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ABSTRACT 

Power-aware design differs from conventional 

design in both well-understood, as well as, subtle 

ways. For a typical design today, the RTL describes 

the functional intent, drives the implementation 

process and relies on equivalence checking to 

assure the intent carries through to silicon.  In 

power-aware design, the power format file – either 

CPF or IEEE 1801 (UPF) – is the specification for the 

power intent. The functional intent becomes the 

RTL and the power intent file. While many tools in 

the end-to-end flow can read the intent, how do we 

verify that each of these tools has interpreted the 

intent in the same way? Where does the 

equivalence checking need to take place for power-

aware design? 
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1. INTRODUCTION 

Since both the implementation flow and the 

simulation flow read the same power format files 

and RTL, most engineers would assume that 

information integrity is sustained. Therein lies the 

subtlety. Logic simulation is an abstraction of the 

design in which power rails and physical placement, 

among other details, are not necessary. The CPF 

and 1801 standards are designed to ensure that the 

tools have the same starting point, but that doesn’t 

guarantee that they have interpreted that 

information correctly.  There is no formal proof that 

the simulation model of the power intent is the 

same as what was implemented.  The same 

problem exists for RTL, but the collected experience 

over the past generation has resolved the 

discontinuities.  In today’s low power context, the 

pace of design and the cost of silicon failure do not 

permit the electronics industry a similar “baking” 

time for power-aware design. 

 

While the issues may be subtle, missing them can 

result in non-functioning silicon. One very 

important feature of power-aware designs which 

use the power shutoff functionality is isolation. The 

rules for isolating pins/ports are specified in the 

power format file. Typically, the simulator reads the 

power format file during RTL elaboration and 

calculates the isolation information in preparation 

for the simulation test. When the test runs, the 

isolation results can be validated using coverage 

and/or waveform checking. Similarly, the 

equivalence checker would typically check for the 

isolation placements throughout the design 

implementation using its formal analysis engine.  

 

There are a number of rules on the precedence of 

multiple isolation rules, the ordering of isolation in 

back to back cases, and even the impact of the 

physical location on where isolation is inserted.   

But there is no formal proof of whether the tools in 

the verification chain made all of the same decisions 

as the tools in the implementation chain.   While 

one might be tempted to think that this would only 

be caused by tool “bugs”, the reality is actually 

more subtle.   There are corner cases in both UPF 

and CPF where the specification is not detailed 

enough to define exactly what should happen in all 

possible cases. Each software design team 

(simulation and implementation) makes decisions 

on how to implement these cases, and it is possible 

that they can both have “valid” implementations 

that differ from one another.   While every effort is 

taken to ensure consistency, existing methods fall 



 

 

short in proving exhaustively that the two 

interpretations are correct. This problem exists in 

single vendor as well as mixed vendor flows.    

For single vendor cases, each vendor strives to be 

internally consistent, but the implementation and 

verifications teams are separate groups, running 

very different tasks on very different engines.   In 

mixed vendor cases the problem is even worse, as 

the only communication is usually indirect finger 

pointing about whose problem is causing the 

difference.   In both cases, there is a clear need for a 

formal proof to ensure that both tools are 

consistent. 

 

This paper provides three examples where there 

were differences detected that were not tool 

interpretation related. In one case, the difference 

was related to a fundamental difference in RTL 

modeling between simulation and synthesis. The 

other case was caused by poor methodology 

decisions and the third one is a complex case of 

back to back isolation.  

 

This paper will describe a method to successfully 

address this discontinuity. It discusses a technique 

which applies formal analysis and equivalency 

checking to prove that the isolation insertion 

implemented by simulation matches the insertion 

done in the implementation flow.  While the focus 

of this paper is on isolation, the same approach 

could be used to validate almost all low-power 

intent between the implementation and simulation 

flows. This minimizes the risk of elusive bugs 

escaping into silicon. 

 
2. Low Power isolation checking (SIM2LEC)  

In a low power flow, the simulation and 

implementation tools uses the information in the 

create_isolation_rule CPF commands to identify the 

net segments that must be isolated, their isolation 

values, and the conditions under which isolation 

should happen. The simulator models isolation 

implicitly by adding virtual isolation cells to the RTL 

design.  The implementation adds actual physical 

cells to the design to implement the power intent. 

 

The concern is that this isolation inserted by the 

simulation tools could be different from synthesis 

or equivalency checking.  Providers of low power 

tools spend a great deal of effort to obey the same 

CPF semantics for all aspects of low power design.  

However, up until now, there has been no formal 

technique to do this verification. 

 

To ensure that the isolation inferred by both the 

simulation tools and the other downstream tools in 

synthesis, equivalency checking, and place and 

route match, there needs to be a technique for 

doing this closed loop verification. This technique is 

named for the tools that were used in the original 

development and from hereon would be referred as 

SIM2LEC isolation checking. 

 
2.1 SIM2LEC methodology 

The SIM2LEC methodology is to use formal 

equivalency checking to compare the design with 

the isolation insertion defined by a simulation 

output file to the same design with isolation 

natively inserted in the equivalency checking tool 

per the CPF rules.  If there is any difference in what 

the simulator infers as isolation and the equivalency 

checkers insertion based on CPF isolation rules, 

non-equivalence will result. 

 

 
The flow above describes the process as 

implemented and used in the Cadence low power 

solution, but the general concept applies to any low 

power flow.    
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Figure 1: Same golden Intent and LP LEC used to 

verify implementation and simulation 
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2.1.1 Alternative solutions considered 

The SIM2LEC methodology provides a clean formal 

solution to this complex problem.  It was not, 

however, the original solution as proposed by our 

customers.  Originally, the customer asked for 

assertions to be generated automatically based on 

the CPF file, which could run during simulation to 

verify the low level details of the isolation insertion.  

We have also had requests for the simulator itself 

to generate this type of assertion. 

 

This approach had a number of methodology issues 

that lead to it being rejected. Using the simulator to 

generate this type of assertion was not considered 

viable, since the solution requires an independent 

verification of the power intent.    The primary 

reason for rejection was that the assertions were 

not a formal proof and relied on the quality of 

verification environment; if a specific isolation case 

was not covered by a test, it could lead to issues not 

being detected.  Since the low power environment 

is typically software controlled, the amount of 

simulation time required to provide the needed 

coverage was prohibitively large.  The process also 

added a large number of low level assertions that 

could impact the overall performance. 

 

The SIM2LEC flow using equivalency checking 

enables a closed loop methodology where the 

simulation model of the design is verified using the 

same tool that verifies the implementation.   The 

formal proof of the intent is the key aspect that 

ensures what was simulated, matches with what 

was implemented for the design. 

 
2.2 What can the flow detect? 

 

2.2.1 Case1 – Methodology issues 

In theory, the same CPF should be used for 

simulation as for implementation.  But in practice, 

designers may take short cuts. When the change is 

limited to the physical constraints an 

implementation designer may sometimes feel a 

simulation run is not required.  But isolation is 

complex; a change in physical location of the 

isolation cell can result in a change of behavior due 

to the power supply for the cell as well as the order 

of isolation cells when placed in series. In those 

situations, if the physical related change in the CPF 

is not re-simulated, a false-positive result in 

simulation will occur.  Without the SIM2LEC 

methodology, this subtle discontinuity, among 

others, would only be detected by gate-level 

simulations.  Since gate-level simulations are very 

limited, it is unlikely that this issue would be 

detected. 

 

Following the recommended methodology would 

ensure that all changes to the power intent are 

simulated.   The SIM2LEC flow provides a good 

method to verify this. 

 

2.2.2 Case2 - Feedthrough paths 

Simulation and synthesis operate on the design in 

very different ways; even what is considered an 

operation differs.   Take the following example: 

 
Figure2: Feedthrough example 

 

In this example, PD1 is a power shutoff domain.  In 

synthesis, the concatenation of Z is just a wire, so 

there is a feedthrough path from I0 to I1, since both 

I0 and I1 are in PD1 there is no need for isolation. 

 

Originally, the simulator treated the concatenation 

as an operator.  To the simulator this path was not 

seen as a feedthrough path, and so isolation was 

inserted between I0 and I2.   This difference in how 

the same RTL construct was treated, lead to 

functional differences in the behavior of the design. 

 

Was this a bug in the simulator?  No, most 

simulators take the RTL code very literally. The 

concat is an operator in the verilog specification, so 

the simulation view was not “incorrect” in the 
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general case.  But from a full LP flow perspective 

this caused issues. 

2.2.3 Back to back isolation 

One more complex case of isolation is what we 

term back to back isolation.   In general, in a CPF 

flow there is a single isolation cell placed on a 

domain crossing.  But in the back2back isolation 

case there are two isolation cells on the path.  The 

diagram below describes the situation. 

 
Figure3: Back to Back isolation example 

 

In this situation, the order of the isolation depends 

on the isolation location specified in the power 

intent.  In most cases the simulator does not need 

to worry about location other than for assigning the 

correct secondary domain, but in this case it makes 

a difference in the logic function. 

 

Iso1 – Location Iso2 – Location Isolation order 

To (fanout) From (fanin) Iso2->iso1 

From(fanin) From(fanin) Iso2->Iso1 

To(fanout) To(fanout) Iso1->iso2 

Parent Parent Iso1->Iso2 

Table1: Back to Back isolation order 

 

In this situation, the isolation value seen at the 

input of PD2 can differ based on the location 

specified.  For example, the cases of both locations 

being set in the “to” domain or the “from” domain 

have a different order of isolation. Neither power 

intent specification (UPF/CPF) is detailed enough to 

specify the exact order.   It is entirely conceivable 

that a verification engineer with little physical 

design experience could come to a different 

conclusion on the order than an implementation 

engineer.    Since the spec is not detailed enough, 

both engineers would feel they have valid isolation 

and yet the results would be functionally different. 

 

2.2.4 Use Cases 

There are many more of these complex situations 

that can also cause differences of simulation versus 

implementation.   It is difficult for R&D in the same 

company to be sure that all possible cases have 

been covered.  When the flow involves multiple tool 

vendors, the task is even less likely for them to be in 

sync. 

 

The SIM2LEC flow provides a formal method to 

prove the consistency between these very different 

tools in the flow.    Each tool is optimized for the 

task that it performs.  There will be differences 

because of this.  Low power is lucky; the type of 

modeling done for low power can be checked 

formally.  Frankly, it would be ideal if we could 

formally check the simulation and implementation 

view for all the RTL.  But the general solution is 

much harder (probably impossible) to solve.  

 

 In the case above, the solution was to enhance the 

simulator (IES) to provide feedthrough analysis that 

would be more consistent with the implementation 

flow.  

 

 

 

 

 

 

 

 

 

 

 

PD1 PD2 

CPF 
   Create_isolation_rule –name Iso1 –from PD1 
       –isolation_target from  
       –isolation_condition X  
Create_isolation_rule –name Iso2 –to PD2  
     –isolaiton_target to  
     –isolation_condition Y 
   
UPF 
    Set_isolation iso1 –domain PD1 –applies_to 
outputs  -source_clamp 0 –isolation_signal X 
    Set_isolation iso2 –domain PD1 –applies_to 
inputs   -sink_clamp 1 –isolation_signal Y 

Iso1 Iso2 



 

 

 

 

 

2.3 Use Model 

The user needs to add the following internal option 

to irun or ncelab in IES: 

 
-lps_genclp_iso [filename] 
 
This option generates an output file after the 

simulation run, which is then consumed by 

Conformal Logical Equivalence Checking (Conformal 

LEC) to check the simulator’s isolation placement. 

 

The -lps_genclp_iso option extracts the isolation 

information in the log file and generates a 

command file that can be consumed by Conformal 

LEC. This file provides information on the 

simulator’s implicit isolation results. Conformal then 

uses the RTL design and the CPF file to determine its 

own isolation placement and compares this with 

the simulator’s implicit isolation to verify that they 

are consistent. 

 

 IES   CLP 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure4: SIM2LEC isolation flow 

 
2.4 SIM2LEC Flow Details 

Example  

 

The following example illustrates the SIM2LEC 

isolation flow: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure5: Power domain instances along with isolation 

constraints 

 

Example CPF file 

## Power Domains ## 

create_power_domain -name PDAON -default 

create_power_domain -name PDON \ 

-instances {PDOUT} 

create_power_domain -name PD01 \ 

-instances {D01_T1} \ 

-shutoff_condition {PCU/O_PSW\[A\]} \ 

-base_domains PDAON 

create_power_domain -name PD02 \ 

-instances {D02_T1}  \ 

-shutoff_condition {PCU/O_PSW\[A\]} \ 

-base_domains PDAON 

…………….. 

…………….. 

## Isolation Rules ## 

create_isolation_rule -name iso01   \ 

-from PD01 -to PDON \ 

-isolation_condition "PCU/O_ISO_A_ " \ 

-isolation_output high 

create_isolation_rule -name iso02 \ 

 -from PD02 -to PDON \ 

 -isolation_condition "PCU/O_ISO_A_" \ 

 -isolation_output high 

set lowpower option                      

–power_domain_check                  

–golden CPF –revised CPF 

read library <list> 

read design 

<path_to_design_files> -golden 

read design 

<path_to_design_files> -revised 

read power intent <power intent 

files> -both –cpf 

commit cpf –golden 

commit cpf –revised                      

–insert_isolation 

 

dofile     add_iso.do 

commit library instance 

 

add mapped points –all 

compare 

 

Compile 

the design 

Elaborate the design and 

cpf using the option           

–lps_genclp_iso 

<filename>     e.g. ncelab –

lps_genclp_iso add_iso.do 

Simulate the 

elaborated 

snapshot 

D01_T1 

D02_T1 

D03_T1 

D03_T2 

PDOUT 

D04_T1 

D04_T2 



 

 

 

create_isolation_rule -name iso03 \ 

-from PD03 -to PDON \ 

-isolation_condition "PCU/O_ISO_A_ " \ 

-isolation_output high \ 

 -pins {D03_T1/D03_T2/D03_A_C20\[A\] \ 

D03_T1/D03_T2/D03_A_C21\[A\] } 

……………….. 

………………. 

 

IES options for generating “do” file for CLP 

irun <design files> \ 

        <tb files> \ 

         -lps_cpf <cpf file> \ 

         ………. 

         ………. 

         -lps_genclp_iso add_iso.do 

 
IES output file “add_iso.do” 

//DATE: 11/07/11 

//TIME: 15:26:07 

//FILE generated with TOOL:     ncelab  11.10-b020 

 

//CPF source: ./NET01_1/CPF/CPF01_COMMON.cpf:47 

add library instance -type OR  

-target D01_T1/D01_A_A[A]  

-connection {i0 D01_T1/D01_A_A[A]}  

-connection {i1 "PCU/O_ISO_A_" }  

-prefix NET01_1_CPF_CPF01_COMMON.cpf:47 

//CPF source: ./NET01_1/CPF/CPF01_COMMON.cpf:49 

add library instance -type OR  

-target D02_T1/D02_P_B0  

-connection {i0 D02_T1/D02_P_B0}  

-connection {i1 "PCU/O_ISO_A_" }  

-prefix NET01_1_CPF_CPF01_COMMON.cpf:49 

add library instance -type OR  

-target D02_T1/D02_A_B1  

-connection {i0 D02_T1/D02_A_B1}  

-connection  {i1 "PCU/O_ISO_A_" }  

-prefix NET01_1_CPF_CPF01_COMMON.cpf:49 

add library instance -type OR  

-target  D02_T1/D02_A_B0  

-connection {i0 D02_T1/D02_A_B0} 

 -connection {i1 "PCU/O_ISO_A_" }  

-prefix NET01_1_CPF_CPF01_COMMON.cpf:49 

…………………… 

…………………… 

Script for running CLP using this “add_iso.do” 

set log file ./clp.log -replace 

set lowpower option -power_domain_check -golden CPF 

-revised CPF 

read library -cpf <file.cpf> -statetable -liberty 

read design  -sv <design> -root <design top> -gol 

read design  -sv <design> -root <design top> -rev 

read power intent <file.cpf> -both -cpf 

commit cpf –gol 

commit cpf -rev -insert_isolation 

dofile add_iso.do 

commit library instance 

go 

compare 

exit –f 

 
CLP comparison output 

============================================== 

// 68 compared points added to compare list 

============================================== 

Compared points      PO     DFF       Total 

---------------------------------------------------------------------------- 

Equivalent           40     28        68 

============================================== 

// Command: compare 

============================================== 

Compared points      PO     DFF       Total 

---------------------------------------------------------------------------- 

Equivalent           40     28        68 

============================================== 
 

3. CONCLUSIONS AND FURTHER 

DEVELOPMENTS 

The IE2CLP flow for isolation comparison provides 

closed-loop verification between the simulation and 

implementation tools. It ensures that no bugs in a 

low power design escape silicon. 

 

The following can thus be concluded based on this 

flow: 

• Power formats, such as CPF, unify intent across 

the flow 

• Implementation and verification both read the 

same isolation data, but have different 

abstractions in which to apply the data 

• Simulation to implementation adds formal rules 

to find differences in interpretation when the 

power-format data is applied in each separate 

flow  

 

As a part of future development, another aspect 

which is being worked upon is the state retention 

consistency check between IES and CLP. The 

existing SIM2LEC flow is being enhanced to ensure 



 

 

that the state retention registers between IES and 

CLP are consistent.  
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