  `uvm_object_utils(my_seq_lib) 

  `uvm_sequence_library_utils(my_seq_lib) 

 

  function new(string name = ""); 

    super.new(name); 

    init_sequence_library(); 

  endfunction 

endclass 

Notice that the macro uvm_sequence_library_utils and the function 

init_sequence_library must be called when defining a sequence 

library, and that the user does not supply a body task for the 

sequence library: the body task is built into the base class. 

You start a sequence library on a sequencer as you would an ordinary 

sequence, except that you first add sequences to the library and set 

bounds on how many sequences will be run. This might be done 

from the run phase of a test, for example: 

task run_phase(uvm_phase phase); 

 

  // Create the sequence library object using the factory (as usual) 
  my_seq_lib lib = my_seq_lib::type_id::create(); 

 

  // Add several user-defined sequences to the library 
  lib.add_sequence( seq1::get_type() ); 

  lib.add_sequence( seq2::get_type() ); 

  ...  

 

  // Must set sequence library properties before randomizing the library 
  lib.selection_mode = UVM_SEQ_LIB_RAND; 

  lib.min_random_count = 15; 

  lib.max_random_count = 20; 

 

  // Randomize sequence library object to set the number of sequences 
  if ( !lib.randomize() ) ... 
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  // Set starting_phase because the sequence library raises an objection 
  lib.starting_phase = phase; 

  lib.start(m_env.m_seqr); 

  ... 

The example above creates a new sequence library object, adds 

several user-defined sequences to the library, sets the algorithm used 

to select the order in which the sequences are to be run (UVM 

_SEQ_LIB_RAND meaning that each sequence run is selected at 

random from the full set of sequences in the library), and sets 

minimum and maximum bounds on the number of sequences to be 

run. The sequence library object is then randomized and started on a 

specific sequencer (where it might have to compete with other 

sequences running concurrently on the same sequencer, as discussed 

above). 

Instead of adding sequences to a sequence library object, it is also 

possible to add sequences to the sequence library class such that they 

are available to all instances of that sequence library. This is easy to 

do by calling a static method from outside the class, as follows: 

  my_seq_lib::add_typewide_sequence( 

                             seq3::get_type() ); 

  my_seq_lib::add_typewide_sequence( 

                             seq4::get_type() ); 

  ... 

In the example above, the properties of the sequence library are set 

procedurally after the sequence library object has been instantiated 

by the factory. As you would expect in UVM, it is also possible to 

set these properties in advance of the creation of the object by using 

the configuration database. To make this possible, you also need to 

select the sequence library as the default sequence for the run phase 

of a particular sequencer, for example: 

uvm_config_db #(uvm_object_wrapper)::set( 

    null, "*.m_seqr.run_phase", 

    "default_sequence", my_seq_lib::get_type() ); 

 

uvm_config_db #(int unsigned)::set( 

    null, "*.m_seqr.run_phase", 

    "default_sequence.min_random_count", 15 ); 

As regards the order in which the sequences within the library are 

chosen for execution, you can have as much or as little control as you 

want. For the ultimate in flexibility you could select a user-defined 

algorithm, for example:  

class my_seq_lib 

          extends uvm_sequence_library #(my_tx); 

  ... 

  // Override the built-in select_sequence method 
  function int unsigned select_sequence( 

                              int unsigned max); 

      static int unsigned counter; 

      select_sequence = counter; 

      counter++; 

      if (counter > max) 

        counter = 0; 

  endfunction 

endclass 

 

... 

lib.selection_mode = UVM_SEQ_LIB_USER; 

The select_sequence method is required to return an integer in the 

range 0 to max, inclusive. In the current prototypical implementation 

of the sequence library (UVM-1.1c), the default implementation of 

select_sequence actually returns an integer in the range 0 to max-1, 

so cycles through one-too-few sequences. The example above shows 

a user-defined select_sequence method that fixes this bug. 

In selecting which sequence to execute next from the library, you 

may sometimes require information about which sequence is which. 

This can be achieved by calling the get_sequences method, as 

follows: 

function int unsigned select_sequence( 

                              int unsigned max); 

  uvm_object_wrapper seqq[$]; 

  get_sequences(seqq); 

  foreach (seqq[i]) 

    if (seqq[i] == seq1::get_type()) 

      ... 

    else if (seqq[i] == seq2::get_type()) 

      ... 

  return index;  

endfunction 

5. THE SEQUENCE RESPONSE 

So far we have focused on sequences running on a single sequencer. 

Now we turn to the interaction between sequencers and drivers, and 

to layered sequencers. 

Layered sequencers are an important issue because they address the 

use case of modeling protocol stacks in the UVM environment. 

Almost by definition, because the driver is required to "wiggle the 

pins" of the DUT, a sequencer connected directly to a driver must 

generate transactions that represent the lowest level functional 

protocol used to communicate with the design-under-test. But many 

applications will require one protocol to be embedded within another 

protocol as we climb the protocol stack, and each layer would 

typically be represented in UVM by having sequences running on a 

distinct sequencer. 

Higher level sequencers generate transactions which they send to 

lower level sequencers, which translate those transactions into other 

transaction types which they send in turn to even lower level 

sequencers and ultimately to drivers. In UVM, each of these 

transactions is known as a request. A UVM sequence running on a 

sequencer sends requests to a driver (or to a lower level sequencer). 

The issue then arises as to how to pass information back up the stack 

in the direction away from the driver. 

There are two basic choices: either use the response that is built into 

the sequencer-driver interaction mechanism, or use analysis ports. 

The sequence response is appropriate when the response information 

is intrinsic to the protocol being modeled, such as when returning 

data as part of executing a read transaction. Analysis ports are 

appropriate when the response information can be separated from the 

protocol and carried as "side band" information. There are many 

cases where either technique could be used. 

A consequence of using analysis ports to carry information up the 

stack, away from the DUT, is that analysis ports are non-blocking, so 

transactions must arrive at their destination in zero time. This is fine 

as long as it can be tolerated by the design of the verification 

environment, but does not permit the situation where a transaction 

has to be stalled while waiting for a higher level component to be 

ready. A sequence response, on the other hand, has to be properly 

synchronized with the request to which it corresponds, although 

UVM provides techniques to permit pipelined and out-of-order 

responses, as we will see below. 

Let’s start with an example to review the basics. The sequencer-

driver interface uses two transaction types, the request transaction 
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and the response transaction, which may be the same or different. In 

the examples below we will keep them the same for simplicity:  

class my_seq extends uvm_sequence #(my_tx); 

  ... 

  task body; 

    ... 

    // Create request, wait for driver, send to driver 
    req = my_tx::type_id::create("req"); 

 

    // Put request into the sequencer  arbitration queue 
    start_item(req); 

    if( !req.randomize() ) ... 

    finish_item(req); 

 

    // Wait for response from driver (a blocking call) 
    get_response(rsp); 

    ... 

class my_driver extends uvm_driver #(my_tx); 

  ... 

  task run_phase(uvm_phase phase); 

    forever 

    begin 

      // Wait for request from sequence (a blocking call) 
      seq_item_port.get_next_item(req); 

 

      // Wiggle pins of DUT 
      @(posedge dut_vi.clock); 

      dut_vi.cmd <= req.cmd; 

      ... 

       

      // Create response transaction 
      rsp = my_tx::type_id::create("rsp"); 

      rsp.data = dut_vi.data; 

      rsp.set_id_info(req); 

 

      // Send response back to sequence (goes into response queue) 
      seq_item_port.item_done(rsp); 

      ... 

The protocol between the sequence (running on a sequencer) and the 

driver is: 

1. Sequence and driver wait for each other to be ready 

2. Sequence sends request to driver and waits for response 

3. Driver gets request, processes request, copies transaction id 

information from the request to the response, and then 

sends the response back 

4. Sequence receives the response 

5.1. Pipelined responses 

So far, so good, but a little experimentation will reveal some 

limitations to the approach used in the example above, the most 

fundamental of which is that, as things stand, the request and 

response cannot be pipelined. In particular, get_next_item cannot be 

called before the previous item_done, so the driver cannot start to 

process the next transaction before having sent the previous 

response. Also, vice versa, the sequence is waiting for the previous 

response before sending the next request. These issues can be 

addressed by sending the response using the put method instead of 

item_done. It will also be necessary to introduce concurrent 

processes in order to keep multiple request-response pairs in flight at 

the same time. For example, the sequence can fork processes to wait 

for pipelined responses:  

// Create request, wait for driver, send to driver 
req = my_tx::type_id::create("req"); 

start_item(req); 

if( !req.randomize() ) ... 

finish_item(req); 

 

req_id[i] = req.get_transaction_id(); 

 

// Spawn a process to receive the response 
fork 

  begin 

    int id = req_id[cnt++]; 

    get_response(rsp, id); 

    ... 

  end 

join_none 

The code fragment above requires a little explanation. Each 

transaction generated by a sequence is automatically allocated a 

transaction id by the call to finish_item. This id can be retrieved and 

then used to associate the request with the corresponding response by 

passing the id as the second argument to get_response, which will 

block until a response with the correct id appears in the response 

queue. Since each call to get_response is forked to run in a separate 

process, the responses can be pipelined and can even be sent out-of-

order. 

The driver can now process multiple requests concurrently by 

forking a separate process to handle each transaction:  

forever 

begin 

  // Wait for request from sequence (a blocking call) 
  seq_item_port.get(req); 

 

  // Wiggle pins of DUT 
  @(posedge dut_vi.clock); 

  dut_vi.cmd <= req.cmd; 

  ... 

  fork 

    begin 

      my_tx resp; 

      resp = my_tx::type_id::create("resp"); 

      resp.data = dut_vi.data; 

      resp.set_id_info(req); 

 

      // Consume some time before sending the response 
      repeat(2) @(posedge dut_vi.clock); 

 

      seq_item_port.put(resp); 

    end 

  join_none 

end 

Notice that the driver is calling put instead of item_done to send the 

response. 

In SystemVerilog, you always have to be careful with the control 

flow around a fork join_none because the processes represented by 

each branch of the fork will not necessarily start to execute until the 

main process has yielded control. In the code fragment above, the  

line resp.set_id_info(req) will not get executed until the 

surrounding process has been blocked by the call to get. However, it 

will execute before get returns, so the correct req transaction always 

gets captured. 

UVM offers an alternative way for the sequence to receive incoming 

responses: instead of calling get_response, a sequence can define a 

response handler method, as follows:  
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task body; 

  use_response_handler(1); 

  forever 

    // Send request to driver 

  ... 

endtask 

 

function void response_handler( 

                    uvm_sequence_item response); 

  $cast(rsp, response); 

  id = rsp.get_transaction_id(); 

  // Process response 
  ...  

endfunction 

The call use_response_handler(1) informs the sequence that the 

response_handler method is being overridden and is to be called for 

each incoming response. (The method names use_response_handler 

and response_handler are built into the UVM base class libaray.) 

5.2. Passing responses through multiple layers 

It is straightforward to extend this example to pass responses up 

though multiple sequencers representing the layers of a protocol 

stack. The practical problem is keeping clear in your mind that each 

connection from a sequencer to the sequencer or driver below 

requires its own distinct request and response transactions. Each 

request can only be associated with zero or one responses, and you 

have to decide whether it is to be zero or one when you design your 

sequence and driver classes. Each time a response is sent back up to 

the level above, you have to make sure that the correct id info is 

copied into the response object (by calling set_id_info). 

Here is an example of a sequence that runs on a sequencer in the 

middle of a stack of sequencers, getting requests from a higher level 

sequencer and sending requests to a lower level sequencer or driver. 

Such a sequence is sometimes referred to as a translation sequence 

because it effectively translates between the protocols being modeled 

at the upper and lower layers of a protocol stack. As you study this 

example, bear in mind that many of the details are omitted, and that 

the relationship between lower and upper layer transactions could be 

one-to-many, many-to-one, or many-to-many: that is why the 

example shows some indexed names such as req_up[j], where 

req_up is an array of transactions pulled down from the upper layer 

sequencer. The sequence contains a variable seqr_upper that must 

be set to point to the higher level sequencer before the sequence 

shown below is started on its own sequencer:  

class lower_seq extends uvm_sequence #(my_tx); 

  ... 

  // Reference to upper-layer sequencer 
  my_sequencer seqr_upper; 

 

  task body; 

    ... 

    // Get request(s) from upper layer sequencer 
    seqr_upper.get(req_up[j]);  

    ... 

 

    // Create request(s) and send to lower layer 
    req = my_tx::type_id::create("req"); 

    start_item(req); 

    if( !req.randomize() ) ... 

    finish_item(req); 

 

    // Store id of request(s) to match with response later 
    req_id_lower[i] = req.get_transaction_id(); 

 

    // Fork a process to receive the response(s) from the lower layer 

    fork 

      begin 

        int id = req_id_lower[cnt++]; 

        get_response(rsp, id); 

        ... 

        // Send response(s) back up the stack 
        my_tx rsp_up= my_tx::type_id::create(""); 

        rsp_up.data = rsp.data; 

        rsp_up.set_id_info(req_up[j]); 

        seqr_upper.put(rsp_up);  

      end 

    join_none 

    ... 

6. MULTIPLE SEQUENCER STACKS 

Synchronizing the behavior of multiple agents or scoreboards, either 

vertically within a single sequencer stack or horizontally across 

multiple sequencer stacks, is a very common issue and potentially a 

very difficult problem to handle in UVM. The default way to tackle 

this issue should be to synchronize the UVM drivers to the clocks, 

strobes, and other low-level synchronization signals in the DUT 

interface, and as far as possible have all the higher level components 

in the UVM verification environment, including sequencers, 

scoreboards and checkers, respond immediately without blocking 

and without delay. In other words, the drivers are synchronized to 

clocks in the DUT interface and pull down transactions from a stack 

of sequencers, which are always able to respond immediately on-

demand. Keeping timing and synchronization confined to the driver 

layer in this way simplifies the problem enormously, but 

unfortunately this approach is not always possible. It is always best 

to have coverage and checking performed in a non-blocking manner 

by sending transactions from monitors using analysis ports. 

However, it is sometimes necessary to keep one sequencer stack (that 

feeds transactions into a one DUT interface) idling until another 

parallel sequencer stack is ready to proceed, perhaps because it was 

waiting for a response from another DUT interface. 

When it comes to ad hoc communication and synchronization 

between components, UVM offers several options aside from the 

sequencer-driver interface, virtual sequences, and analysis ports. 

There are blocking and non-blocking transaction-level interfaces 

(ports and exports), there are events and barriers, and there are 

callbacks. Each has its own advantages and disadvantages, and there 

are usually several different solutions that can be made to work, the 

choice being made according to individual or corporate taste. 

If a sequencer is unable to provide the next transaction immediately, 

then the component below (usually the driver) may need to take 

some alternative action. In general, having a driver blocked waiting 

for a sequencer would be a bad idea: 

seq_item_port.get(req); // Had better not block! 
@(posedge dut_vi.clk); 

This issue can be addressed directly by using the non-blocking 

version of the sequencer interface, as follows:  

seq_item_port.try_next_item(req); 

if (req == null) 

begin 

  // Wiggle pins of DUT to represent an idle cycle 
  dut_vi.idle <= 1; 

  ... 

  @(posedge dut_vi.clock); 

end 

else 
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begin 

  // Must be called in same time step that try_next_item returns non-null 
  seq_item_port.item_done(); 

 

  // Wiggle pins of DUT for regular transaction 
  dut_vi.idle <= 0; 

  ... 

  @(posedge dut_vi.clock); 

  ... 

  seq_item_port.put(resp); 

Method try_next_item always returns immediately. You should then 

test the return value, a null reference meaning that the next item is 

not yet ready. On the other hand, if try_next_item does return a 

valid transaction reference then the item_done method must be 

called in the same time step, though this does not you prevent you 

from calling the put method to return a response some time later if 

required, so is not an obstacle to modeling pipelined transactions. 

Calls to try_next_item can be stacked. That is, every sequence in a 

stack can call try_next_item to pull down a request from the 

sequencer above it in the stack. The only practical pitfall is to ensure 

that the matching item_done calls occur in the same timestep. 

Since the driver can now tolerate the sequencer not being ready, we 

could have a sequence somewhere further up the stack waiting for an 

external event. In this example we will make use of the uvm_event 

to provide synchronization between two parallel sequencer stacks: 

task body; 

  my_tx tx; 

  uvm_event_pool pool = 

              uvm_event_pool::get_global_pool(); 

 

  // Find event in event pool, identified by name 
  uvm_event sync_event = pool.get("sync_event"); 

 

  // Wait for the event to be triggered (a blocking call) 
  sync_event.wait_trigger(); 

 

  // Retrieve a transaction that was passed along with the event 
  $cast(tx, sync_event.get_trigger_data()); 

 

  // Create request, wait for driver, send to driver 
  req = my_tx::type_id::create("req"); 

  start_item(req); 

  ... 

In general, the event could be notified from anywhere in the UVM 

environment. In this example, the event is notified when a sequence 

running on a parallel sequencer stack receives a response 

notification: 

class ano_sequence extends uvm_sequence #(my_tx); 

 ... 

 function void response_handler( 

                    uvm_sequence_item response); 

   uvm_event_pool ev_pool =  

              uvm_event_pool::get_global_pool(); 

   uvm_event sync_event = pool.get("sync_event"); 

   $cast(rsp, response); 

   sync_event.trigger(rsp); 

 endfunction 

 

endclass 

What we are modeling here is ad hoc horizontal communication 

between sequencer stacks. Generally we will try to push all the 

detailed timing and synchronization down to the bottom of the stack 

where the lowest level interfaces are modeled in the drivers. 

However, on the occasions when a higher level sequencer needs to 

block and wait for some other process to catch up, we can used a 

try_next_item call from the driver to handle the situation where the 

stack is stalled and then have the driver generate idle cycles or 

background traffic, assuming our application and test cases can 

handle such an approach. 

7. THE CONFIGURATION DATABASE 

The configuration database is best thought of as a general repository 

for information that can be used to parameterize the UVM 

environment during the build phase and then remains available for 

access during the later phases. All parameter values stored in the 

configuration database are associated with specific paths in the UVM 

component hierarchy. In other words, the configuration database can 

be used to set parameters on specific UVM components. 

The current UVM configuration database is an evolution of the 

configuration interface from OVM. Unfortunately this legacy has 

caused a few pitfalls to be left around for the unwary. In the move 

from the OVM configuration interface (set_config*/get_config* 

methods) to UVM, the configuration mechanism has been structured 

into two distinct layers. The OVM configuration interface of the 

OVM component is mimicked by the UVM configuration database, 

which is in effect a convenience interface on top of the UVM 

resource database. In other words, any parameters written into the 

configuration database are actually stored in the resource database, 

and may be accessed directly through the methods of the resource 

database. 

The resource database stores records consisting of a scope, a name, a 

value, and some secondary attributes that can usually be ignored. The 

scope and the name are both text strings. The classes 

uvm_resource_db and uvm_config_db are parameterized with the 

type of the parameter value such that values of any type can be 

stored directly without needing to be wrapped as uvm_objects. This 

includes built-in types, user-defined types, and even virtual 

interfaces. The intent of the scope is to help reduce the probability of 

name collisions between parameters used by unrelated verification 

components. 

The configuration database provides a layer on top of the resource 

database that uses the scope stored in each record of the resource 

database to represent a path in the UVM component hierarchy. 

Significantly, the methods of the configuration database allow paths 

to include wildcards such that a single record in the configuration 

database can be used to set parameters that apply to multiple 

components. 

The basic calls used to access the configuration database are as 

follows: 

uvm_config_db#(T)::set( 

                 caller, "path", "name", value); 

... 

uvm_config_db#(T)::get( 

                 caller, "path", "name", value); 

One of the most important features of the resource-cum-

configuration database is that the information it stores is linked to the 

UVM verification environment only through the text strings used to 

define the scope and name of each parameter and not by any direct 

object references. In other words, it is entirely possible to set and get 

parameters in the configuration database using "fictitious" scopes 

and names. More practically, it is possible to set parameters in the 

configuration database prior to the construction of the UVM 

component hierarchy to which they will apply. In fact, this is one of 
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the main use cases for the configuration database: to set parameters 

in advance that are then used to control the construction of the 

component hierarchy during the build phase. 

The other thing you need to understand about the OVM 

configuration interface, mimicked by the UVM configuration 

database, is what happens in the situation where several different 

components attempt to set the value of one-and-the-same 

configuration parameter. In OVM, where the methods of the 

configuration interface belong to ovm_component, there is a clearly-

defined search order used when retrieving parameter values by 

calling get_config_*: in cases where both the path name and the 

parameter name match, calls to set_config_* made from closer to the 

root of the component hierarchy take precedence over calls made 

closer to the leaves of the component hierarchy. In other words, if 

you set the same parameter on the same component from several 

different locations in the component hierarchy, calls made from 

lower down the hierarchy get overridden by calls made from further 

up the hierarchy, with set_config_* calls not associated with any 

component winning over calls made from within the hierarchy. This 

OVM mechanism is mimicked in UVM by having the UVM 

resource database store a queue of resources in order of creation in 

cases where there are several resources with the same name and 

scope, and having the get method return the match at the front of the 

queue. 

The UVM resource database actually goes a little further than this. It 

is possible to change the default precedence associated with each 

resource, which in effect alters the parameter value that gets returned 

where there exist multiple parameters with the same name and scope. 

However, this feature is not exposed by either the uvm_config_db or 

the uvm_resource_db classes: to modify the precedence of resources 

you have to dive deep into the classes that underlie the resource 

database, which for most users is probably not worth the effort.  

7.1. Configuration database pitfalls 

Having set the scene by reviewing some of the mechanism of the 

configuration database, we can now review some of the pitfalls. The 

first pitfall is that uvm_config_db only mimics the behavior of OVM 

correctly when the first argument to set/get, the caller, is used in a 

certain conventional way. To get the desired effect, a reference to the 

calling component must be passed as the first argument (e.g. this), 

with null being passed only in the case that set is called from outside 

the UVM component hierarchy, e.g. from a SystemVerilog module. 

A call such as 

uvm_config_db#(T)::set(null, "*.m_seqr", ...); 

when made from within a UVM component would correctly interpret 

the path name, with its wildcards, but would in effect jump to the 

front of the queue so that it would take precedence over any other 

matching calls that have a reference to a UVM component passed as 

the first argument. In other words, with respect to the search order it 

is as if this call had been made from a SystemVerilog module, not 

from a UVM component. 

The second pitfall is that uvm_config_db::set only mimics the OVM 

precedence when called during the build phase. Thereafter it is a 

case that the most recent call always becomes the winner. So a call 

such as 

uvm_config_db#(T)::set(this, "path", "name", v); 

made from deep within the UVM component hierarchy during the 

run phase will in effect take precedence over any matching calls 

made during the build phase. 

The third pitfall concerns the get method. The second argument is a 

path name, expressed relative to the component passed as the first 

argument. If the first argument is null, then the second argument 

would represent an absolute path name relative to the top of the 

UVM component hierarchy. So the call 

uvm_config_db#(T)::get(null, "*.m_seqr", ...); 

should theoretically match any path that ends with the characters 

".m_seqr". But this does not work, due to a feature/bug of the UVM 

code base. Having null as the first argument prevents a proper 

wildcard lookup. This can be worked around by separating the 

wildcard lookup from the get call, as follows: 

uvm_component comp = uvm_top.find("*.m_seqr"); 

if (uvm_config_db#(T)::get(null,  

                    comp.get_full_name(), ...); 

To help avoid the above pitfalls, it is best practice to always pass a 

component reference as the first argument to set and get except in 

the one special case of calling set from a SystemVerilog module 

prior to calling uvm_top.run_test, in which case the first argument 

has to be null. 

This brings us to the issue of accessing the configuration database 

from sequences. In OVM this was not at all straightforward, because 

the configuration interface consisted of methods of class 

ovm_component, and a sequence is not a component. In UVM you 

can call uvm_config_db::get directly from a sequence, but you must 

be sure to avoid the pitfalls highlighted above. So given that in 

general it is best practice to pass a component reference as the first 

argument to get, we will want to set/get configuration parameters 

using locations in the component hierarchy, even when using those 

parameters in sequences. The most straightforward solution is to 

make use of the p_sequencer variable, as described above: 

class my_sequence extends uvm_sequence #(my_tx); 

  `uvm_object_utils(my_sequence) 

  `uvm_declare_p_sequencer(my_sequencer) 

  ... 

  if (uvm_config_db#(T)::get(p_sequencer, "", ... 

The macro declares a variable p_sequencer of the type passed as a 

macro argument, and sets that variable to point to the sequencer on 

which the sequence is running.  

7.2. Modifying parameters at run time 

As noted above, the values of configuration parameters can be 

modified during the run phase, even though the hierarchical search 

rules used during the build phase no longer apply. In OVM, the 

problem with pushing through parameter changes during the run 

phase was the lack of a mechanism to make this work without having 

to constantly poll the parameters for changes. In UVM there is a 

simple mechanism to alert verification components to parameter 

changes in the configuration database: the wait_modified method. 

Before showing the details, there is one important caveat that needs 

to be mentioned. The uvm_config_db set and get methods are 

computationally quite expensive, so these are not methods you would 

want to call in the inner loop of your SystemVerilog program. In 

other words, you should not make frequent calls to set and get during 
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the UVM run phase: it is usually considered best practice to restrict 

most calls to set and get to the build phase. 

With that caveat in mind, any UVM component that needs to know 

about parameter value changes can fork off a concurrent process that 

sits and waits for a change to a given parameter, as follows: 

task run_phase(uvm_phase phase); 

  ... 

  fork 

    forever begin 

      int numb; 

      uvm_config_db#(int)::wait_modified( 

                     this, "", "number"); 

 

      void'(uvm_config_db #(int)::get( 

                     this, "", "number", numb)); 

      ... 

    end 

  join_none 

wait_modified is a blocking method that waits for a given parameter 

to be modified. The parameter is identified using exactly the same 

scope rules as for the get method. 

It is quite possible that a single call to set may cause several waiting 

processes to awake if the set call uses wildcards in the path. 

8. CONCLUSION 

UVM is a surprisingly rich class library that conceals many 

interesting features as well as pitfalls for the unwary. The official 

documentation [2, 3] is excellent, and yet there is sufficient 

complexity in the library that the documentation itself leaves a lot 

unsaid. In this paper we have explored just some of the features that 

are worthy of further attention. You are encouraged to explore the 

UVM codebase yourself to discover what works and what does not 

by writing and running examples. At the same time, you should keep 

an eye on what others are saying about best practice by visiting some 

of the websites mentioned below [4, 5, 6, 7].   
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