
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

The Evolution of Triage -

Real-time Improvements in Debug Productivity

Gordon Allan, Mentor Graphics Corp.

Mentor Graphics Corporation

46871 Bayside Parkway, Fremont, CA 94538

Gordon Allan
Product Manager,

Questa Simulator

Direct: (510)354-5578

Mobile: (510)304-4058

gordon_allan@mentor.com

www.mentor.com/questa

Triage:
microelectronic design/verification : the process of analysis

of a discrete set of reported issues of common derivation,

including a determination of priority and methodology for

further exploration, analysis and ultimately resolution, of each

issue, with the ultimate goal of making the most effective

utilization of resources to achieve maximum benefit.

CM

SYSTEM

TESTBENCH

RTL DESIGN

TESTCASES

FIRMWARE

DOCS

REGRESSION

SUITE

COVERAGE

LOGFILES

RESULTS

DEBUG DATA

HISTORY

FAILING

TESTS

TRIAGE

PROCESS

PROCESS

CHANGES

TB DEBUG

RTL DEBUG

TESTCASE

DEBUG

F/W DEBUG

SPEC

UPDATES

Categorize a single regression fail:
- build-time error or a run-time fail condition or postprocessing?

- testbench check or timeout or lack-of-success or mismatch?

What correlation can we see from the point of failure?
- does same error appear in multiple failing test cases or configs?

- can we correlate more cases after filtering out variant data?

Use available debug root cause analysis tools:
- run a causality check in the debug tool

- two pieces of info: signal name, time of failing transition

- derive root cause signal name and time, for further analysis

What can we learn from debug history and records kept?
- when this test/check last failed, what did debug session look like?

- do we already know the likely root cause of this test fail or check?

- who should we talk to to ask, or allocate further debug?

Look for root cause indicators:
- find the first failing error message in log, earliest assertion fired

- are there uncharacteristic warnings, early indicators of failure?

Source and significance of the check:
- designer inserted assertion or verification environment assertion?

- scoreboard check or a protocol check - how precise is diagnosis?

If this a noisy test?
- does this test fail continuously/regularly or sporadically?

- a new regression in behavior, or is testbench hitting fragility limit?

Has this failure mode occurred before?
- when was this observation was last made

- what was deduced about the problem on that occasion?

Use available formal technology:
- analyze design around the point of failure

- automatically apply formal property checking to identified region

- spot common design rule violations

Repeat results analysis with these ‘enhanced’ results
- identify common signatures across regression run

- correlate several different symptoms to one root cause

Can we add precision to enable tool-based triage analysis?
- categorize assertion behavior across multiple tests

- locate precise signal path and time for further analysis, correlation

If less precision, can we identify interesting commonality?
- which general area of design function or problem signal group?

- anything in common in multiple failing tests to bin them together?

DESIGN 1

+

VERIF 1

DESIGN 2

+

VERIF 2

DESIGN

1

DESIGN

2

VERIF

1

VERIF

2

DESIGN

1

DESIGN

2

VERIF

1

VERIF

2

COMMON

DEBUG

S/W

1

S/W

2

DESIGN

1

DESIGN

2

VERIF

1

VERIF

2

TRIAGE

S/W

1

S/W

2

DEBUG

RTL

DEBUG

TB

DEBUG

S/W

DESIGN 3

+

VERIF 3

1980s –

Same Engineers

do Design+Verif

1990s –

Designers Verify

Each Others’ RTL

2000s – Separate

D/V/SW Teams With

Common Debug

2010s – Triage Step

Avoids Duplicate Effort

Between Teams

Several techniques can be used here to look

at a fail in isolation and make observations

about it which will help with other collective

failure analysis activity.

The main benefit of this initial preparation in

triage is to know which resource or expertise

is required and who should dig deeper on this

particular fail.

If there are multiple fails, then triage the

collection of fails as well as each individual

fails, to spot trends and groups. Build or buy a

tool or scripting environment that can provide

analysis of multiple runs and execute

database-query-like analysis on the data:

The symptoms of a failing test may be far

removed in time or scope from the root cause

of that failure. We may see many failing tests

in a regression each with a differing failure

symptom, when constrained random stimulus

is involved. The ultimate triage productivity

benefit is isolating the single biggest root

cause, affecting many regression test runs,

Another way to look at regression data is to

look back in time given a common reference

point – normally a directed or directed-random

test case run with a particular seed and

configuration.

1. Categorize an individual

regression test failure

2. Analyze a list of N fails, look for

commonality across multiple fails

3. Analyze list of NN fails looking

deeper for common root causes

across multiple fails

4. Analyze a single test instance

across N regression runs of run

history

10000 tests
1000 fails
100 symptoms
10 root causes

Triage Interactions

http://www.mentor.com/questa

