
The Case for Low-Power Simulation-to-Implementation Equivalence Checking

Himanshu Bhatt John Decker Hiral Desai

(MCS-LP solution) (Architect-LP solution) (SMCS-LP validation)

Cadence Design Systems Cadence Design Systems Cadence Design Systems

hbhatt@cadence.com jdecker@cadence.com hiral@cadence.com

ABSTRACT

Power-aware design differs from conventional

design in both well-understood, as well as, subtle

ways. For a typical design today, the RTL describes

the functional intent, drives the implementation

process and relies on equivalence checking to

assure the intent carries through to silicon. In

power-aware design, the power format file – either

CPF or IEEE 1801 (UPF) – is the specification for the

power intent. The functional intent becomes the

RTL and the power intent file. While many tools in

the end-to-end flow can read the intent, how do we

verify that each of these tools has interpreted the

intent in the same way? Where does the

equivalence checking need to take place for power-

aware design?

Keywords

Low Power, Functional Verification, Equivalence

Checking, CPF (Common Power Format), UPF

Unified Power Format, IEEE 1801

1. INTRODUCTION

Since both the implementation flow and the

simulation flow read the same power format files

and RTL, most engineers would assume that

information integrity is sustained. Therein lies the

subtlety. Logic simulation is an abstraction of the

design in which power rails and physical placement,

among other details, are not necessary. The CPF

and 1801 standards are designed to ensure that the

tools have the same starting point, but that doesn’t

guarantee that they have interpreted that

information correctly. There is no formal proof that

the simulation model of the power intent is the

same as what was implemented. The same

problem exists for RTL, but the collected experience

over the past generation has resolved the

discontinuities. In today’s low power context, the

pace of design and the cost of silicon failure do not

permit the electronics industry a similar “baking”

time for power-aware design.

While the issues may be subtle, missing them can

result in non-functioning silicon. One very

important feature of power-aware designs which

use the power shutoff functionality is isolation. The

rules for isolating pins/ports are specified in the

power format file. Typically, the simulator reads the

power format file during RTL elaboration and

calculates the isolation information in preparation

for the simulation test. When the test runs, the

isolation results can be validated using coverage

and/or waveform checking. Similarly, the

equivalence checker would typically check for the

isolation placements throughout the design

implementation using its formal analysis engine.

There are a number of rules on the precedence of

multiple isolation rules, the ordering of isolation in

back to back cases, and even the impact of the

physical location on where isolation is inserted.

But there is no formal proof of whether the tools in

the verification chain made all of the same decisions

as the tools in the implementation chain. While

one might be tempted to think that this would only

be caused by tool “bugs”, the reality is actually

more subtle. There are corner cases in both UPF

and CPF where the specification is not detailed

enough to define exactly what should happen in all

possible cases. Each software design team

(simulation and implementation) makes decisions

on how to implement these cases, and it is possible

that they can both have “valid” implementations

that differ from one another. While every effort is

taken to ensure consistency, existing methods fall

short in proving exhaustively that the two

interpretations are correct. This problem exists in

single vendor as well as mixed vendor flows.

For single vendor cases, each vendor strives to be

internally consistent, but the implementation and

verifications teams are separate groups, running

very different tasks on very different engines. In

mixed vendor cases the problem is even worse, as

the only communication is usually indirect finger

pointing about whose problem is causing the

difference. In both cases, there is a clear need for a

formal proof to ensure that both tools are

consistent.

This paper provides three examples where there

were differences detected that were not tool

interpretation related. In one case, the difference

was related to a fundamental difference in RTL

modeling between simulation and synthesis. The

other case was caused by poor methodology

decisions and the third one is a complex case of

back to back isolation.

This paper will describe a method to successfully

address this discontinuity. It discusses a technique

which applies formal analysis and equivalency

checking to prove that the isolation insertion

implemented by simulation matches the insertion

done in the implementation flow. While the focus

of this paper is on isolation, the same approach

could be used to validate almost all low-power

intent between the implementation and simulation

flows. This minimizes the risk of elusive bugs

escaping into silicon.

2. Low Power isolation checking (SIM2LEC)

In a low power flow, the simulation and

implementation tools uses the information in the

create_isolation_rule CPF commands to identify the

net segments that must be isolated, their isolation

values, and the conditions under which isolation

should happen. The simulator models isolation

implicitly by adding virtual isolation cells to the RTL

design. The implementation adds actual physical

cells to the design to implement the power intent.

The concern is that this isolation inserted by the

simulation tools could be different from synthesis

or equivalency checking. Providers of low power

tools spend a great deal of effort to obey the same

CPF semantics for all aspects of low power design.

However, up until now, there has been no formal

technique to do this verification.

To ensure that the isolation inferred by both the

simulation tools and the other downstream tools in

synthesis, equivalency checking, and place and

route match, there needs to be a technique for

doing this closed loop verification. This technique is

named for the tools that were used in the original

development and from hereon would be referred as

SIM2LEC isolation checking.

2.1 SIM2LEC methodology

The SIM2LEC methodology is to use formal

equivalency checking to compare the design with

the isolation insertion defined by a simulation

output file to the same design with isolation

natively inserted in the equivalency checking tool

per the CPF rules. If there is any difference in what

the simulator infers as isolation and the equivalency

checkers insertion based on CPF isolation rules,

non-equivalence will result.

The flow above describes the process as

implemented and used in the Cadence low power

solution, but the general concept applies to any low

power flow.

IES

LP LEC

RTL +

CPF

SIM2LEC

Implementation

LP LEC

Figure 1: Same golden Intent and LP LEC used to

verify implementation and simulation

Netlist

2.1.1 Alternative solutions considered

The SIM2LEC methodology provides a clean formal

solution to this complex problem. It was not,

however, the original solution as proposed by our

customers. Originally, the customer asked for

assertions to be generated automatically based on

the CPF file, which could run during simulation to

verify the low level details of the isolation insertion.

We have also had requests for the simulator itself

to generate this type of assertion.

This approach had a number of methodology issues

that lead to it being rejected. Using the simulator to

generate this type of assertion was not considered

viable, since the solution requires an independent

verification of the power intent. The primary

reason for rejection was that the assertions were

not a formal proof and relied on the quality of

verification environment; if a specific isolation case

was not covered by a test, it could lead to issues not

being detected. Since the low power environment

is typically software controlled, the amount of

simulation time required to provide the needed

coverage was prohibitively large. The process also

added a large number of low level assertions that

could impact the overall performance.

The SIM2LEC flow using equivalency checking

enables a closed loop methodology where the

simulation model of the design is verified using the

same tool that verifies the implementation. The

formal proof of the intent is the key aspect that

ensures what was simulated, matches with what

was implemented for the design.

2.2 What can the flow detect?

2.2.1 Case1 – Methodology issues

In theory, the same CPF should be used for

simulation as for implementation. But in practice,

designers may take short cuts. When the change is

limited to the physical constraints an

implementation designer may sometimes feel a

simulation run is not required. But isolation is

complex; a change in physical location of the

isolation cell can result in a change of behavior due

to the power supply for the cell as well as the order

of isolation cells when placed in series. In those

situations, if the physical related change in the CPF

is not re-simulated, a false-positive result in

simulation will occur. Without the SIM2LEC

methodology, this subtle discontinuity, among

others, would only be detected by gate-level

simulations. Since gate-level simulations are very

limited, it is unlikely that this issue would be

detected.

Following the recommended methodology would

ensure that all changes to the power intent are

simulated. The SIM2LEC flow provides a good

method to verify this.

2.2.2 Case2 - Feedthrough paths

Simulation and synthesis operate on the design in

very different ways; even what is considered an

operation differs. Take the following example:

Figure2: Feedthrough example

In this example, PD1 is a power shutoff domain. In

synthesis, the concatenation of Z is just a wire, so

there is a feedthrough path from I0 to I1, since both

I0 and I1 are in PD1 there is no need for isolation.

Originally, the simulator treated the concatenation

as an operator. To the simulator this path was not

seen as a feedthrough path, and so isolation was

inserted between I0 and I2. This difference in how

the same RTL construct was treated, lead to

functional differences in the behavior of the design.

Was this a bug in the simulator? No, most

simulators take the RTL code very literally. The

concat is an operator in the verilog specification, so

the simulation view was not “incorrect” in the

I0
(PD1)

I2(PD2)
I1
(PD1) Z={A,B}

A

B
Z

general case. But from a full LP flow perspective

this caused issues.

2.2.3 Back to back isolation

One more complex case of isolation is what we

term back to back isolation. In general, in a CPF

flow there is a single isolation cell placed on a

domain crossing. But in the back2back isolation

case there are two isolation cells on the path. The

diagram below describes the situation.

Figure3: Back to Back isolation example

In this situation, the order of the isolation depends

on the isolation location specified in the power

intent. In most cases the simulator does not need

to worry about location other than for assigning the

correct secondary domain, but in this case it makes

a difference in the logic function.

Iso1 – Location Iso2 – Location Isolation order

To (fanout) From (fanin) Iso2->iso1

From(fanin) From(fanin) Iso2->Iso1

To(fanout) To(fanout) Iso1->iso2

Parent Parent Iso1->Iso2

Table1: Back to Back isolation order

In this situation, the isolation value seen at the

input of PD2 can differ based on the location

specified. For example, the cases of both locations

being set in the “to” domain or the “from” domain

have a different order of isolation. Neither power

intent specification (UPF/CPF) is detailed enough to

specify the exact order. It is entirely conceivable

that a verification engineer with little physical

design experience could come to a different

conclusion on the order than an implementation

engineer. Since the spec is not detailed enough,

both engineers would feel they have valid isolation

and yet the results would be functionally different.

2.2.4 Use Cases

There are many more of these complex situations

that can also cause differences of simulation versus

implementation. It is difficult for R&D in the same

company to be sure that all possible cases have

been covered. When the flow involves multiple tool

vendors, the task is even less likely for them to be in

sync.

The SIM2LEC flow provides a formal method to

prove the consistency between these very different

tools in the flow. Each tool is optimized for the

task that it performs. There will be differences

because of this. Low power is lucky; the type of

modeling done for low power can be checked

formally. Frankly, it would be ideal if we could

formally check the simulation and implementation

view for all the RTL. But the general solution is

much harder (probably impossible) to solve.

 In the case above, the solution was to enhance the

simulator (IES) to provide feedthrough analysis that

would be more consistent with the implementation

flow.

PD1 PD2

CPF
 Create_isolation_rule –name Iso1 –from PD1
 –isolation_target from
 –isolation_condition X
Create_isolation_rule –name Iso2 –to PD2
 –isolaiton_target to
 –isolation_condition Y

UPF
 Set_isolation iso1 –domain PD1 –applies_to
outputs -source_clamp 0 –isolation_signal X
 Set_isolation iso2 –domain PD1 –applies_to
inputs -sink_clamp 1 –isolation_signal Y

Iso1 Iso2

2.3 Use Model

The user needs to add the following internal option

to irun or ncelab in IES:

-lps_genclp_iso [filename]

This option generates an output file after the

simulation run, which is then consumed by

Conformal Logical Equivalence Checking (Conformal

LEC) to check the simulator’s isolation placement.

The -lps_genclp_iso option extracts the isolation

information in the log file and generates a

command file that can be consumed by Conformal

LEC. This file provides information on the

simulator’s implicit isolation results. Conformal then

uses the RTL design and the CPF file to determine its

own isolation placement and compares this with

the simulator’s implicit isolation to verify that they

are consistent.

 IES CLP

Figure4: SIM2LEC isolation flow

2.4 SIM2LEC Flow Details

Example

The following example illustrates the SIM2LEC

isolation flow:

Figure5: Power domain instances along with isolation

constraints

Example CPF file

Power Domains ##

create_power_domain -name PDAON -default

create_power_domain -name PDON \

-instances {PDOUT}

create_power_domain -name PD01 \

-instances {D01_T1} \

-shutoff_condition {PCU/O_PSW\[A\]} \

-base_domains PDAON

create_power_domain -name PD02 \

-instances {D02_T1} \

-shutoff_condition {PCU/O_PSW\[A\]} \

-base_domains PDAON

……………..

……………..

Isolation Rules ##

create_isolation_rule -name iso01 \

-from PD01 -to PDON \

-isolation_condition "PCU/O_ISO_A_ " \

-isolation_output high

create_isolation_rule -name iso02 \

 -from PD02 -to PDON \

 -isolation_condition "PCU/O_ISO_A_" \

 -isolation_output high

set lowpower option

–power_domain_check

–golden CPF –revised CPF

read library <list>

read design

<path_to_design_files> -golden

read design

<path_to_design_files> -revised

read power intent <power intent

files> -both –cpf

commit cpf –golden

commit cpf –revised

–insert_isolation

dofile add_iso.do

commit library instance

add mapped points –all

compare

Compile

the design

Elaborate the design and

cpf using the option

–lps_genclp_iso

<filename> e.g. ncelab –

lps_genclp_iso add_iso.do

Simulate the

elaborated

snapshot

D01_T1

D02_T1

D03_T1

D03_T2

PDOUT

D04_T1

D04_T2

create_isolation_rule -name iso03 \

-from PD03 -to PDON \

-isolation_condition "PCU/O_ISO_A_ " \

-isolation_output high \

 -pins {D03_T1/D03_T2/D03_A_C20\[A\] \

D03_T1/D03_T2/D03_A_C21\[A\] }

………………..

……………….

IES options for generating “do” file for CLP

irun <design files> \

 <tb files> \

 -lps_cpf <cpf file> \

 ……….

 ……….

 -lps_genclp_iso add_iso.do

IES output file “add_iso.do”

//DATE: 11/07/11

//TIME: 15:26:07

//FILE generated with TOOL: ncelab 11.10-b020

//CPF source: ./NET01_1/CPF/CPF01_COMMON.cpf:47

add library instance -type OR

-target D01_T1/D01_A_A[A]

-connection {i0 D01_T1/D01_A_A[A]}

-connection {i1 "PCU/O_ISO_A_" }

-prefix NET01_1_CPF_CPF01_COMMON.cpf:47

//CPF source: ./NET01_1/CPF/CPF01_COMMON.cpf:49

add library instance -type OR

-target D02_T1/D02_P_B0

-connection {i0 D02_T1/D02_P_B0}

-connection {i1 "PCU/O_ISO_A_" }

-prefix NET01_1_CPF_CPF01_COMMON.cpf:49

add library instance -type OR

-target D02_T1/D02_A_B1

-connection {i0 D02_T1/D02_A_B1}

-connection {i1 "PCU/O_ISO_A_" }

-prefix NET01_1_CPF_CPF01_COMMON.cpf:49

add library instance -type OR

-target D02_T1/D02_A_B0

-connection {i0 D02_T1/D02_A_B0}

 -connection {i1 "PCU/O_ISO_A_" }

-prefix NET01_1_CPF_CPF01_COMMON.cpf:49

……………………

……………………

Script for running CLP using this “add_iso.do”

set log file ./clp.log -replace

set lowpower option -power_domain_check -golden CPF

-revised CPF

read library -cpf <file.cpf> -statetable -liberty

read design -sv <design> -root <design top> -gol

read design -sv <design> -root <design top> -rev

read power intent <file.cpf> -both -cpf

commit cpf –gol

commit cpf -rev -insert_isolation

dofile add_iso.do

commit library instance

go

compare

exit –f

CLP comparison output

==

// 68 compared points added to compare list

==

Compared points PO DFF Total

--

Equivalent 40 28 68

==

// Command: compare

==

Compared points PO DFF Total

--

Equivalent 40 28 68

==

3. CONCLUSIONS AND FURTHER

DEVELOPMENTS

The IE2CLP flow for isolation comparison provides

closed-loop verification between the simulation and

implementation tools. It ensures that no bugs in a

low power design escape silicon.

The following can thus be concluded based on this

flow:

• Power formats, such as CPF, unify intent across

the flow

• Implementation and verification both read the

same isolation data, but have different

abstractions in which to apply the data

• Simulation to implementation adds formal rules

to find differences in interpretation when the

power-format data is applied in each separate

flow

As a part of future development, another aspect

which is being worked upon is the state retention

consistency check between IES and CLP. The

existing SIM2LEC flow is being enhanced to ensure

that the state retention registers between IES and

CLP are consistent.

4. ACKNOWLEDGMENTS

The authors would like to thank the entire Low

Power simulation and implementation team

without whose support this flow would not have

been a success.

5. REFERENCES

 [1] Low-Power Simulation Guide, ver. 11.1.

 [2] Si2 Common Power Format Specification, ver.

 2.0

 [3] www.powerforward.org

