
 1

The Finer Points of UVM: Tasting Tips for the Connoisseur

John Aynsley
Doulos

Church Hatch, 22 Market Place
Ringwood, United Kingdom

+44 1425 471223
john.aynsley@doulos.com

ABSTRACT

UVM, the Universal Verification Methodology for SystemVerilog,

has been with us for several years now and is being increasingly

adopted due to its strength as a multi-vendor standard, encouraging a

consistent and re-usable approach to creating verification IP. As is

often the case with such standards, there are many users who dip

their toes in the water but never seem to find time to explore the full

potential of UVM. This paper explores some of the finer points of

UVM, building upon experience gained at Doulos from delivering

training and working with engineers using UVM in a practical

industrial environment.

This paper covers a lot of ground. The goal is to help engineers to

progress beyond the basics of UVM by pointing to the areas of UVM

that are worthy of further attention. Rather than just restating the

contents of the UVM class documentation, the approach is to give

some tips as to when, why, and how to use some of the deeper

features of the UVM base class library.

Keywords

SystemVerilog, UVM, functional verification, constrained random

verification, programming language

1. INTRODUCTION

UVM, the Universal Verification Methodology for SystemVerilog,

consists of a SystemVerilog base class library, a Class Reference [2],

a User’s Guide [3], and a few examples, all of which are freely

downloadable [4]. According to the Class Reference, "The UVM

Class Library provides the building blocks needed to quickly develop

well-constructed and reusable verification components and test

environments in SystemVerilog."

The UVM class library is very rich in content. Introductory seminars

or webinars on UVM do little more than scratch the surface. Formal

hands-on UVM training courses typically run for 3 or 4 days of very

intense training, but even that is often insufficient to teach all the

detail. The goal of this paper is to pick a few of the more interesting

features of UVM and dig a little deeper than would usually be done

in an introductory seminar.

We start by investigating the sequencer, which is the engine used in

UVM to generate stimulus. We show how to manipulate the behavior

of multiple concurrent sequences with confidence and to have one

sequence interrupt another, which is a particularly useful technique

for creating virtual sequences where a sequence running on one

sequencer is able to start and stop sequences on a different

sequencer. We also point out pitfalls to avoid with concurrent

sequences, such as being sure to define the parent-child relationship

between sequences and to set the proper sequence arbitration

algorithm.

Continuing with the theme of sequences, we investigate the sequence

library. Both the current UVM release and several of its ancestors

have included trial implementations of a so-called sequence library,

which attempts to provide a mechanism for packaging and re-using a

set of related sequences.

UVM puts a lot of emphasis on sequences for the creation of

modular, reusable stimulus generation, and allows sequences to be

related in a number of ways, including nested, virtual, and layered

sequences. The use of layered sequences poses questions as to the

best way to structure those sequences for reusability. This paper

explores how to minimize unwanted dependencies between layered

sequences when creating so-called translation sequences, which

translate between layers in a protocol stack. This paper also explores

the options for passing request and response information up and

down the stack of layered sequences, including the concepts of

request and response ids and response queues, and contrasts this with

the range of more ad hoc methods for communication between

components also available in UVM.

The joint concepts of a resource database and a configuration

database were introduced with UVM 1.0 to extend and generalize the

concept of configuration tables from OVM. The resource database is

a general container for shared resources, where each resource has a

scope, a name and a typed value. The configuration database uses the

resource database by interpreting the scope of each resource as a

hierarchical name in the UVM component hierarchy. UVM improves

upon OVM by allowing values of arbitrary type to be stored directly

in the database without the need for wrappers, but at the cost of some

complexity for the user in dealing with the twin concepts of the

resource and configuration databases. The ability to use wildcards in

the scope string and to make multiple identical entries in the database

can be very powerful mechanisms when properly understood, and are

explored in this paper.

The configuration database and the reporting mechanism in UVM

are linked to the UVM component hierarchy, though the

programming interface to both these mechanisms now permit either

to be called from sequences, despite the fact that sequences are not

part of the component hierarchy. This paper exposes some pitfalls

when accessing the configuration database from sequences, and

makes some recommendations on best practice.

2. ASSUMPTIONS

This paper is based on the Accellera Systems Initiative Universal

Verification Methodology version 1.1c, which was released in

October 2012.

This paper assumes the reader has a certain level of familiarity with

the SystemVerilog language and with the UVM class library. In

particular, a familiarity with the following UVM concepts is

assumed: the component hierarchy, the factory, the configuration

database, the phasing mechanism, transaction-level communication,

mailto:john.aynsley@doulos.com

 2

analysis ports, agents, sequencers, sequences, virtual sequences,

tests, and objections.

3. THE SEQUENCER

The UVM sequencer is the engine for running sequences. Each

sequence runs on a sequencer, in much the same way as a computer

program runs on a processor. Like a processor, a sequencer is static

and has fixed connections to other components in the UVM

verification environment. Like a computer program, a sequence is

dynamic, has a start and an end point in time, and potentially has to

compete with other sequences trying to run on the same sequencer at

the same time. Each sequence has a task, named body, which may

generate transactions itself or may run other nested sequences to do

so. Those nested sequences may in turn generate transactions of the

same type as their parent sequence or may run other nested

sequences, and so on to any depth. In the end, each regular sequence

generates a single stream of transactions of a given type, though it

may call other nested sequences to do its work. An exception to this

rule is the so-called virtual sequence, which may execute several

nested sequences across multiple separate sequencers, each of which

may individually generate transactions of different types.

It is often sufficient to use the uvm_sequencer out-of-the-box

without the need to extend the uvm_sequencer base class. So the

following code is often sufficient to create a sequencer:

typedef uvm_sequencer #(my_tx) my_seqr;

...

my_seqr seqr;

...

seqr = my_seqr::type_id::create("seqr", this);

A simple user-defined sequence class might look like this:

class my_seq extends uvm_sequence #(my_tx);

 `uvm_object_utils(my_seq)

 // Boiler-plate constructor code
 function new(string name = "");

 super.new(name);

 endfunction: new

 // The body task does the work of the sequence
 task body;

 repeat(4)

 begin

 // Create a new transaction object
 req = my_tx::type_id::create("req");

 // start_item waits for the driver
 start_item(req);

 if (!req.randomize())

 `uvm_error("", "failed to randomize")

 // finish_item sends the request to the driver
 finish_item(req);

 end

 endtask

endclass

The sequence above generates 4 random transactions of type my_tx.

If the sequence above were to be called from another sequence, the

body task of the parent sequence might look as follows:

class top_seq extends uvm_sequence #(my_tx);

 ...

 `uvm_declare_p_sequencer(my_seqr)

 ...

 task body;

 repeat(3)

 begin

 my_seq seq;

 seq = my_seq::type_id::create("seq");

 if (!seq.randomize())

 `uvm_error("", "failed to randomize")

 seq.start(p_sequencer, this);

 end

 endtask

In the code fragment above, the sequence my_seq is called 3 times

from top_seq. Sequence my_seq runs as a child sequence of top_seq

and both sequences run on the same sequencer. This is where things

start getting a little more subtle. my_seq is made to run on the same

sequencer as top_seq by passing the variable p_sequencer as the

first argument to the start method. p_sequencer is introduced into

the user-defined sequence class using the macro

`uvm_declare_p_sequencer, and points to the sequencer that the

sequence is running on. This variable is useful whenever a sequence

needs access to the sequencer on which it is running.

Moreover, my_seq is made to run as a child of top_seq by passing a

reference to the parent sequence (this) as the second argument of the

start method. It becomes critical to define the parent-child

relationship between sequences in this way when it comes to

controlling sequence execution from virtual sequences, as we will

see below.

As the code stands above, my_seq is called 3 times in sequence from

the parent sequence. Because the start method is blocking, each

instance of my_seq only starts running after the previous instance has

completed. However, if we allow the child sequences to run

concurrently on the same sequencer, we open the door to lots of

interesting issues:

task body;

 fork

 begin

 seq1 = my_seq::type_id::create("seq1");

 if (!seq1.randomize())

 `uvm_error("", "failed to randomize")

 seq1.start(p_sequencer, this);

 end

 begin

 seq2 = my_seq::type_id::create("seq2");

 if (!seq2.randomize())

 ...

 seq2.start(p_sequencer, this);

 end

 begin

 ...

 seq3.start(p_sequencer, this);

 end

 join

endtask

You are encouraged to try this example for yourself. What you will

find is that transactions from the 3 sequences (seq1, seq2, seq3) are

strictly interleaved. This is no accident but is a deliberate feature of

the UVM sequencer, and can be brought under user control.

3.1. The arbitration queue

Each sequencer has an arbitration queue containing references to all

the sequences that are trying to run on the sequencer at the current

point in time (seq1, seq2, seq3 in the example above). Each

 3

sequencer also has an arbitration algorithm used to select the next

sequence item from the queue. The default arbitration algorithm is

FIFO such that the first sequence to get started gets served first and,

having generated one transaction, gets sent to the back of queue. The

result is that when multiple sequences are competing to run on the

same sequencer, they get scheduled in round-robin order so that the

transactions are strictly interleaved.

The arbitration algorithm used by each sequencer can be selected by

the user from a set of built-in algorithms or can be user-defined.

Several, but not all, of the built-in algorithms make use of the

priority of the sequence. It turns out that the default FIFO algorithm

ignores the sequence priority, which can be very confusing for

newcomers trying to understand the behavior of their code.

Here is an example of selecting a built-in arbitration algorithm,

which in this case does make use of the sequence priority:

task body;

 p_sequencer.set_arbitration(

 SEQ_ARB_STRICT_RANDOM);

 fork

 begin

 seq1 = my_seq::type_id::create("seq1");

 if (!seq1.randomize())

 `uvm_error("", "failed to randomize")

 seq1.start(p_sequencer, this, 1);

 end

 begin

 ...

 seq2.start(p_sequencer, this, 2);

 end

 begin

 ...

 seq3.start(p_sequencer, this, 3);

 end

 join

endtask

The algorithm SEQ_ARB_STRICT_RANDOM strictly selects

sequences with a higher priority (larger integer) before sequences

with a lower priority (smaller integer), and in the case of sequences

with equal priority makes a selection at random. In the example

above, this would result in seq3 running to completion before seq2 is

allowed to generate its first transaction. The sequence priority can be

set by being passed as the third argument to the start method, or by

calling the set_priority method of the sequence object.

In order to provide a user-defined algorithm it is necessary to

override the user_priority_arbitration method of the sequencer and

to select the SEQ_ARB_USER algorithm. This requires a user-

defined sequencer class, for example:

class my_sequencer

 extends uvm_sequencer #(my_tx);

 ...

 function integer user_priority_arbitration(

 integer avail_sequences[$]);

 foreach (avail_sequences[i])

 begin

 integer index = avail_sequences[i];

 uvm_sequence_request req =

 arb_sequence_q[index];

 int pri = req.item_priority;

 uvm_sequence_base seq = req.sequence_ptr;

 if (pri > max_pri)

 begin

 max_pri = pri;

 max_index = index;

 end

 end

 return max_index;

 endfunction

endclass

The user_priority_arbitration method is passed a queue containing

indexes into the arbitration queue of the sequencer, which is itself

named arb_sequence_q. From that it is possible to retrieve the

priority of each sequence and the sequence objects themselves, both

of which can be used to calculate and return the index number of the

next sequence to be selected. This mechanism gives the user total

control over the order in which the sequencer selects which sequence

to run next. The sequence priority can even be adjusted dynamically,

if required.

3.2. Virtual sequences

A virtual sequence is a sequence that happens not to generate any

transactions itself but does its work by starting child sequences on

other sequencers. Virtual sequences are typically used in UVM to co-

ordinate the behavior of multiple sequencers within multiple agents

connected to multiple interfaces of the design-under-test.

In early versions of OVM, virtual sequences and virtual sequencers

were distinguished from regular sequences and sequencers by means

of separate base classes. Virtual sequences could only run on virtual

sequencers. This legacy still lives on in the minds of some UVM

users, though virtual sequences and sequencers have long since been

collapsed into their regular brethren.

In UVM, a virtual sequence extends the same base class as a regular

sequence and can run on any sequencer. In fact, because a virtual

sequence is not obliged to be specialized with a specific transaction

type when extending uvm_sequence (see the example below), and

because a virtual sequence will not, by definition, call start_item

and finish_item, there are fewer restrictions on the choice of

sequencer. A virtual sequence can run on its own dedicated

sequencer, can run on a sequencer used to run regular (non-virtual)

sequences, or can even run on the null sequencer (explained below).

Aside from the desire to group together related sequences to facilitate

reuse, the choice would be made on the basis of whether the user

needs to have the virtual sequence access properties of an existing

sequencer.

When running any sequence, the start method of the sequence calls

its body method, which may in turn start child sequences, and so on

until a child sequence attempts to generate a transaction, at which

point the entire call stack will be stalled until the downstream

component (typically a driver) requests a transaction. The priority of

the sequence, passed as an argument to start, will be used as the

default priority for any child sequences, and ultimately as the default

priority of any transactions. Priority and arbitration are ultimately

only relevant to the transactions generated by the sequences, not to

the sequences themselves, so the sequencer arbitration queue, as

described above, is not directly relevant to virtual sequences but only

to the transactions generated by their children. This is why it is

possible to start a virtual sequence on the null sequencer, for

example:

virtual_seq.start(null, this, priority);

It is meaningful to set the priority of a virtual sequence, even when

that virtual sequence is running on the null sequencer, because the

priority will be inherited by the children of the virtual sequence and

hence by their transactions.

 4

3.3. lock and grab

There is another important mechanism that can be used to control the

order of sequence execution, namely, the ability of a sequence to

"lock" or gain exclusive control over a sequencer. Once a sequence

has locked a sequencer, only that sequence can have its sequence

items executed on the sequencer: all other sequence items in the

arbitration queue will be bypassed until the lock is released. The

sequence lock mechanism is of particular interest when writing

virtual sequences.

Imagine a UVM sequencer within an agent connected to the DUT.

That sequencer may be generating background traffic appropriate to

the particular interface it is connected to. A virtual sequence, which

co-ordinates multiple agents, may want to take control of that low-

level sequencer to inject some specific transactions or to handle an

interrupt. This can be accomplished using the sequence lock

mechanism.

Here is an example of a virtual sequence:

class virtual_seq extends uvm_sequence;

 `uvm_object_utils(virtual_seq)

 my_sequencer seqr; // Reference to another sequencer
 ...

 task body;

 my_seq seq;

 seq = my_seq::type_id::create();

 seq.starting_phase = starting_phase;

 if (!seq.randomize()) ...

 // Take exclusive control of another sequencer
 this.lock(seqr);

 // Run sequence on that sequencer
 seq.start(seqr, this);

 // Relinquish control
 this.unlock(seqr);

 ...

The call this.lock(seqr) gives the calling sequence virtual_seq

exclusive access to the sequencer seqr. Assuming seqr is not already

locked by some other sequence, the virtual sequence above will be

able to run its own sequence before giving up the lock. On the other

hand, if the sequencer is already locked, the call to lock above will

block until the sequencer becomes available by being unlocked

elsewhere. By definition, only one sequence can lock a given

sequencer at any given time, and any other calls to lock get sent to

the back of the queue.

There is an alternative method grab that is identical in effect to lock

except that in the event that the attempt to lock the sequencer is not

immediately successful, the pending request gets sent to the front of

the arbitration queue rather than to the back. This gives the user a

certain degree of control over the behavior in the event that multiple

sequences attempt to lock the same sequencer simultaneously. Once

a call to lock or grab has taken control of a sequencer, the owner

cannot be interrupted by any other call to lock or grab until it has

explicitly relinquished control by calling unlock or ungrab. lock is

polite and goes to the back of the queue, whereas grab barges in at

the front of the queue. However, neither lock nor grab requests are

affected by the arbitration algorithm or sequence priority: both are

serviced ahead of any regular sequence items in the arbitration

queue. In other words, the distinction between lock and grab is only

important with respect to the order in which concurrent locks and

grabs are serviced on the same sequencer.

4. THE SEQUENCE LIBRARY

The concept of a sequence library has been around since the days of

URM and AVM, prior to their merging into OVM. UVM contains a

prototypical sequence library implementation, though at the time of

writing the uvm_sequence_library is still not included in the official

UVM documentation. Note that OVM included a set of macros for

creating a "sequence library" which have been deprecated in UVM.

The uvm_sequence_library being discussed here is not the same as

the deprecated sequence library mechanism from OVM.

The idea behind the sequence library is to have a library of sequences

(naturally enough) where the sequences get run in turn, one-at-a

time. This is in contrast to the discussion on the arbitration queue

above, where we were considering the issue of what happens when

several sequences attempt to run in parallel on the same sequencer:

the sequence library runs several sequences in series on the same

sequencer.

The sequence library should not be used as the mechanism for

managing and starting every sequence: the techniques for starting

sequences as discussed in previous sections are sufficient for many

purposes. The sequence library is a specific mechanism for a specific

purpose, that is, to identify a set of sequences and then be able to

control the order in which those sequences execute either by

selecting a random execution order or by providing a user-defined

algorithm.

In use, a sequence library looks like a fancy sequence (class

uvm_sequence_library extends uvm_sequence):

class my_seq_lib

 extends uvm_sequence_library #(my_tx);

 `uvm_object_utils(my_seq_lib)

 `uvm_sequence_library_utils(my_seq_lib)

 function new(string name = "");

 super.new(name);

 init_sequence_library();

 endfunction

endclass

Notice that the macro uvm_sequence_library_utils and the function

init_sequence_library must be called when defining a sequence

library, and that the user does not supply a body task for the

sequence library: the body task is built into the base class.

You start a sequence library on a sequencer as you would an ordinary

sequence, except that you first add sequences to the library and set

bounds on how many sequences will be run. This might be done

from the run phase of a test, for example:

task run_phase(uvm_phase phase);

 // Create the sequence library object using the factory (as usual)
 my_seq_lib lib = my_seq_lib::type_id::create();

 // Add several user-defined sequences to the library
 lib.add_sequence(seq1::get_type());

 lib.add_sequence(seq2::get_type());

 ...

 // Must set sequence library properties before randomizing the library
 lib.selection_mode = UVM_SEQ_LIB_RAND;

 lib.min_random_count = 15;

 lib.max_random_count = 20;

 // Randomize sequence library object to set the number of sequences
 if (!lib.randomize()) ...

 5

 // Set starting_phase because the sequence library raises an objection
 lib.starting_phase = phase;

 lib.start(m_env.m_seqr);

 ...

The example above creates a new sequence library object, adds

several user-defined sequences to the library, sets the algorithm used

to select the order in which the sequences are to be run (UVM

_SEQ_LIB_RAND meaning that each sequence run is selected at

random from the full set of sequences in the library), and sets

minimum and maximum bounds on the number of sequences to be

run. The sequence library object is then randomized and started on a

specific sequencer (where it might have to compete with other

sequences running concurrently on the same sequencer, as discussed

above).

Instead of adding sequences to a sequence library object, it is also

possible to add sequences to the sequence library class such that they

are available to all instances of that sequence library. This is easy to

do by calling a static method from outside the class, as follows:

 my_seq_lib::add_typewide_sequence(

 seq3::get_type());

 my_seq_lib::add_typewide_sequence(

 seq4::get_type());

 ...

In the example above, the properties of the sequence library are set

procedurally after the sequence library object has been instantiated

by the factory. As you would expect in UVM, it is also possible to

set these properties in advance of the creation of the object by using

the configuration database. To make this possible, you also need to

select the sequence library as the default sequence for the run phase

of a particular sequencer, for example:

uvm_config_db #(uvm_object_wrapper)::set(

 null, "*.m_seqr.run_phase",

 "default_sequence", my_seq_lib::get_type());

uvm_config_db #(int unsigned)::set(

 null, "*.m_seqr.run_phase",

 "default_sequence.min_random_count", 15);

As regards the order in which the sequences within the library are

chosen for execution, you can have as much or as little control as you

want. For the ultimate in flexibility you could select a user-defined

algorithm, for example:

class my_seq_lib

 extends uvm_sequence_library #(my_tx);

 ...

 // Override the built-in select_sequence method
 function int unsigned select_sequence(

 int unsigned max);

 static int unsigned counter;

 select_sequence = counter;

 counter++;

 if (counter > max)

 counter = 0;

 endfunction

endclass

...

lib.selection_mode = UVM_SEQ_LIB_USER;

The select_sequence method is required to return an integer in the

range 0 to max, inclusive. In the current prototypical implementation

of the sequence library (UVM-1.1c), the default implementation of

select_sequence actually returns an integer in the range 0 to max-1,

so cycles through one-too-few sequences. The example above shows

a user-defined select_sequence method that fixes this bug.

In selecting which sequence to execute next from the library, you

may sometimes require information about which sequence is which.

This can be achieved by calling the get_sequences method, as

follows:

function int unsigned select_sequence(

 int unsigned max);

 uvm_object_wrapper seqq[$];

 get_sequences(seqq);

 foreach (seqq[i])

 if (seqq[i] == seq1::get_type())

 ...

 else if (seqq[i] == seq2::get_type())

 ...

 return index;

endfunction

5. THE SEQUENCE RESPONSE

So far we have focused on sequences running on a single sequencer.

Now we turn to the interaction between sequencers and drivers, and

to layered sequencers.

Layered sequencers are an important issue because they address the

use case of modeling protocol stacks in the UVM environment.

Almost by definition, because the driver is required to "wiggle the

pins" of the DUT, a sequencer connected directly to a driver must

generate transactions that represent the lowest level functional

protocol used to communicate with the design-under-test. But many

applications will require one protocol to be embedded within another

protocol as we climb the protocol stack, and each layer would

typically be represented in UVM by having sequences running on a

distinct sequencer.

Higher level sequencers generate transactions which they send to

lower level sequencers, which translate those transactions into other

transaction types which they send in turn to even lower level

sequencers and ultimately to drivers. In UVM, each of these

transactions is known as a request. A UVM sequence running on a

sequencer sends requests to a driver (or to a lower level sequencer).

The issue then arises as to how to pass information back up the stack

in the direction away from the driver.

There are two basic choices: either use the response that is built into

the sequencer-driver interaction mechanism, or use analysis ports.

The sequence response is appropriate when the response information

is intrinsic to the protocol being modeled, such as when returning

data as part of executing a read transaction. Analysis ports are

appropriate when the response information can be separated from the

protocol and carried as "side band" information. There are many

cases where either technique could be used.

A consequence of using analysis ports to carry information up the

stack, away from the DUT, is that analysis ports are non-blocking, so

transactions must arrive at their destination in zero time. This is fine

as long as it can be tolerated by the design of the verification

environment, but does not permit the situation where a transaction

has to be stalled while waiting for a higher level component to be

ready. A sequence response, on the other hand, has to be properly

synchronized with the request to which it corresponds, although

UVM provides techniques to permit pipelined and out-of-order

responses, as we will see below.

Let’s start with an example to review the basics. The sequencer-

driver interface uses two transaction types, the request transaction

 6

and the response transaction, which may be the same or different. In

the examples below we will keep them the same for simplicity:

class my_seq extends uvm_sequence #(my_tx);

 ...

 task body;

 ...

 // Create request, wait for driver, send to driver
 req = my_tx::type_id::create("req");

 // Put request into the sequencer arbitration queue
 start_item(req);

 if(!req.randomize()) ...

 finish_item(req);

 // Wait for response from driver (a blocking call)
 get_response(rsp);

 ...

class my_driver extends uvm_driver #(my_tx);

 ...

 task run_phase(uvm_phase phase);

 forever

 begin

 // Wait for request from sequence (a blocking call)
 seq_item_port.get_next_item(req);

 // Wiggle pins of DUT
 @(posedge dut_vi.clock);

 dut_vi.cmd <= req.cmd;

 ...

 // Create response transaction
 rsp = my_tx::type_id::create("rsp");

 rsp.data = dut_vi.data;

 rsp.set_id_info(req);

 // Send response back to sequence (goes into response queue)
 seq_item_port.item_done(rsp);

 ...

The protocol between the sequence (running on a sequencer) and the

driver is:

1. Sequence and driver wait for each other to be ready

2. Sequence sends request to driver and waits for response

3. Driver gets request, processes request, copies transaction id

information from the request to the response, and then

sends the response back

4. Sequence receives the response

5.1. Pipelined responses

So far, so good, but a little experimentation will reveal some

limitations to the approach used in the example above, the most

fundamental of which is that, as things stand, the request and

response cannot be pipelined. In particular, get_next_item cannot be

called before the previous item_done, so the driver cannot start to

process the next transaction before having sent the previous

response. Also, vice versa, the sequence is waiting for the previous

response before sending the next request. These issues can be

addressed by sending the response using the put method instead of

item_done. It will also be necessary to introduce concurrent

processes in order to keep multiple request-response pairs in flight at

the same time. For example, the sequence can fork processes to wait

for pipelined responses:

// Create request, wait for driver, send to driver
req = my_tx::type_id::create("req");

start_item(req);

if(!req.randomize()) ...

finish_item(req);

req_id[i] = req.get_transaction_id();

// Spawn a process to receive the response
fork

 begin

 int id = req_id[cnt++];

 get_response(rsp, id);

 ...

 end

join_none

The code fragment above requires a little explanation. Each

transaction generated by a sequence is automatically allocated a

transaction id by the call to finish_item. This id can be retrieved and

then used to associate the request with the corresponding response by

passing the id as the second argument to get_response, which will

block until a response with the correct id appears in the response

queue. Since each call to get_response is forked to run in a separate

process, the responses can be pipelined and can even be sent out-of-

order.

The driver can now process multiple requests concurrently by

forking a separate process to handle each transaction:

forever

begin

 // Wait for request from sequence (a blocking call)
 seq_item_port.get(req);

 // Wiggle pins of DUT
 @(posedge dut_vi.clock);

 dut_vi.cmd <= req.cmd;

 ...

 fork

 begin

 my_tx resp;

 resp = my_tx::type_id::create("resp");

 resp.data = dut_vi.data;

 resp.set_id_info(req);

 // Consume some time before sending the response
 repeat(2) @(posedge dut_vi.clock);

 seq_item_port.put(resp);

 end

 join_none

end

Notice that the driver is calling put instead of item_done to send the

response.

In SystemVerilog, you always have to be careful with the control

flow around a fork join_none because the processes represented by

each branch of the fork will not necessarily start to execute until the

main process has yielded control. In the code fragment above, the

line resp.set_id_info(req) will not get executed until the

surrounding process has been blocked by the call to get. However, it

will execute before get returns, so the correct req transaction always

gets captured.

UVM offers an alternative way for the sequence to receive incoming

responses: instead of calling get_response, a sequence can define a

response handler method, as follows:

 7

task body;

 use_response_handler(1);

 forever

 // Send request to driver

 ...

endtask

function void response_handler(

 uvm_sequence_item response);

 $cast(rsp, response);

 id = rsp.get_transaction_id();

 // Process response
 ...

endfunction

The call use_response_handler(1) informs the sequence that the

response_handler method is being overridden and is to be called for

each incoming response. (The method names use_response_handler

and response_handler are built into the UVM base class libaray.)

5.2. Passing responses through multiple layers

It is straightforward to extend this example to pass responses up

though multiple sequencers representing the layers of a protocol

stack. The practical problem is keeping clear in your mind that each

connection from a sequencer to the sequencer or driver below

requires its own distinct request and response transactions. Each

request can only be associated with zero or one responses, and you

have to decide whether it is to be zero or one when you design your

sequence and driver classes. Each time a response is sent back up to

the level above, you have to make sure that the correct id info is

copied into the response object (by calling set_id_info).

Here is an example of a sequence that runs on a sequencer in the

middle of a stack of sequencers, getting requests from a higher level

sequencer and sending requests to a lower level sequencer or driver.

Such a sequence is sometimes referred to as a translation sequence

because it effectively translates between the protocols being modeled

at the upper and lower layers of a protocol stack. As you study this

example, bear in mind that many of the details are omitted, and that

the relationship between lower and upper layer transactions could be

one-to-many, many-to-one, or many-to-many: that is why the

example shows some indexed names such as req_up[j], where

req_up is an array of transactions pulled down from the upper layer

sequencer. The sequence contains a variable seqr_upper that must

be set to point to the higher level sequencer before the sequence

shown below is started on its own sequencer:

class lower_seq extends uvm_sequence #(my_tx);

 ...

 // Reference to upper-layer sequencer
 my_sequencer seqr_upper;

 task body;

 ...

 // Get request(s) from upper layer sequencer
 seqr_upper.get(req_up[j]);

 ...

 // Create request(s) and send to lower layer
 req = my_tx::type_id::create("req");

 start_item(req);

 if(!req.randomize()) ...

 finish_item(req);

 // Store id of request(s) to match with response later
 req_id_lower[i] = req.get_transaction_id();

 // Fork a process to receive the response(s) from the lower layer

 fork

 begin

 int id = req_id_lower[cnt++];

 get_response(rsp, id);

 ...

 // Send response(s) back up the stack
 my_tx rsp_up= my_tx::type_id::create("");

 rsp_up.data = rsp.data;

 rsp_up.set_id_info(req_up[j]);

 seqr_upper.put(rsp_up);

 end

 join_none

 ...

6. MULTIPLE SEQUENCER STACKS

Synchronizing the behavior of multiple agents or scoreboards, either

vertically within a single sequencer stack or horizontally across

multiple sequencer stacks, is a very common issue and potentially a

very difficult problem to handle in UVM. The default way to tackle

this issue should be to synchronize the UVM drivers to the clocks,

strobes, and other low-level synchronization signals in the DUT

interface, and as far as possible have all the higher level components

in the UVM verification environment, including sequencers,

scoreboards and checkers, respond immediately without blocking

and without delay. In other words, the drivers are synchronized to

clocks in the DUT interface and pull down transactions from a stack

of sequencers, which are always able to respond immediately on-

demand. Keeping timing and synchronization confined to the driver

layer in this way simplifies the problem enormously, but

unfortunately this approach is not always possible. It is always best

to have coverage and checking performed in a non-blocking manner

by sending transactions from monitors using analysis ports.

However, it is sometimes necessary to keep one sequencer stack (that

feeds transactions into a one DUT interface) idling until another

parallel sequencer stack is ready to proceed, perhaps because it was

waiting for a response from another DUT interface.

When it comes to ad hoc communication and synchronization

between components, UVM offers several options aside from the

sequencer-driver interface, virtual sequences, and analysis ports.

There are blocking and non-blocking transaction-level interfaces

(ports and exports), there are events and barriers, and there are

callbacks. Each has its own advantages and disadvantages, and there

are usually several different solutions that can be made to work, the

choice being made according to individual or corporate taste.

If a sequencer is unable to provide the next transaction immediately,

then the component below (usually the driver) may need to take

some alternative action. In general, having a driver blocked waiting

for a sequencer would be a bad idea:

seq_item_port.get(req); // Had better not block!
@(posedge dut_vi.clk);

This issue can be addressed directly by using the non-blocking

version of the sequencer interface, as follows:

seq_item_port.try_next_item(req);

if (req == null)

begin

 // Wiggle pins of DUT to represent an idle cycle
 dut_vi.idle <= 1;

 ...

 @(posedge dut_vi.clock);

end

else

 8

begin

 // Must be called in same time step that try_next_item returns non-null
 seq_item_port.item_done();

 // Wiggle pins of DUT for regular transaction
 dut_vi.idle <= 0;

 ...

 @(posedge dut_vi.clock);

 ...

 seq_item_port.put(resp);

Method try_next_item always returns immediately. You should then

test the return value, a null reference meaning that the next item is

not yet ready. On the other hand, if try_next_item does return a

valid transaction reference then the item_done method must be

called in the same time step, though this does not you prevent you

from calling the put method to return a response some time later if

required, so is not an obstacle to modeling pipelined transactions.

Calls to try_next_item can be stacked. That is, every sequence in a

stack can call try_next_item to pull down a request from the

sequencer above it in the stack. The only practical pitfall is to ensure

that the matching item_done calls occur in the same timestep.

Since the driver can now tolerate the sequencer not being ready, we

could have a sequence somewhere further up the stack waiting for an

external event. In this example we will make use of the uvm_event

to provide synchronization between two parallel sequencer stacks:

task body;

 my_tx tx;

 uvm_event_pool pool =

 uvm_event_pool::get_global_pool();

 // Find event in event pool, identified by name
 uvm_event sync_event = pool.get("sync_event");

 // Wait for the event to be triggered (a blocking call)
 sync_event.wait_trigger();

 // Retrieve a transaction that was passed along with the event
 $cast(tx, sync_event.get_trigger_data());

 // Create request, wait for driver, send to driver
 req = my_tx::type_id::create("req");

 start_item(req);

 ...

In general, the event could be notified from anywhere in the UVM

environment. In this example, the event is notified when a sequence

running on a parallel sequencer stack receives a response

notification:

class ano_sequence extends uvm_sequence #(my_tx);

 ...

 function void response_handler(

 uvm_sequence_item response);

 uvm_event_pool ev_pool =

 uvm_event_pool::get_global_pool();

 uvm_event sync_event = pool.get("sync_event");

 $cast(rsp, response);

 sync_event.trigger(rsp);

 endfunction

endclass

What we are modeling here is ad hoc horizontal communication

between sequencer stacks. Generally we will try to push all the

detailed timing and synchronization down to the bottom of the stack

where the lowest level interfaces are modeled in the drivers.

However, on the occasions when a higher level sequencer needs to

block and wait for some other process to catch up, we can used a

try_next_item call from the driver to handle the situation where the

stack is stalled and then have the driver generate idle cycles or

background traffic, assuming our application and test cases can

handle such an approach.

7. THE CONFIGURATION DATABASE

The configuration database is best thought of as a general repository

for information that can be used to parameterize the UVM

environment during the build phase and then remains available for

access during the later phases. All parameter values stored in the

configuration database are associated with specific paths in the UVM

component hierarchy. In other words, the configuration database can

be used to set parameters on specific UVM components.

The current UVM configuration database is an evolution of the

configuration interface from OVM. Unfortunately this legacy has

caused a few pitfalls to be left around for the unwary. In the move

from the OVM configuration interface (set_config*/get_config*

methods) to UVM, the configuration mechanism has been structured

into two distinct layers. The OVM configuration interface of the

OVM component is mimicked by the UVM configuration database,

which is in effect a convenience interface on top of the UVM

resource database. In other words, any parameters written into the

configuration database are actually stored in the resource database,

and may be accessed directly through the methods of the resource

database.

The resource database stores records consisting of a scope, a name, a

value, and some secondary attributes that can usually be ignored. The

scope and the name are both text strings. The classes

uvm_resource_db and uvm_config_db are parameterized with the

type of the parameter value such that values of any type can be

stored directly without needing to be wrapped as uvm_objects. This

includes built-in types, user-defined types, and even virtual

interfaces. The intent of the scope is to help reduce the probability of

name collisions between parameters used by unrelated verification

components.

The configuration database provides a layer on top of the resource

database that uses the scope stored in each record of the resource

database to represent a path in the UVM component hierarchy.

Significantly, the methods of the configuration database allow paths

to include wildcards such that a single record in the configuration

database can be used to set parameters that apply to multiple

components.

The basic calls used to access the configuration database are as

follows:

uvm_config_db#(T)::set(

 caller, "path", "name", value);

...

uvm_config_db#(T)::get(

 caller, "path", "name", value);

One of the most important features of the resource-cum-

configuration database is that the information it stores is linked to the

UVM verification environment only through the text strings used to

define the scope and name of each parameter and not by any direct

object references. In other words, it is entirely possible to set and get

parameters in the configuration database using "fictitious" scopes

and names. More practically, it is possible to set parameters in the

configuration database prior to the construction of the UVM

component hierarchy to which they will apply. In fact, this is one of

 9

the main use cases for the configuration database: to set parameters

in advance that are then used to control the construction of the

component hierarchy during the build phase.

The other thing you need to understand about the OVM

configuration interface, mimicked by the UVM configuration

database, is what happens in the situation where several different

components attempt to set the value of one-and-the-same

configuration parameter. In OVM, where the methods of the

configuration interface belong to ovm_component, there is a clearly-

defined search order used when retrieving parameter values by

calling get_config_*: in cases where both the path name and the

parameter name match, calls to set_config_* made from closer to the

root of the component hierarchy take precedence over calls made

closer to the leaves of the component hierarchy. In other words, if

you set the same parameter on the same component from several

different locations in the component hierarchy, calls made from

lower down the hierarchy get overridden by calls made from further

up the hierarchy, with set_config_* calls not associated with any

component winning over calls made from within the hierarchy. This

OVM mechanism is mimicked in UVM by having the UVM

resource database store a queue of resources in order of creation in

cases where there are several resources with the same name and

scope, and having the get method return the match at the front of the

queue.

The UVM resource database actually goes a little further than this. It

is possible to change the default precedence associated with each

resource, which in effect alters the parameter value that gets returned

where there exist multiple parameters with the same name and scope.

However, this feature is not exposed by either the uvm_config_db or

the uvm_resource_db classes: to modify the precedence of resources

you have to dive deep into the classes that underlie the resource

database, which for most users is probably not worth the effort.

7.1. Configuration database pitfalls

Having set the scene by reviewing some of the mechanism of the

configuration database, we can now review some of the pitfalls. The

first pitfall is that uvm_config_db only mimics the behavior of OVM

correctly when the first argument to set/get, the caller, is used in a

certain conventional way. To get the desired effect, a reference to the

calling component must be passed as the first argument (e.g. this),

with null being passed only in the case that set is called from outside

the UVM component hierarchy, e.g. from a SystemVerilog module.

A call such as

uvm_config_db#(T)::set(null, "*.m_seqr", ...);

when made from within a UVM component would correctly interpret

the path name, with its wildcards, but would in effect jump to the

front of the queue so that it would take precedence over any other

matching calls that have a reference to a UVM component passed as

the first argument. In other words, with respect to the search order it

is as if this call had been made from a SystemVerilog module, not

from a UVM component.

The second pitfall is that uvm_config_db::set only mimics the OVM

precedence when called during the build phase. Thereafter it is a

case that the most recent call always becomes the winner. So a call

such as

uvm_config_db#(T)::set(this, "path", "name", v);

made from deep within the UVM component hierarchy during the

run phase will in effect take precedence over any matching calls

made during the build phase.

The third pitfall concerns the get method. The second argument is a

path name, expressed relative to the component passed as the first

argument. If the first argument is null, then the second argument

would represent an absolute path name relative to the top of the

UVM component hierarchy. So the call

uvm_config_db#(T)::get(null, "*.m_seqr", ...);

should theoretically match any path that ends with the characters

".m_seqr". But this does not work, due to a feature/bug of the UVM

code base. Having null as the first argument prevents a proper

wildcard lookup. This can be worked around by separating the

wildcard lookup from the get call, as follows:

uvm_component comp = uvm_top.find("*.m_seqr");

if (uvm_config_db#(T)::get(null,

 comp.get_full_name(), ...);

To help avoid the above pitfalls, it is best practice to always pass a

component reference as the first argument to set and get except in

the one special case of calling set from a SystemVerilog module

prior to calling uvm_top.run_test, in which case the first argument

has to be null.

This brings us to the issue of accessing the configuration database

from sequences. In OVM this was not at all straightforward, because

the configuration interface consisted of methods of class

ovm_component, and a sequence is not a component. In UVM you

can call uvm_config_db::get directly from a sequence, but you must

be sure to avoid the pitfalls highlighted above. So given that in

general it is best practice to pass a component reference as the first

argument to get, we will want to set/get configuration parameters

using locations in the component hierarchy, even when using those

parameters in sequences. The most straightforward solution is to

make use of the p_sequencer variable, as described above:

class my_sequence extends uvm_sequence #(my_tx);

 `uvm_object_utils(my_sequence)

 `uvm_declare_p_sequencer(my_sequencer)

 ...

 if (uvm_config_db#(T)::get(p_sequencer, "", ...

The macro declares a variable p_sequencer of the type passed as a

macro argument, and sets that variable to point to the sequencer on

which the sequence is running.

7.2. Modifying parameters at run time

As noted above, the values of configuration parameters can be

modified during the run phase, even though the hierarchical search

rules used during the build phase no longer apply. In OVM, the

problem with pushing through parameter changes during the run

phase was the lack of a mechanism to make this work without having

to constantly poll the parameters for changes. In UVM there is a

simple mechanism to alert verification components to parameter

changes in the configuration database: the wait_modified method.

Before showing the details, there is one important caveat that needs

to be mentioned. The uvm_config_db set and get methods are

computationally quite expensive, so these are not methods you would

want to call in the inner loop of your SystemVerilog program. In

other words, you should not make frequent calls to set and get during

 10

the UVM run phase: it is usually considered best practice to restrict

most calls to set and get to the build phase.

With that caveat in mind, any UVM component that needs to know

about parameter value changes can fork off a concurrent process that

sits and waits for a change to a given parameter, as follows:

task run_phase(uvm_phase phase);

 ...

 fork

 forever begin

 int numb;

 uvm_config_db#(int)::wait_modified(

 this, "", "number");

 void'(uvm_config_db #(int)::get(

 this, "", "number", numb));

 ...

 end

 join_none

wait_modified is a blocking method that waits for a given parameter

to be modified. The parameter is identified using exactly the same

scope rules as for the get method.

It is quite possible that a single call to set may cause several waiting

processes to awake if the set call uses wildcards in the path.

8. CONCLUSION

UVM is a surprisingly rich class library that conceals many

interesting features as well as pitfalls for the unwary. The official

documentation [2, 3] is excellent, and yet there is sufficient

complexity in the library that the documentation itself leaves a lot

unsaid. In this paper we have explored just some of the features that

are worthy of further attention. You are encouraged to explore the

UVM codebase yourself to discover what works and what does not

by writing and running examples. At the same time, you should keep

an eye on what others are saying about best practice by visiting some

of the websites mentioned below [4, 5, 6, 7].

9. REFERENCES

[1] IEEE Std 1800-2009 "IEEE Standard for System Verilog-Unified
Hardware Design, Specification, and Verification Language",

http://dx.doi.org/10.1109/IEEESTD.2009.5354441

[2] Universal Verification Methodology (UVM) 1.1 Class Reference, updated
September 19, 2012

[3] Universal Verification Methodology (UVM) 1.1 User’s Guide, May 18,
2011

[4] On-line resources from

http://www.accellera.org/downloads/standards/uvm

[5] On-line resources from http://www.uvmworld.org/

[6] On-line resources from

http://www.doulos.com/knowhow/sysverilog/uvm/

[7] On-line resources from

https://verificationacademy.com/

http://www.accellera.org/downloads/standards/uvm
http://www.uvmworld.org/
http://www.doulos.com/knowhow/sysverilog/uvm/
https://verificationacademy.com/

